메뉴 건너뛰기




Volumn 187, Issue 2, 2007, Pages 1017-1026

Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform

Author keywords

Decision tree classifier; Electroencephalogram (EEG); Epileptic seizure; FFT; k Fold cross validation

Indexed keywords

DECISION MAKING; DECISION TREES; DISEASES; FAST FOURIER TRANSFORMS; FEATURE EXTRACTION; INTELLIGENT SYSTEMS; PATIENT TREATMENT;

EID: 34247217946     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2006.09.022     Document Type: Article
Times cited : (591)

References (23)
  • 4
    • 0035078731 scopus 로고    scopus 로고
    • Nonlinear dynamical analysis of the EEG in patients with Alzheimer's disease and vacular dementia
    • Jaeseung J., Jeong-Ho C., Kim S.Y., and Seol-Heui H. Nonlinear dynamical analysis of the EEG in patients with Alzheimer's disease and vacular dementia. Clin. Neurophysiol. 18 1 (2001) 58-67
    • (2001) Clin. Neurophysiol. , vol.18 , Issue.1 , pp. 58-67
    • Jaeseung, J.1    Jeong-Ho, C.2    Kim, S.Y.3    Seol-Heui, H.4
  • 5
    • 0034852405 scopus 로고    scopus 로고
    • Is there chaos in the brain? Concepts of nonlinear dynamics and methods of investigation
    • Philippe F., and Henri K. Is there chaos in the brain? Concepts of nonlinear dynamics and methods of investigation. Life Sci. 324 (2001) 773-793
    • (2001) Life Sci. , vol.324 , pp. 773-793
    • Philippe, F.1    Henri, K.2
  • 7
    • 0037441741 scopus 로고    scopus 로고
    • Analysis of EEG records in an epileptic patient using wavelet transform
    • Adeli H., Zhou Z., and Dadmehr N. Analysis of EEG records in an epileptic patient using wavelet transform. J. Neurosci. Methods 123 1 (2003) 69-87
    • (2003) J. Neurosci. Methods , vol.123 , Issue.1 , pp. 69-87
    • Adeli, H.1    Zhou, Z.2    Dadmehr, N.3
  • 8
    • 0031141135 scopus 로고    scopus 로고
    • Classification of EEG signals using the wavelet transform
    • Hazarika N., Chen J.Z., Tsoi A.C., and Sergejew A. Classification of EEG signals using the wavelet transform. Signal Process. 59 1 (1997) 61-72
    • (1997) Signal Process. , vol.59 , Issue.1 , pp. 61-72
    • Hazarika, N.1    Chen, J.Z.2    Tsoi, A.C.3    Sergejew, A.4
  • 9
    • 4444331199 scopus 로고    scopus 로고
    • Analysis of wavelet-filtered tonic-clonic electroencephalogram recordings
    • Rosso O.A., Figliola A., Creso J., and Serrano E. Analysis of wavelet-filtered tonic-clonic electroencephalogram recordings. Med. Biol. Eng. Comput. 42 4 (2004) 516-523
    • (2004) Med. Biol. Eng. Comput. , vol.42 , Issue.4 , pp. 516-523
    • Rosso, O.A.1    Figliola, A.2    Creso, J.3    Serrano, E.4
  • 10
    • 0024661616 scopus 로고
    • Context-based automated detection of epileptogenic sharp transients in the EEG: elimination of false positives
    • Glover Jr. J.R., Raghaven N., Ktonas P.Y., and Frost Jr. J.D. Context-based automated detection of epileptogenic sharp transients in the EEG: elimination of false positives. IEEE Trans. Biomed. Eng. 36 5 (1989) 519-527
    • (1989) IEEE Trans. Biomed. Eng. , vol.36 , Issue.5 , pp. 519-527
    • Glover Jr., J.R.1    Raghaven, N.2    Ktonas, P.Y.3    Frost Jr., J.D.4
  • 11
    • 0026675081 scopus 로고
    • Automated interictal EEG spike detection using artificial neural networks
    • Gabor A.J., and Seyal M. Automated interictal EEG spike detection using artificial neural networks. Electroencephalogr. Clin. Neurophysiol. 83 5 (1992) 271-280
    • (1992) Electroencephalogr. Clin. Neurophysiol. , vol.83 , Issue.5 , pp. 271-280
    • Gabor, A.J.1    Seyal, M.2
  • 13
    • 0842310823 scopus 로고    scopus 로고
    • A neural-network-based detection of epilepsy
    • Nigam V.P., and Graupe D. A neural-network-based detection of epilepsy. Neurol. Res. 26 1 (2004) 55-60
    • (2004) Neurol. Res. , vol.26 , Issue.1 , pp. 55-60
    • Nigam, V.P.1    Graupe, D.2
  • 14
    • 26944458497 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients
    • Guler I., and Ubeyli E.D. Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients. J. Neurosci. Methods 148 (2005) 113-121
    • (2005) J. Neurosci. Methods , vol.148 , pp. 113-121
    • Guler, I.1    Ubeyli, E.D.2
  • 15
    • 0035682573 scopus 로고    scopus 로고
    • Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state
    • Andrzejak R.G., Lehnertz K., Mormann F., Rieke C., David P., and Elger C.E. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys. Rev. E 64 (2001) 061907
    • (2001) Phys. Rev. E , vol.64 , pp. 061907
    • Andrzejak, R.G.1    Lehnertz, K.2    Mormann, F.3    Rieke, C.4    David, P.5    Elger, C.E.6
  • 16
    • 34247272321 scopus 로고    scopus 로고
    • A. Subasi, EEG signal classification using wavelet feature extraction and a mixture of expert model, Expert Systems with Applications, in press.
  • 17
    • 0034013902 scopus 로고    scopus 로고
    • Doppler signal analysis
    • Evans D. Doppler signal analysis. Ultrasound Med. Biol. 26 Supplement 1 (2000) S13-S15
    • (2000) Ultrasound Med. Biol. , vol.26 , Issue.SUPPL. 1
    • Evans, D.1
  • 18
    • 0023733016 scopus 로고
    • A comparative study and assessment of Doppler ultrasound spectral estimation techniques part II: methods and results
    • Vaitkus P.J., Cobbold R.S.C., and Johnston K.W. A comparative study and assessment of Doppler ultrasound spectral estimation techniques part II: methods and results. Ultrasound Med. Biol. 14 (1988) 673-688
    • (1988) Ultrasound Med. Biol. , vol.14 , pp. 673-688
    • Vaitkus, P.J.1    Cobbold, R.S.C.2    Johnston, K.W.3
  • 19
    • 0036842317 scopus 로고    scopus 로고
    • Comparison of FFT and adaptive ARMA methods in transcranial Doppler signals recorded from the cerebral vessels
    • Guler I., Hardalac F., and Kaymaz M. Comparison of FFT and adaptive ARMA methods in transcranial Doppler signals recorded from the cerebral vessels. Comput. Biol. Med. 32 (2002) 445-453
    • (2002) Comput. Biol. Med. , vol.32 , pp. 445-453
    • Guler, I.1    Hardalac, F.2    Kaymaz, M.3
  • 21
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan J.R. Induction of decision trees. Mach. Learn. 1 (1986) 81-106
    • (1986) Mach. Learn. , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 22
    • 34247237075 scopus 로고    scopus 로고
    • R. Kohavi, F. Provost, Glossary of terms. Editorial for the Special Issue on Applications of Machine Learning and the Knowledge Discovery Process, 30(2/3) (1998).
  • 23
    • 24144470790 scopus 로고    scopus 로고
    • Recurrent neural networks employing Lyapunov exponents for EEG signals classification
    • Guler N.F., Ubeyli E.D., and Guler I. Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Syst. Appl. 29 (2005) 506-514
    • (2005) Expert Syst. Appl. , vol.29 , pp. 506-514
    • Guler, N.F.1    Ubeyli, E.D.2    Guler, I.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.