메뉴 건너뛰기




Volumn 9, Issue 4, 2009, Pages 539-553

Automatic identification of epileptic EEG signals using nonlinear parameters

Author keywords

Correlation dimension; EEG; Epilepsy; Fractal; GMM; Lyapunov exponent; Preictal; SVM

Indexed keywords


EID: 76449108621     PISSN: 02195194     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0219519409003152     Document Type: Article
Times cited : (118)

References (47)
  • 1
    • 0027170578 scopus 로고
    • Guidelines for epidemiologic studies on epilepsy
    • Commission on Epidemiology and Prognosis, International League Against Epilepsy
    • Commission on Epidemiology and Prognosis, International League Against Epilepsy, Guidelines for epidemiologic studies on epilepsy. Commission on Epidemiology and Prognosis, International League Against Epilepsy, Epilepsia 34(4):592-596, 1993.
    • (1993) Commission on Epidemiology and Prognosis, International League Against Epilepsy, Epilepsia , vol.34 , Issue.4 , pp. 592-596
  • 2
    • 0034779445 scopus 로고    scopus 로고
    • Glossary of descriptive terminology for ictal semiology: Report of the ILAE Task Force on classification and terminology
    • DOI 10.1046/j.1528-1157.2001.22001.x
    • Blume W, Luders H, Mizrahi E, Tassinari C, van Emde Boas W, Engel J, Glossary of descriptive terminology for ictal semiology: Report of the ILAE task force on classification and terminology, Epilepsia 42(9):1212-1218, 2001. (Pubitemid 32951809)
    • (2001) Epilepsia , vol.42 , Issue.9 , pp. 1212-1218
    • Blume, W.T.1    Luders, H.O.2    Mizrahi, E.3    Tassinari, C.4    Van Emde Boas, W.5    Engel Jr., J.6
  • 3
    • 16344387731 scopus 로고    scopus 로고
    • Epileptic seizures and epilepsy: Definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE)
    • DOI 10.1111/j.0013-9580.2005.66104.x
    • Fisher R, van Emde Boas W, Blume W, Elger C, Genton P, Lee P, Engel J, Epileptic seizures and epilepsy: Definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE), Epilepsia 46(4):470-472, 2005. (Pubitemid 40470667)
    • (2005) Epilepsia , vol.46 , Issue.4 , pp. 470-472
    • Fisher, R.S.1    Van Emde Boas, W.2    Blume, W.3    Elger, C.4    Genton, P.5    Lee, P.6    Engel Jr., J.7
  • 4
    • 33745013387 scopus 로고    scopus 로고
    • World Health Organization. February (last accessed on 18th June 2009)
    • Epilepsy: Aetiogy [sic], epidemiology and prognosis, World Health Organization. February 2001 (last accessed on 18th June 2009).
    • (2001) Epilepsy: Aetiogy [Sic], Epidemiology and Prognosis
  • 5
    • 76449087831 scopus 로고    scopus 로고
    • The National Society for Epilepsy Available from(accessed on 15 February 2009)
    • The National Society for Epilepsy (2009), What is Epilepsy? Available from http:// www.epilepsynse.org.uk/AboutEpilepsy/Whatisepilepsy (accessed on 15 February 2009).
    • (2009) What Is Epilepsy?
  • 6
    • 7044253486 scopus 로고    scopus 로고
    • Comprehensive analysis of cardiac health using heart rate signals
    • Acharya UR, Kannathal N, Krishnan SM, Comprehensive analysis of cardiac health using heart rate signals, Physiol Meas J UK 25:1130-1151, 2004.
    • (2004) Physiol Meas J UK , vol.25 , pp. 1130-1151
    • Acharya, U.R.1    Kannathal, N.2    Krishnan, S.M.3
  • 11
    • 33751396389 scopus 로고    scopus 로고
    • EEG signal classification using wavelet feature extraction and a mixture of expert model
    • Subasi A, EEG signal classification using wavelet feature extraction and a mixture of expert model, Expert Syst Appl Int J 32(4):1084-1093, 2007.
    • (2007) Expert Syst Appl Int J , vol.32 , Issue.4 , pp. 1084-1093
    • Subasi, A.1
  • 12
  • 13
    • 66149083263 scopus 로고    scopus 로고
    • The sample entropy and its application in EEG based epilepsy detection
    • Bai D, Qiu, Li T, The sample entropy and its application in EEG based epilepsy detection, J Biomed Eng 200-205, 2007.
    • (2007) J Biomed Eng , pp. 200-205
    • Bai, D.1    Qiu Li, T.2
  • 17
    • 0035023402 scopus 로고    scopus 로고
    • The epileptic process as nonlinear deterministic dynamics in a stochastic environment: An evaluation on mesial temporal lobe epilepsy
    • Andrzejak RG, Widman G, Lehnertz K, Rieke C, David P, Elger CE, The epileptic process as nonlinear deterministic dynamics in a stochastic environment: An evaluation on mesial temporal lobe epilepsy, Epilepsy Res 44(2):129-140, 2001.
    • (2001) Epilepsy Res , vol.44 , Issue.2 , pp. 129-140
    • Andrzejak, R.G.1    Widman, G.2    Lehnertz, K.3    Rieke, C.4    David, P.5    Elger, C.E.6
  • 18
    • 56749100373 scopus 로고    scopus 로고
    • Epilepsy and nonlinear dynamics
    • Lehnertz K, Epilepsy and nonlinear dynamics, J Biol Phys 33(3-4):253-266, 2008.
    • (2008) J Biol Phys , vol.33 , Issue.3-4 , pp. 253-266
    • Lehnertz, K.1
  • 19
    • 0000779360 scopus 로고
    • Detecting strange attractors in turbulence
    • Rand D, Young LS (eds.) , Springer, Berlin
    • Takens F, Detecting strange attractors in turbulence, in Rand D, Young LS (eds.), Dynamical Systems and Turbulence, Springer, Berlin, 1981.
    • (1981) Dynamical Systems and Turbulence
    • Takens, F.1
  • 20
    • 35949006791 scopus 로고
    • Determining embedding dimension for phase- space reconstruction using a geometrical construction
    • Kennel MB, Brown R, Abarbanel HDI, Determining embedding dimension for phase- space reconstruction using a geometrical construction, Phys Rev A 45:3403, 1992.
    • (1992) Phys Rev A , vol.45 , pp. 3403
    • Kennel, M.B.1    Brown, R.2    Abarbanel, H.D.I.3
  • 21
    • 34548696055 scopus 로고
    • Independent coordinates for strange attractors from mutual information
    • Fraser AM, Swinney HL, Independent coordinates for strange attractors from mutual information, Phys Rev A 33:1134-1140, 1986.
    • (1986) Phys Rev A , vol.33 , pp. 1134-1140
    • Fraser, A.M.1    Swinney, H.L.2
  • 22
    • 0026780669 scopus 로고
    • Quantification of hormone pulsatility via an approximate entropy algorithm
    • Pincus SM, Keefe DL, Quantification of hormone pulsatility via an approximate entropy algorithm, Am J Physiol 262:E741-E754, 1992.
    • (1992) Am J Physiol , vol.262
    • Pincus, S.M.1    Keefe, D.L.2
  • 24
    • 43949166788 scopus 로고
    • A practical method for calculating largest Lyapunov exponents from small data sets
    • Rosenstien M, Colins JJ, De Luca CJ, A practical method for calculating largest Lyapunov exponents from small data sets, Physica D 65:117-134, 1993.
    • (1993) Physica D , vol.65 , pp. 117-134
    • Rosenstien, M.1    Colins, J.J.2    De Luca, C.J.3
  • 28
    • 45549113571 scopus 로고
    • Approach to an irregular time series on the basis of the fractal theory
    • Higuchi T, Approach to an irregular time series on the basis of the fractal theory, Physica D 31:277-283, 1988.
    • (1988) Physica D , vol.31 , pp. 277-283
    • Higuchi, T.1
  • 30
    • 0035935951 scopus 로고    scopus 로고
    • GMM based on local PCA for speaker identification
    • Seo C, Lee KY, Lee J, GMM based on local PCA for speaker identification, Electron Lett 37:1486-1488, 2001.
    • (2001) Electron Lett , vol.37 , pp. 1486-1488
    • Seo, C.1    Lee, K.Y.2    Lee, J.3
  • 32
    • 85008377559 scopus 로고
    • Receiver Operating Characteristic Laboratory (ROCLAB): Software for developing decision strategies that account for uncertainty management in artificial neural network decision-making
    • DeLeo JM, Receiver Operating Characteristic Laboratory (ROCLAB): Software for developing decision strategies that account for uncertainty management in artificial neural network decision-making, Proc Second Int Symp Uncertainty Modeling and Analysis, pp. 141-144, 1993.
    • (1993) Proc Second Int Symp Uncertainty Modeling and Analysis , pp. 141-144
    • Deleo, J.M.1
  • 33
    • 0033326221 scopus 로고    scopus 로고
    • Using the receiver operating characteristic to assess the performance of neural classifiers
    • Downey TJ, Meyer DJ, Price RK, Spitznagel EL, Using the receiver operating characteristic to assess the performance of neural classifiers, Neural Networks 5:3642-3646, 1999.
    • (1999) Neural Networks , vol.5 , pp. 3642-3646
    • Downey, T.J.1    Meyer, D.J.2    Price, R.K.3    Spitznagel, E.L.4
  • 34
    • 33747866964 scopus 로고    scopus 로고
    • Seizure anticipation: Are neurophenomenological approaches able to detect pre-ictal symptoms?
    • Petitmengin C, Baulac M, Navarro V, Seizure anticipation: Are neurophenomenological approaches able to detect pre-ictal symptoms? Epilepsy Behav 9(2):298-306, 2006.
    • (2006) Epilepsy Behav , vol.9 , Issue.2 , pp. 298-306
    • Petitmengin, C.1    Baulac, M.2    Navarro, V.3
  • 36
    • 67449161052 scopus 로고    scopus 로고
    • Automatic identification of epileptic EEG signals using higher order spectra
    • Chua KC, Chandran V, Acharya UR, Lim CM, Automatic identification of epileptic EEG signals using higher order spectra, Int J Eng Med 223(4):485-495, 2009.
    • (2009) Int J Eng Med , vol.223 , Issue.4 , pp. 485-495
    • Chua, K.C.1    Chandran, V.2    Acharya, U.R.3    Lim, C.M.4
  • 38
    • 0842310823 scopus 로고    scopus 로고
    • A neural-network-based detection of epilepsy
    • Nigam VP, Graupe D, A neural-network-based detection of epilepsy, Neurol Res 26(1):55-60, 2004.
    • (2004) Neurol Res , vol.26 , Issue.1 , pp. 55-60
    • Nigam, V.P.1    Graupe, D.2
  • 39
    • 24044474732 scopus 로고    scopus 로고
    • Artificial neural network based epileptic detection using time-domain and frequency-domain features
    • Srinivasan V, Eswaran C, Sriraam N, Artificial neural network based epileptic detection using time-domain and frequency-domain features, J Med Syst 29(6):647-660, 2005.
    • (2005) J Med Syst , vol.29 , Issue.6 , pp. 647-660
    • Srinivasan, V.1    Eswaran, C.2    Sriraam, N.3
  • 42
    • 38749083808 scopus 로고    scopus 로고
    • Automatic seizure detection based on timefrequency analysis and artificial neural networks
    • Tzallas AT, Tsipouras MG, Fotiadis DI, Automatic seizure detection based on timefrequency analysis and artificial neural networks, Comput Intell Neurosci 2007:13, 2007.
    • (2007) Comput Intell Neurosci , vol.13 , pp. 2007
    • Tzallas, A.T.1    Tsipouras, M.G.2    Fotiadis, D.I.3
  • 43
    • 56349101801 scopus 로고    scopus 로고
    • Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy
    • Ocak H, Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy, Expert Syst Appl Int J 36(2):2027-2036, 2009.
    • (2009) Expert Syst Appl Int J , vol.36 , Issue.2 , pp. 2027-2036
    • Ocak, H.1
  • 44
  • 46
    • 84873070535 scopus 로고    scopus 로고
    • EEG time series database, http://www.meb.unibonn.de/epileptologie/ science/ physik/eegdata.
    • EEG Time Series Database
  • 47
    • 76449115332 scopus 로고    scopus 로고
    • last accessed on 11 August 2009
    • http://www.medcalc.be/(last accessed on 11 August 2009).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.