메뉴 건너뛰기




Volumn 8, Issue 7, 2014, Pages 1323-1334

Epileptic seizures detection in EEG using DWT-based ApEn and artificial neural network

Author keywords

Approximate entropy (ApEn); Artificial neural network (ANN); Discrete wavelet transforms(DWT); Electroencephalogram (EEG); Support vector machine (SVM)

Indexed keywords

BACKPROPAGATION ALGORITHMS; COMPLEX NETWORKS; ELECTROENCEPHALOGRAPHY; ENTROPY; NEURAL NETWORKS; NEUROPHYSIOLOGY; SIGNAL DETECTION; SIGNAL PROCESSING; SUPPORT VECTOR MACHINES;

EID: 85028093897     PISSN: 18631703     EISSN: 18631711     Source Type: Journal    
DOI: 10.1007/s11760-012-0362-9     Document Type: Article
Times cited : (233)

References (47)
  • 1
    • 56349101801 scopus 로고    scopus 로고
    • Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy
    • Hasan O.: Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Syst. Appl. 36, 52027–52036 (2009)
    • (2009) Expert Syst. Appl. , vol.36 , pp. 52027-52036
    • Hasan, O.1
  • 4
    • 0037441741 scopus 로고    scopus 로고
    • Analysis of EEG records in an epileptic patient using wavelet transform
    • Adeli H., Zhou Z., Dadmehr N.: Analysis of EEG records in an epileptic patient using wavelet transform. J. Neurosci. Methods 123, 69–87 (2003)
    • (2003) J. Neurosci. Methods , vol.123 , pp. 69-87
    • Adeli, H.1    Zhou, Z.2    Dadmehr, N.3
  • 5
    • 0038398958 scopus 로고    scopus 로고
    • Wavelet based automatic seizure detection in intracerebral electroencephalogram
    • Khan Y.U., Gotman J.: Wavelet based automatic seizure detection in intracerebral electroencephalogram. Clin. Neurophysiol. 114, 898–908 (2003)
    • (2003) Clin. Neurophysiol. , vol.114 , pp. 898-908
    • Khan, Y.U.1    Gotman, J.2
  • 6
  • 8
    • 0032077575 scopus 로고    scopus 로고
    • Estimating regularity in epileptic seizure time-series data: a complexity-measure approach
    • Radhakrishnan N., Gangadhar B.: Estimating regularity in epileptic seizure time-series data: a complexity-measure approach. In: IEEE Eng. Med. Biol. 17(3), 89–94 (1998)
    • (1998) In: IEEE Eng. Med. Biol. , vol.17 , Issue.3 , pp. 89-94
    • Radhakrishnan, N.1    Gangadhar, B.2
  • 9
    • 0026015905 scopus 로고
    • Approximate entropy as a measure of system complexity
    • Pincus S.M.: Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 88, 2297–2301 (1991)
    • (1991) Proc. Natl. Acad. Sci. USA , vol.88 , pp. 2297-2301
    • Pincus, S.M.1
  • 10
    • 0001081093 scopus 로고    scopus 로고
    • Epileptic activity recognition in EEG recording
    • Diambra L., Figueiredo J., Malta C.: Epileptic activity recognition in EEG recording. Phys. A Stat. Mech. Appl. 273(3–4), 495–505 (1999)
    • (1999) Phys. A Stat. Mech. Appl. , vol.273 , Issue.3-4 , pp. 495-505
    • Diambra, L.1    Figueiredo, J.2    Malta, C.3
  • 11
    • 0035682573 scopus 로고    scopus 로고
    • Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: dependence on recording region and brain state
    • Andrzejak R.G., Lehnertz K., Rieke C.: Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys. Rev. E 64(6), 061907 (2001)
    • (2001) Phys. Rev. E , vol.64 , Issue.6 , pp. 061907
    • Andrzejak, R.G.1    Lehnertz, K.2    Rieke, C.3
  • 12
    • 0035023402 scopus 로고    scopus 로고
    • The epileptic process as nonlinear deterministic dynamics in a stochastic environment: An evaluation on mesial temporal lobe epilepsy
    • Andrzejak R.G., Widman G., Lehnertz K.: The epileptic process as nonlinear deterministic dynamics in a stochastic environment: An evaluation on mesial temporal lobe epilepsy. Epilepsy Res. 44, 129–140 (2001)
    • (2001) Epilepsy Res. , vol.44 , pp. 129-140
    • Andrzejak, R.G.1    Widman, G.2    Lehnertz, K.3
  • 14
    • 5644255894 scopus 로고    scopus 로고
    • Automatic recognition of alertness level by using wavelet transform and artificial neural network
    • Kiymik M.K., Akin M., Subasi A.: Automatic recognition of alertness level by using wavelet transform and artificial neural network. J. Neurosci. Methods 139, 231–240 (2004)
    • (2004) J. Neurosci. Methods , vol.139 , pp. 231-240
    • Kiymik, M.K.1    Akin, M.2    Subasi, A.3
  • 15
    • 0030069856 scopus 로고    scopus 로고
    • Sleep stage scoring using the neural network model: comparison between visual and automatic analysis in normal subjects and patients
    • Schaltenbrand N., Lengelle R., Toussaint M.: Sleep stage scoring using the neural network model: comparison between visual and automatic analysis in normal subjects and patients. Sleep 19(1), 26–35 (1996)
    • (1996) Sleep , vol.19 , Issue.1 , pp. 26-35
    • Schaltenbrand, N.1    Lengelle, R.2    Toussaint, M.3
  • 16
    • 6344246400 scopus 로고    scopus 로고
    • Neural networks with periodogram and autoregressive spectral analysis methods in detection of epileptic seizure
    • Kiymik M.K., Subasi A., Ozcalik H.R.: Neural networks with periodogram and autoregressive spectral analysis methods in detection of epileptic seizure. J. Med. Syst. 28(6), 511–522 (2004)
    • (2004) J. Med. Syst. , vol.28 , Issue.6 , pp. 511-522
    • Kiymik, M.K.1    Subasi, A.2    Ozcalik, H.R.3
  • 17
    • 0033990625 scopus 로고    scopus 로고
    • Recurrent neural network based prediction of epileptic seizures in intra and extracranial EEG
    • Petrosian A., Prokhorov D., Homan R., Dashei R., Wunsch D.: Recurrent neural network based prediction of epileptic seizures in intra and extracranial EEG. Neurocomputing 30, 201–218 (2000)
    • (2000) Neurocomputing , vol.30 , pp. 201-218
    • Petrosian, A.1    Prokhorov, D.2    Homan, R.3    Dashei, R.4    Wunsch, D.5
  • 18
    • 33646135537 scopus 로고    scopus 로고
    • Automatic detection of epileptic seizure using dynamic fuzzy neural networks
    • Subasi A.: Automatic detection of epileptic seizure using dynamic fuzzy neural networks. Expert Syst. Appl. 31, 320–328 (2006)
    • (2006) Expert Syst. Appl. , vol.31 , pp. 320-328
    • Subasi, A.1
  • 19
    • 0029256646 scopus 로고
    • Wavelet preprocessing for automated neural network detection of EEG spikes
    • Kalayci T., Ozdamar O.: Wavelet preprocessing for automated neural network detection of EEG spikes. In: IEEE Eng. Med. Biol. Mag. 14(2), 160–166 (1995)
    • (1995) In: IEEE Eng. Med. Biol. Mag. , vol.14 , Issue.2 , pp. 160-166
    • Kalayci, T.1    Ozdamar, O.2
  • 20
    • 0842310823 scopus 로고    scopus 로고
    • A neural-network-based detection of epilepsy
    • Nigam V., Graupe D.: A neural-network-based detection of epilepsy. Neurol. Res. 26(1), 55–60 (2004)
    • (2004) Neurol. Res. , vol.26 , Issue.1 , pp. 55-60
    • Nigam, V.1    Graupe, D.2
  • 23
    • 22144480299 scopus 로고    scopus 로고
    • Epileptic seizure detection using dynamic wavelet network
    • Subasi A.: Epileptic seizure detection using dynamic wavelet network. Expert Syst. Appl. 29(2), 343–355 (2005)
    • (2005) Expert Syst. Appl. , vol.29 , Issue.2 , pp. 343-355
    • Subasi, A.1
  • 24
    • 33751396389 scopus 로고    scopus 로고
    • EEG signal classification using wavelet feature extraction and a mixture of expert model
    • Subasi A.: EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst. Appl. 32(4), 1084–1093 (2007)
    • (2007) Expert Syst. Appl. , vol.32 , Issue.4 , pp. 1084-1093
    • Subasi, A.1
  • 25
    • 24044474732 scopus 로고    scopus 로고
    • Artificial neural network based epileptic detection using time-domain and frequency-domain features
    • Srinivasan V., Eswaran C., Sriraam N.: Artificial neural network based epileptic detection using time-domain and frequency-domain features. J. Med. Syst. 29(6), 647–660 (2005)
    • (2005) J. Med. Syst. , vol.29 , Issue.6 , pp. 647-660
    • Srinivasan, V.1    Eswaran, C.2    Sriraam, N.3
  • 26
    • 24144470790 scopus 로고    scopus 로고
    • Recurrent neural networks employing Lyapunov exponents for EEG signals classification
    • Güler N., Übeyli E., Güler I.: Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Syst. Appl. 29(3), 506–514 (2005)
    • (2005) Expert Syst. Appl. , vol.29 , Issue.3 , pp. 506-514
    • Güler, N.1    Übeyli, E.2    Güler, I.3
  • 27
    • 33746286608 scopus 로고    scopus 로고
    • Analysis of EEG signals using Lyapunov exponents
    • Übeyli E.: Analysis of EEG signals using Lyapunov exponents. Neural Netw. World 16(3), 257–273 (2006)
    • (2006) Neural Netw. World , vol.16 , Issue.3 , pp. 257-273
    • Übeyli, E.1
  • 28
    • 33751529035 scopus 로고    scopus 로고
    • Fuzzy similarity index employing Lyapunov exponents for discrimination of EEG signals
    • Übeyli E.: Fuzzy similarity index employing Lyapunov exponents for discrimination of EEG signals. Neural Netw. World 16(5), 421–431 (2006)
    • (2006) Neural Netw. World , vol.16 , Issue.5 , pp. 421-431
    • Übeyli, E.1
  • 30
    • 33845386973 scopus 로고    scopus 로고
    • Application of adaptive neuro-fuzzy inference system for epileptic seizure detection using wavelet feature extraction
    • Subasi A.: Application of adaptive neuro-fuzzy inference system for epileptic seizure detection using wavelet feature extraction. Comput. Biol. Med. 37(2), 227–244 (2007)
    • (2007) Comput. Biol. Med. , vol.37 , Issue.2 , pp. 227-244
    • Subasi, A.1
  • 31
    • 77957685691 scopus 로고    scopus 로고
    • Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks
    • Guo L., Riveero D., Pazaos A.: Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks. J. Neurosci. Methods 193, 156–163 (2010)
    • (2010) J. Neurosci. Methods , vol.193 , pp. 156-163
    • Guo, L.1    Riveero, D.2    Pazaos, A.3
  • 32
    • 34247217946 scopus 로고    scopus 로고
    • Classification of epileptic form EEG using a hybrid system based on decision tree classifier and fast Fourier transform
    • Polat K., Günes S.: Classification of epileptic form EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Appl. Math. Comput. 187(2), 1017–1026 (2007)
    • (2007) Appl. Math. Comput. , vol.187 , Issue.2 , pp. 1017-1026
    • Polat, K.1    Günes, S.2
  • 33
    • 38749083808 scopus 로고    scopus 로고
    • Automatic seizure detection based on time–frequency analysis and artificial neural networks
    • Article ID 80510
    • Tzallas, A., Tsipouras, M., Fotiadis, D.: Automatic seizure detection based on time–frequency analysis and artificial neural networks. Computational Intelligence and Neuroscience 13, Article ID 80510 (2007)
    • (2007) Computational Intelligence and Neuroscience , vol.13
    • Tzallas, A.1    Tsipouras, M.2    Fotiadis, D.3
  • 34
    • 0024700097 scopus 로고
    • A theory for multi-resolution signal decomposition: the wavelet representation
    • Mallat S.: A theory for multi-resolution signal decomposition: the wavelet representation. In: IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)
    • (1989) In: IEEE Trans. Pattern Anal. Mach. Intell. , vol.11 , Issue.7 , pp. 674-693
    • Mallat, S.1
  • 35
    • 77957830692 scopus 로고    scopus 로고
    • EEG signal classification using PCA, ICA, LDA and support vector machine
    • Subasi A., Gursoy M.I.: EEG signal classification using PCA, ICA, LDA and support vector machine. Expert Syst. Appl. 37, 8659–8666 (2010)
    • (2010) Expert Syst. Appl. , vol.37 , pp. 8659-8666
    • Subasi, A.1    Gursoy, M.I.2
  • 36
    • 77955054723 scopus 로고    scopus 로고
    • Automatic epileptic Seizure detection in EEG based on line length feature and artificial neural network
    • Guo L., Rivero D., Dorado J., Rabunal J.R., Pazos A.: Automatic epileptic Seizure detection in EEG based on line length feature and artificial neural network. J. Neurosci. Methods 191, 101–109 (2010)
    • (2010) J. Neurosci. Methods , vol.191 , pp. 101-109
    • Guo, L.1    Rivero, D.2    Dorado, J.3    Rabunal, J.R.4    Pazos, A.5
  • 37
    • 81855221797 scopus 로고    scopus 로고
    • Detection of epileptic electroencephalogram based on permutation entropy and support vector machine
    • Nicolaou N., Georgiou J.: Detection of epileptic electroencephalogram based on permutation entropy and support vector machine. Expert Syst. Appl. 39, 202–209 (2012)
    • (2012) Expert Syst. Appl. , vol.39 , pp. 202-209
    • Nicolaou, N.1    Georgiou, J.2
  • 38
    • 79957981604 scopus 로고    scopus 로고
    • EEG signals classification using the K means clustering and a multilayer perceptron neural network model
    • Orhan U., Hekim M., Ozer M.: EEG signals classification using the K means clustering and a multilayer perceptron neural network model. Expert Syst. Appl. 38, 13475–13481 (2011)
    • (2011) Expert Syst. Appl. , vol.38 , pp. 13475-13481
    • Orhan, U.1    Hekim, M.2    Ozer, M.3
  • 39
    • 79953693243 scopus 로고    scopus 로고
    • Automatic feature extraction using genetic programming: an application to epileptic
    • Guo L., Rivero D., Dorado J., Munteanu C.R., Pazos A.: Automatic feature extraction using genetic programming: an application to epileptic. EEG Classif. 38, 10425–10436 (2011)
    • (2011) EEG Classif. , vol.38 , pp. 10425-10436
    • Guo, L.1    Rivero, D.2    Dorado, J.3    Munteanu, C.R.4    Pazos, A.5
  • 40
    • 70349472753 scopus 로고    scopus 로고
    • Least square support vector machine employing model-based methods coefficients for analysis of EEG signals
    • Ubeyli E.D.: Least square support vector machine employing model-based methods coefficients for analysis of EEG signals. Expert Syst. Appl. 37, 233–239 (2010)
    • (2010) Expert Syst. Appl. , vol.37 , pp. 233-239
    • Ubeyli, E.D.1
  • 41
    • 79953729618 scopus 로고    scopus 로고
    • Classification of electroencephalogram signals with combined time and frequency features
    • Iscan Z., Dokur Z., Demiralap T.: Classification of electroencephalogram signals with combined time and frequency features. Expert Syst. Appl. 38, 10499–10505 (2011)
    • (2011) Expert Syst. Appl. , vol.38 , pp. 10499-10505
    • Iscan, Z.1    Dokur, Z.2    Demiralap, T.3
  • 42
    • 79959978998 scopus 로고    scopus 로고
    • Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection
    • Wang D., Miao D., Xie C.: Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection. Expert Syst. Appl. 38, 14314–14320 (2011)
    • (2011) Expert Syst. Appl. , vol.38 , pp. 14314-14320
    • Wang, D.1    Miao, D.2    Xie, C.3
  • 44
    • 77957252563 scopus 로고    scopus 로고
    • Detection of seizures in EEG using subband nonlinear parameters and genetic algorithm
    • Hsu K.C., Yu S.N.: Detection of seizures in EEG using subband nonlinear parameters and genetic algorithm. Comput. Biol. Med. 40, 823–830 (2010)
    • (2010) Comput. Biol. Med. , vol.40 , pp. 823-830
    • Hsu, K.C.1    Yu, S.N.2
  • 46
    • 80052931335 scopus 로고    scopus 로고
    • A comparative study of wavelet families for EEG signal classification
    • Gandhi T., Panigrahi B.K., Anand S.: A comparative study of wavelet families for EEG signal classification. Neurocomputing 74, 3051–3057 (2011)
    • (2011) Neurocomputing , vol.74 , pp. 3051-3057
    • Gandhi, T.1    Panigrahi, B.K.2    Anand, S.3
  • 47
    • 77953131563 scopus 로고    scopus 로고
    • A polynomial fitting and k-NN based approach for improving classification of motor imagery BCI data
    • Kayikcioglu T., Aydemir O.: A polynomial fitting and k-NN based approach for improving classification of motor imagery BCI data. Pattern Recognit. Lett. 31, 1207–1215 (2010)
    • (2010) Pattern Recognit. Lett. , vol.31 , pp. 1207-1215
    • Kayikcioglu, T.1    Aydemir, O.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.