메뉴 건너뛰기




Volumn 19, Issue 2, 2009, Pages 297-308

Combined neural network model employing wavelet coefficients for EEG signals classification

Author keywords

Combined neural network model; Diagnostic accuracy; Discrete wavelet transform; EEG signals classification

Indexed keywords

DISCRETE WAVELET TRANSFORMS; ELECTROENCEPHALOGRAPHY; NEUROLOGY; SIGNAL RECONSTRUCTION;

EID: 58549111381     PISSN: 10512004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.dsp.2008.07.004     Document Type: Article
Times cited : (258)

References (32)
  • 1
    • 0031141135 scopus 로고    scopus 로고
    • Classification of EEG signals using the wavelet transform
    • Hazarika N., Chen J.Z., Tsoi A.C., and Sergejew A. Classification of EEG signals using the wavelet transform. Signal Process. 59 1 (1997) 61-72
    • (1997) Signal Process. , vol.59 , Issue.1 , pp. 61-72
    • Hazarika, N.1    Chen, J.Z.2    Tsoi, A.C.3    Sergejew, A.4
  • 2
    • 33746286608 scopus 로고    scopus 로고
    • Analysis of EEG signals using Lyapunov exponents
    • Übeyli E.D. Analysis of EEG signals using Lyapunov exponents. Neural Network World 16 3 (2006) 257-273
    • (2006) Neural Network World , vol.16 , Issue.3 , pp. 257-273
    • Übeyli, E.D.1
  • 3
  • 4
    • 37049007663 scopus 로고    scopus 로고
    • Analysis of EEG signals by combining eigenvector methods and multiclass support vector machines
    • Übeyli E.D. Analysis of EEG signals by combining eigenvector methods and multiclass support vector machines. Comput. Biol. Med. 38 1 (2008) 14-22
    • (2008) Comput. Biol. Med. , vol.38 , Issue.1 , pp. 14-22
    • Übeyli, E.D.1
  • 5
    • 33751529035 scopus 로고    scopus 로고
    • Fuzzy similarity index employing Lyapunov exponents for discrimination of EEG signals
    • Übeyli E.D. Fuzzy similarity index employing Lyapunov exponents for discrimination of EEG signals. Neural Network World 16 5 (2006) 421-431
    • (2006) Neural Network World , vol.16 , Issue.5 , pp. 421-431
    • Übeyli, E.D.1
  • 7
    • 0026675081 scopus 로고
    • Automated interictal EEG spike detection using artificial neural networks
    • Gabor A.J., and Seyal M. Automated interictal EEG spike detection using artificial neural networks. Electroencephalogr. Clin. Neurophysiol. 83 5 (1992) 271-280
    • (1992) Electroencephalogr. Clin. Neurophysiol. , vol.83 , Issue.5 , pp. 271-280
    • Gabor, A.J.1    Seyal, M.2
  • 8
    • 0034333656 scopus 로고    scopus 로고
    • Model selection for a medical diagnostic decision support system: A breast cancer detection case
    • West D., and West V. Model selection for a medical diagnostic decision support system: A breast cancer detection case. Artif. Intell. Med. 20 3 (2000) 183-204
    • (2000) Artif. Intell. Med. , vol.20 , Issue.3 , pp. 183-204
    • West, D.1    West, V.2
  • 9
    • 0033983426 scopus 로고    scopus 로고
    • Improving diagnostic accuracy using a hierarchical neural network to model decision subtasks
    • West D., and West V. Improving diagnostic accuracy using a hierarchical neural network to model decision subtasks. Int. J. Med. Inform. 57 1 (2000) 41-55
    • (2000) Int. J. Med. Inform. , vol.57 , Issue.1 , pp. 41-55
    • West, D.1    West, V.2
  • 10
    • 0035437752 scopus 로고    scopus 로고
    • A novel large-memory neural network as an aid in medical diagnosis applications
    • Kordylewski H., Graupe D., and Liu K. A novel large-memory neural network as an aid in medical diagnosis applications. IEEE Trans. Inform. Technol. Biomed. 5 3 (2001) 202-209
    • (2001) IEEE Trans. Inform. Technol. Biomed. , vol.5 , Issue.3 , pp. 202-209
    • Kordylewski, H.1    Graupe, D.2    Liu, K.3
  • 11
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert D.H. Stacked generalization. Neural Networks 5 (1992) 241-259
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.H.1
  • 12
    • 84956631610 scopus 로고    scopus 로고
    • Combining regularized neural networks
    • Proceedings of the ICANN'97, Springer, Berlin
    • Taniguchi M., and Tresp V. Combining regularized neural networks. Proceedings of the ICANN'97. Lecture Notes in Comput. Sci. vol. 1327 (1997), Springer, Berlin 349-354
    • (1997) Lecture Notes in Comput. Sci. , vol.1327 , pp. 349-354
    • Taniguchi, M.1    Tresp, V.2
  • 13
    • 15744394888 scopus 로고    scopus 로고
    • Improving medical diagnostic accuracy of ultrasound Doppler signals by combining neural network models
    • Übeyli E.D., and Güler I. Improving medical diagnostic accuracy of ultrasound Doppler signals by combining neural network models. Comput. Biol. Med. 35 6 (2005) 533-554
    • (2005) Comput. Biol. Med. , vol.35 , Issue.6 , pp. 533-554
    • Übeyli, E.D.1    Güler, I.2
  • 14
    • 6444240833 scopus 로고    scopus 로고
    • ECG beat classifier designed by combined neural network model
    • Güler I., and Übeyli E.D. ECG beat classifier designed by combined neural network model. Pattern Recogn. 38 2 (2005) 199-208
    • (2005) Pattern Recogn. , vol.38 , Issue.2 , pp. 199-208
    • Güler, I.1    Übeyli, E.D.2
  • 15
    • 0025482241 scopus 로고
    • The wavelet transform, time-frequency localization and signal analysis
    • Daubechies I. The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inform. Theory 36 5 (1990) 961-1005
    • (1990) IEEE Trans. Inform. Theory , vol.36 , Issue.5 , pp. 961-1005
    • Daubechies, I.1
  • 16
    • 0036825521 scopus 로고    scopus 로고
    • On the use of the wavelet decomposition for time series prediction
    • Soltani S. On the use of the wavelet decomposition for time series prediction. Neurocomputing 48 (2002) 267-277
    • (2002) Neurocomputing , vol.48 , pp. 267-277
    • Soltani, S.1
  • 17
    • 0031139676 scopus 로고    scopus 로고
    • Wavelet applications in medicine
    • Akay M. Wavelet applications in medicine. IEEE Spectrum 34 5 (1997) 50-56
    • (1997) IEEE Spectrum , vol.34 , Issue.5 , pp. 50-56
    • Akay, M.1
  • 18
    • 0030127507 scopus 로고    scopus 로고
    • A review of wavelets in biomedical applications
    • Unser M., and Aldroubi A. A review of wavelets in biomedical applications. Proc. IEEE 84 4 (1996) 626-638
    • (1996) Proc. IEEE , vol.84 , Issue.4 , pp. 626-638
    • Unser, M.1    Aldroubi, A.2
  • 20
    • 0345377804 scopus 로고    scopus 로고
    • Hyperbolic wavelet power spectra of nonstationary signals
    • Le K.N., Dabke K.P., and Egan G.K. Hyperbolic wavelet power spectra of nonstationary signals. Opt. Eng. 42 10 (2003) 3017-3037
    • (2003) Opt. Eng. , vol.42 , Issue.10 , pp. 3017-3037
    • Le, K.N.1    Dabke, K.P.2    Egan, G.K.3
  • 21
    • 0035682573 scopus 로고    scopus 로고
    • Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state
    • Andrzejak R.G., Lehnertz K., Mormann F., Rieke C., David P., and Elger C.E. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Phys. Rev. E 64 (2001) 061907
    • (2001) Phys. Rev. E , vol.64 , pp. 061907
    • Andrzejak, R.G.1    Lehnertz, K.2    Mormann, F.3    Rieke, C.4    David, P.5    Elger, C.E.6
  • 22
    • 0034564603 scopus 로고    scopus 로고
    • Artificial neural networks: Fundamentals, computing, design, and application
    • Basheer I.A., and Hajmeer M. Artificial neural networks: Fundamentals, computing, design, and application. J. Microbiol. Methods 43 1 (2000) 3-31
    • (2000) J. Microbiol. Methods , vol.43 , Issue.1 , pp. 3-31
    • Basheer, I.A.1    Hajmeer, M.2
  • 23
    • 0034283761 scopus 로고    scopus 로고
    • Efficient training and improved performance of multilayer perceptron in pattern classification
    • Chaudhuri B.B., and Bhattacharya U. Efficient training and improved performance of multilayer perceptron in pattern classification. Neurocomputing 34 (2000) 11-27
    • (2000) Neurocomputing , vol.34 , pp. 11-27
    • Chaudhuri, B.B.1    Bhattacharya, U.2
  • 25
    • 0036137239 scopus 로고    scopus 로고
    • Data mining of time series using stacked generalizers
    • Hansen V., and Nelson R.D. Data mining of time series using stacked generalizers. Neurocomputing 43 (2002) 173-184
    • (2002) Neurocomputing , vol.43 , pp. 173-184
    • Hansen, V.1    Nelson, R.D.2
  • 26
  • 27
    • 0032808458 scopus 로고    scopus 로고
    • An information theoretic approach for combining neural network process models
    • Sridhar D.V., Bartlett E.B., and Seagrave R.C. An information theoretic approach for combining neural network process models. Neural Networks 12 6 (1999) 915-926
    • (1999) Neural Networks , vol.12 , Issue.6 , pp. 915-926
    • Sridhar, D.V.1    Bartlett, E.B.2    Seagrave, R.C.3
  • 28
    • 0032021890 scopus 로고    scopus 로고
    • Using feature construction to improve the performance of neural networks
    • Piramuthu S., Ragavan H., and Shaw M.J. Using feature construction to improve the performance of neural networks. Manage. Sci. 44 3 (1998) 416-430
    • (1998) Manage. Sci. , vol.44 , Issue.3 , pp. 416-430
    • Piramuthu, S.1    Ragavan, H.2    Shaw, M.J.3
  • 29
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Hagan M.T., and Menhaj M.B. Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Networks 5 6 (1994) 989-993
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 30
    • 0001024110 scopus 로고
    • First- and second-order methods for learning: Between steepest descent and Newton's method
    • Battiti R. First- and second-order methods for learning: Between steepest descent and Newton's method. Neural Comput. 4 (1992) 141-166
    • (1992) Neural Comput. , vol.4 , pp. 141-166
    • Battiti, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.