메뉴 건너뛰기




Volumn 7, Issue 4, 2012, Pages 401-408

Automated diagnosis of epileptic EEG using entropies

Author keywords

Classifiers; EEG; Entropy; Epilepsy; Feature extraction; Preictal

Indexed keywords

CLASSIFIERS; DECISION TREES; ELECTROENCEPHALOGRAPHY; ENTROPY; FEATURE EXTRACTION; FUZZY SETS; GAUSSIAN DISTRIBUTION; NEAREST NEIGHBOR SEARCH; NEUROLOGY; SUPPORT VECTOR MACHINES;

EID: 84859212205     PISSN: 17468094     EISSN: 17468108     Source Type: Journal    
DOI: 10.1016/j.bspc.2011.07.007     Document Type: Article
Times cited : (577)

References (60)
  • 1
    • 16344387731 scopus 로고    scopus 로고
    • Epileptic seizures and epilepsy: Definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE)
    • DOI 10.1111/j.0013-9580.2005.66104.x
    • R. Fisher, W. van Emde Boas, W. Blume, C. Elger, P. Genton, P. Lee, and J. Engel Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE) Epilepsia 46 4 2005 470 472 (Pubitemid 40470667)
    • (2005) Epilepsia , vol.46 , Issue.4 , pp. 470-472
    • Fisher, R.S.1    Van Emde Boas, W.2    Blume, W.3    Elger, C.4    Genton, P.5    Lee, P.6    Engel Jr., J.7
  • 3
    • 79960803523 scopus 로고    scopus 로고
    • Improving the separability of multiple EEG features for a BCI by neural-time-series-prediction-preprocessing
    • D. Coyle, T.M. McGinnity, and G. Prasad Improving the separability of multiple EEG features for a BCI by neural-time-series-prediction-preprocessing Biosignal Processing and Control 5 3 2010 196 204
    • (2010) Biosignal Processing and Control , vol.5 , Issue.3 , pp. 196-204
    • Coyle, D.1    McGinnity, T.M.2    Prasad, G.3
  • 4
    • 67650221411 scopus 로고    scopus 로고
    • Adapting subject specific motor imagery EEG patterns in space-time-frequency for a brain computer interface
    • N.F. Ince, F. Goksu, A.H. Tewfik, and S. Arica Adapting subject specific motor imagery EEG patterns in space-time-frequency for a brain computer interface Biosignal Processing and Control 4 3 2009 236 246
    • (2009) Biosignal Processing and Control , vol.4 , Issue.3 , pp. 236-246
    • Ince, N.F.1    Goksu, F.2    Tewfik, A.H.3    Arica, S.4
  • 5
    • 38349077304 scopus 로고    scopus 로고
    • Classifying mental tasks based on features of higher-order statistics from EEG signals in brain-computer interface
    • S.M. Zhuo, J.Q. Gan, and F. Sepulveda Classifying mental tasks based on features of higher-order statistics from EEG signals in brain-computer interface Information Sciences 178 6 2008 1629 1640
    • (2008) Information Sciences , vol.178 , Issue.6 , pp. 1629-1640
    • Zhuo, S.M.1    Gan, J.Q.2    Sepulveda, F.3
  • 6
    • 0000451936 scopus 로고
    • Evidence of chaotic dynamics of brain activity during the sleep cycle
    • A. Babloyantz, C. Nicolis, and J.M. Salazar Evidence of chaotic dynamics of brain activity during the sleep cycle Physics Letters 111A 1985 152 157
    • (1985) Physics Letters , vol.111 A , pp. 152-157
    • Babloyantz, A.1    Nicolis, C.2    Salazar, J.M.3
  • 9
    • 0037359431 scopus 로고    scopus 로고
    • Epileptic seizures are preceded by a decrease in synchronization
    • DOI 10.1016/S0920-1211(03)00002-0
    • F. Mormann, T. Kreuz, R.G. Andrzejak, D. Peter, K. Lehnertz, and C.E. Elger Epileptic seizures are preceded by a decrease in synchronization Epilepsy Research 53 2003 173 185 (Pubitemid 36419610)
    • (2003) Epilepsy Research , vol.53 , Issue.3 , pp. 173-185
    • Mormann, F.1    Kreuz, T.2    Andrzejak, R.G.3    David, P.4    Lehnertz, K.5    Elger, C.E.6
  • 11
    • 56749100373 scopus 로고    scopus 로고
    • Epilepsy and nonlinear dynamics
    • K. Lehnertz Epilepsy and nonlinear dynamics Journal of Biological Physics 33 3-4 2008 253 266
    • (2008) Journal of Biological Physics , vol.33 , Issue.34 , pp. 253-266
    • Lehnertz, K.1
  • 12
    • 0035682573 scopus 로고    scopus 로고
    • Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state
    • R.G. Andrzejak, K. Lehnertz, C. Rieke, F. Mormann, P. David, and C.E. Elger Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: dependence on recording region and brain state Physical Review E 64 2001 061907
    • (2001) Physical Review e , vol.64 , pp. 061907
    • Andrzejak, R.G.1    Lehnertz, K.2    Rieke, C.3    Mormann, F.4    David, P.5    Elger, C.E.6
  • 13
    • 0035023402 scopus 로고    scopus 로고
    • The epileptic process as nonlinear deterministic dynamics in a stochastic environment: An evaluation on mesial temporal lobe epilepsy
    • DOI 10.1016/S0920-1211(01)00195-4, PII S0920121101001954
    • R.G. Andrzejak, G. Widman, K. Lehnertz, C. Rieke, P. David, and C.E. Elger The epileptic process as nonlinear deterministic dynamics in a stochastic environment: an evaluation on mesial temporal lobe epilepsy Epilepsy Research 44 2 2001 129 140 (Pubitemid 32452223)
    • (2001) Epilepsy Research , vol.44 , Issue.2-3 , pp. 129-140
    • Andrzejak, R.G.1    Widman, G.2    Lehnertz, K.3    Rieke, C.4    David, P.5    Elger, C.E.6
  • 18
    • 35949006791 scopus 로고
    • Determining embedding dimension for phase-space reconstruction using a geometrical construction
    • M.B. Kennel, R. Brown, and H.D. Abarbanel Determining embedding dimension for phase-space reconstruction using a geometrical construction Physical Review A 45 1992 3403 3411
    • (1992) Physical Review A , vol.45 , pp. 3403-3411
    • Kennel, M.B.1    Brown, R.2    Abarbanel, H.D.3
  • 20
    • 67449161052 scopus 로고    scopus 로고
    • Automatic identification of epileptic EEG signals using higher order spectra
    • K.C. Chua, V. Chandran, U.R. Acharya, and C.M. Lim Automatic identification of epileptic EEG signals using higher order spectra Journal of Engineering in Medicine 223 4 2009 485 495
    • (2009) Journal of Engineering in Medicine , vol.223 , Issue.4 , pp. 485-495
    • Chua, K.C.1    Chandran, V.2    Acharya, U.R.3    Lim, C.M.4
  • 22
    • 2942609237 scopus 로고    scopus 로고
    • Overview of commonly used bioinformatics methods and their applications
    • DOI 10.1196/annals.1310.003
    • I.M. Kapetanovic, S. Rosenfeld, and G. Izmirlian Overview of commonly used bioinformatics methods and their applications Annals of the New York Academy of Sciences 1020 2004 10 21 (Pubitemid 38736920)
    • (2004) Annals of the New York Academy of Sciences , vol.1020 , pp. 10-21
    • Kapetanovic, I.M.1    Rosenfeld, S.2    Izmirlian, G.3
  • 23
    • 0025206332 scopus 로고
    • Probabilistic neural networks
    • D.F. Specht Probabilistic neural networks Neural Networks 3 1 1990 109 118
    • (1990) Neural Networks , vol.3 , Issue.1 , pp. 109-118
    • Specht, D.F.1
  • 25
    • 84856227784 scopus 로고    scopus 로고
    • Application of higher order spectra to identify epileptic EEG
    • doi:10.1007/s10916-010-9433-z
    • C.K. Chua, V. Chandran, U.R. Acharya, C.M. Lim, Application of higher order spectra to identify epileptic EEG, Journal of Medical Systems (2010), doi:10.1007/s10916-010-9433-z.
    • (2010) Journal of Medical Systems
    • Chua, C.K.1    Chandran, V.2    Acharya, U.R.3    Lim, C.M.4
  • 27
    • 1242343781 scopus 로고    scopus 로고
    • Dynamical Resetting of the Human Brain at Epileptic Seizures: Application of Nonlinear Dynamics and Global Optimization Techniques
    • DOI 10.1109/TBME.2003.821013
    • L.D. Lasemidis, D.S. Shiau, J.C. Sackellares, P.M. Pardalos, and A. Prasad Dynamical resetting of the human brain at epileptic seizures: application of nonlinear dynamics and global optimization techniques IEEE transactions on Biomedical Engineering 51 3 2004 493 506 (Pubitemid 38233790)
    • (2004) IEEE Transactions on Biomedical Engineering , vol.51 , Issue.3 , pp. 493-506
    • Iasemidis, L.D.1    Shiau, D.-S.2    Sackellares, J.C.3    Pardalos, P.M.4    Prasad, A.5
  • 28
    • 33747866964 scopus 로고    scopus 로고
    • Seizure anticipation: Are neurophenomenological approaches able to detect preictal symptoms?
    • DOI 10.1016/j.yebeh.2006.05.013, PII S1525505006002071
    • C. Petitmengin, M. Baulac, and V. Navarro Seizure anticipation: are neuro-phenomenological approaches able to detect pre-ictal symptoms? Epilepsy & Behaviour 9 2 2006 298 306 (Pubitemid 44283808)
    • (2006) Epilepsy and Behavior , vol.9 , Issue.2 , pp. 298-306
    • Petitmengin, C.1    Baulac, M.2    Navarro, V.3
  • 31
    • 34250729003 scopus 로고    scopus 로고
    • Epileptic seizure detection using neural fuzzy networks
    • DOI 10.1109/FUZZY.2006.1681772, 1681772, 2006 IEEE International Conference on Fuzzy Systems
    • N. Sadati, H.R. Mohseni, and A. Magshoudi Epileptic seizure detection using neural fuzzy networks Proceedings of the IEEE International Conference on Fuzzy Systems, Canada 2006 596 600 (Pubitemid 46948816)
    • (2006) IEEE International Conference on Fuzzy Systems , pp. 596-600
    • Sadati, N.1    Mohseni, H.R.2    Maghsoudi, A.3
  • 32
    • 33751396389 scopus 로고    scopus 로고
    • EEG signal classification using wavelet feature extraction and a mixture of expert model
    • DOI 10.1016/j.eswa.2006.02.005, PII S0957417406000844
    • A. Subasi EEG Signal classification using wavelet feature extraction and a mixture of expert model Expert Systems with Applications 32 4 2007 1084 1093 (Pubitemid 44821797)
    • (2007) Expert Systems with Applications , vol.32 , Issue.4 , pp. 1084-1093
    • Subasi, A.1
  • 33
    • 34248567678 scopus 로고    scopus 로고
    • Approximate entropy-based epileptic EEG detection using artificial neural networks
    • DOI 10.1109/TITB.2006.884369
    • V. Srinivasan, C. Eswaran, and N. Sriraam Approximate entropy-based epileptic EEG detection using artificial neural networks IEEE Transaction on Information Technology in Biomedicine 11 3 2007 288 295 (Pubitemid 46758846)
    • (2007) IEEE Transactions on Information Technology in Biomedicine , vol.11 , Issue.3 , pp. 288-295
    • Srinivasan, V.1    Eswaran, C.2    Sriraam, N.3
  • 35
    • 24144470790 scopus 로고    scopus 로고
    • Recurrent neural networks employing Lyapunov exponents for EEG signals classification
    • DOI 10.1016/j.eswa.2005.04.011, PII S0957417405000679
    • N.F. Guler, E.D. Ubey, and I. Guler Recurrent neural network employing Lyapunov exponents for EEG signals classification Expert Systems with Applications 29 3 2005 506 514 (Pubitemid 41230775)
    • (2005) Expert Systems with Applications , vol.29 , Issue.3 , pp. 506-514
    • Guler, N.F.1    Ubeyli, E.D.2    Guler, I.3
  • 36
    • 34547573516 scopus 로고    scopus 로고
    • Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection
    • DOI 10.1109/TBME.2007.891945
    • S. Ghosh-Dastidar, H. Adeli, and N. Dadmehr Mixed band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection IEEE Transactions on Biomedical Engineering 54 9 2007 1545 1551 (Pubitemid 47301028)
    • (2007) IEEE Transactions on Biomedical Engineering , vol.54 , Issue.9 , pp. 1545-1551
    • Ghosh-Dastidar, S.1    Adeli, H.2    Dadmehr, N.3
  • 38
    • 77951577412 scopus 로고    scopus 로고
    • Automatic identification of epileptic and background EEG signals using frequency domain parameters
    • O. Faust, U.R. Acharya, C.M. Lim, and B. Sputh Automatic identification of epileptic and background EEG signals using frequency domain parameters International Journal of Neural Systems 20 2 2010 159 176
    • (2010) International Journal of Neural Systems , vol.20 , Issue.2 , pp. 159-176
    • Faust, O.1    Acharya, U.R.2    Lim, C.M.3    Sputh, B.4
  • 39
    • 79960037752 scopus 로고    scopus 로고
    • Application of recurrence quantification analysis for the automated identification of epileptic EEG signals
    • U.R. Acharya, S.V. Sree, S. Chattopadhyay, W. Yu, and A.P.C. Alvin Application of recurrence quantification analysis for the automated identification of epileptic EEG signals International Journal of Neural Systems 21 3 2011 199 211
    • (2011) International Journal of Neural Systems , vol.21 , Issue.3 , pp. 199-211
    • Acharya, U.R.1    Sree, S.V.2    Chattopadhyay, S.3    Yu, W.4    Alvin, A.P.C.5
  • 40
    • 84861101319 scopus 로고    scopus 로고
    • EEG time series data (Department of Epileptology University of Bonn). (accessed February 2011)
    • EEG time series data (Department of Epileptology University of Bonn). http://www.meb.uni-bonn.de/epileptologie/science/physik/eegdata.html. (accessed February 2011).
  • 41
    • 34547597104 scopus 로고    scopus 로고
    • Improved spiking neural networks for EEG classification and epilepsy and seizure detection
    • S. Ghosh-Dastidar, and H. Adeli Improved spiking neural networks for EEG classification and epilepsy and seizure detection Integrated Computer-Aided Engineering 14 3 2007 187 212 (Pubitemid 47191475)
    • (2007) Integrated Computer-Aided Engineering , vol.14 , Issue.3 , pp. 187-212
    • Ghosh-Dastidar, S.1    Adeli, H.2
  • 42
    • 71049128082 scopus 로고    scopus 로고
    • A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection
    • S. Ghosh-Dastidar, and H. Adeli A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection Neural Networks 22 10 2009 1419 1431
    • (2009) Neural Networks , vol.22 , Issue.10 , pp. 1419-1431
    • Ghosh-Dastidar, S.1    Adeli, H.2
  • 43
    • 40749093037 scopus 로고
    • Measuring the strangeness of strange attractors
    • P. Grossberger, and I. Procassia Measuring the strangeness of strange attractors Physica D 9 1983 189 208
    • (1983) Physica D , vol.9 , pp. 189-208
    • Grossberger, P.1    Procassia, I.2
  • 44
    • 0001649501 scopus 로고
    • Can epileptic seizures be predicted? Evidence from nonlinear time series analyses of brain electrical activity
    • K. Lehnertz, and C.E. Elger Can epileptic seizures be predicted? Evidence from nonlinear time series analyses of brain electrical activity Physical Review Letters 80 1988 5019 5023
    • (1988) Physical Review Letters , vol.80 , pp. 5019-5023
    • Lehnertz, K.1    Elger, C.E.2
  • 45
    • 0842310823 scopus 로고    scopus 로고
    • A neural-network-based detection of epilepsy
    • DOI 10.1179/016164104773026534
    • V.P. Nigam, and D. Graupe A neural-network-based detection of epilepsy Neurology Research 26 6 2004 55 60 (Pubitemid 38174388)
    • (2004) Neurological Research , vol.26 , Issue.1 , pp. 55-60
    • Nigam, V.P.1    Graupe, D.2
  • 47
    • 56349101801 scopus 로고    scopus 로고
    • Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy
    • H. Ocak Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy Expert Systems with Applications 36 2 2009 2027 2036
    • (2009) Expert Systems with Applications , vol.36 , Issue.2 , pp. 2027-2036
    • Ocak, H.1
  • 48
    • 84861096956 scopus 로고    scopus 로고
    • PhysioToolkit. (accessed February 2011)
    • PhysioToolkit. http://physionet.incor.usp.br/physiotools/sampen/ (accessed February 2011).
  • 49
    • 0026780669 scopus 로고
    • Quantification of hormone pulsatility via an approximate entropy algorithm
    • S.M. Pincus, and D.L. Keefe Quantification of hormone pulsatility via an approximate entropy algorithm American Journal of Physiology 262 1992 E741 E754
    • (1992) American Journal of Physiology , vol.262
    • Pincus, S.M.1    Keefe, D.L.2
  • 50
    • 34748924499 scopus 로고    scopus 로고
    • Classification of epileptiform EEG using a hybrid systems based on decision tree classifier and fast Fourier transform
    • K. Polat, and S. Guenes Classification of epileptiform EEG using a hybrid systems based on decision tree classifier and fast Fourier transform Applied Mathematics and Computation 32 2 2007 625 631
    • (2007) Applied Mathematics and Computation , vol.32 , Issue.2 , pp. 625-631
    • Polat, K.1    Guenes, S.2
  • 51
    • 0026462367 scopus 로고
    • Complex dynamics underlying the human electroencephalogram
    • F. Ravelli, and R. Antolini Complex dynamics underlying the human electroencephalogram Biological Cybernetics 67 1992 57 65
    • (1992) Biological Cybernetics , vol.67 , pp. 57-65
    • Ravelli, F.1    Antolini, R.2
  • 52
    • 0033949457 scopus 로고    scopus 로고
    • Physiological time-series analysis using approximate entropy and sample entropy
    • J.S. Richman, and J.R. Moorman Physiological time-series analysis using approximate entropy and sample entropy American Journal of Physiology 278 6 2000 H2039 H2049
    • (2000) American Journal of Physiology , vol.278 , Issue.6
    • Richman, J.S.1    Moorman, J.R.2
  • 54
    • 78651302006 scopus 로고    scopus 로고
    • A new approach for epileptic seizure detection: Sample entropy based feature extraction and extreme learning machine
    • Y. Song, and P. Liò A new approach for epileptic seizure detection: sample entropy based feature extraction and extreme learning machine Journal of Biomedical Science and Engineering 3 6 2010 556 567
    • (2010) Journal of Biomedical Science and Engineering , vol.3 , Issue.6 , pp. 556-567
    • Song, Y.1    Liò, P.2
  • 55
    • 77957830692 scopus 로고    scopus 로고
    • EEG Signal classification using PCA, ICA, LDA and support vector machine
    • A. Subasi, and M.I. Gursoy EEG Signal classification using PCA, ICA, LDA and support vector machine Expert Systems with Applications 37 2010 8659 8666
    • (2010) Expert Systems with Applications , vol.37 , pp. 8659-8666
    • Subasi, A.1    Gursoy, M.I.2
  • 56
    • 4444277301 scopus 로고    scopus 로고
    • Advances in quantitative electroencephalogram analysis methods
    • DOI 10.1146/annurev.bioeng.5.040202.121601
    • N.V. Thakor, and S. Tong Advances in quantitative electroencephalogram analysis methods Annual Reviews 6 2004 453 495 (Pubitemid 39209505)
    • (2004) Annual Review of Biomedical Engineering , vol.6 , pp. 453-495
    • Thakor, N.V.1    Tong, S.2
  • 57
    • 0036202801 scopus 로고    scopus 로고
    • "Epileptic neurons" in temporal lobe epilepsy
    • Y. Yaari, and H. Beck Epileptic neurons in temporal lobe epilepsy Brain Pathology 12 2002 234 239 (Pubitemid 34259925)
    • (2002) Brain Pathology , vol.12 , Issue.2 , pp. 234-239
    • Yaari, Y.1    Beck, H.2
  • 58
    • 84861097167 scopus 로고    scopus 로고
    • WHO Report, (accessed February 2011)
    • WHO Report, http://www.who.int/mediacentre/factsheets/fs999/en/index.html (accessed February 2011).
  • 59
    • 24044474732 scopus 로고    scopus 로고
    • Artificial neural network based epileptic detection using time-domain and frequency-domain features
    • DOI 10.1007/s10916-005-6133-1
    • V. Srinivasan, C. Eswaran, and N. Sriraam Artificial neural network based epileptic detection using time-domain and frequency domain features Journal of Medical Systems 29 6 2005 647 660 (Pubitemid 41225146)
    • (2005) Journal of Medical Systems , vol.29 , Issue.6 , pp. 647-660
    • Srinivasan, V.1    Eswaran, C.2    Sriraam, A.N.3
  • 60
    • 38349123053 scopus 로고    scopus 로고
    • Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection
    • S. Ghosh-Dastidar, H. Adeli, and N. Dadmehr Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection IEEE Transactions on Biomedical Engineering 55 2 2008 512 518
    • (2008) IEEE Transactions on Biomedical Engineering , vol.55 , Issue.2 , pp. 512-518
    • Ghosh-Dastidar, S.1    Adeli, H.2    Dadmehr, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.