메뉴 건너뛰기




Volumn 17, Issue 2, 2015, Pages 669-691

Application of entropy measures on intrinsic mode functions for the automated identification of focal electroencephalogram signals

Author keywords

Classifier; Electroencephalogram; Entropy; Epilepsy; Feature extraction

Indexed keywords


EID: 84923365662     PISSN: None     EISSN: 10994300     Source Type: Journal    
DOI: 10.3390/e17020669     Document Type: Article
Times cited : (292)

References (75)
  • 1
    • 51349083532 scopus 로고    scopus 로고
    • A spatio-temporal wavelet-chaos methodology for EEG-based diagnosis of Alzheimer's disease
    • Adeli, H.; Ghosh-Dastidar, S.; Dadmehr, N. A spatio-temporal wavelet-chaos methodology for EEG-based diagnosis of Alzheimer's disease. Neurosci. Lett. 2008, 444, 190-194.
    • (2008) Neurosci. Lett. , vol.444 , pp. 190-194
    • Adeli, H.1    Ghosh-Dastidar, S.2    Dadmehr, N.3
  • 2
    • 77749242546 scopus 로고    scopus 로고
    • Wavelet-synchronization methodology: A new approach for EEG-based diagnosis of ADHD
    • Ahmadlou, M.; Adeli, H. Wavelet-synchronization methodology: A new approach for EEG-based diagnosis of ADHD. Clin. EEG Neurosci. 2010, 41, 1-10.
    • (2010) Clin. EEG Neurosci. , vol.41 , pp. 1-10
    • Ahmadlou, M.1    Adeli, H.2
  • 3
    • 84923348364 scopus 로고    scopus 로고
    • Electroencephalograms in diagnosis of autism
    • Patel, V.B., Preedy, V.R., Martin, C.R., Eds.; Springer: New York, NY, USA
    • Ahmadlou, M.; Adeli, H. Electroencephalograms in diagnosis of autism. In Comprehensive Guide to Autism; Patel, V.B., Preedy, V.R., Martin, C.R., Eds.; Springer: New York, NY, USA, 2014; pp. 327-343.
    • (2014) Comprehensive Guide to Autism , pp. 327-343
    • Ahmadlou, M.1    Adeli, H.2
  • 4
    • 77958187047 scopus 로고    scopus 로고
    • Fractality and a wavelet-chaos-neural network methodology for EEG-based diagnosis of autistic spectrum disorder
    • Ahmadlou, M.; Adeli, H.; Adeli, A. Fractality and a wavelet-chaos-neural network methodology for EEG-based diagnosis of autistic spectrum disorder. J. Clin. Neurophysiol. 2010, 27, 328-333.
    • (2010) J. Clin. Neurophysiol. , vol.27 , pp. 328-333
    • Ahmadlou, M.1    Adeli, H.2    Adeli, A.3
  • 6
    • 0037441741 scopus 로고    scopus 로고
    • Analysis of EEG records in an epileptic patient using wavelet transform
    • Adeli, H.; Zhou, Z.; Dadmehr, N. Analysis of EEG records in an epileptic patient using wavelet transform. J. Neurosci. Methods 2003, 123, 69-87.
    • (2003) J. Neurosci. Methods , vol.123 , pp. 69-87
    • Adeli, H.1    Zhou, Z.2    Dadmehr, N.3
  • 7
    • 33846672121 scopus 로고    scopus 로고
    • A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy
    • Adeli, H.; Ghosh-Dastidar, S.; Dadmehr, N. A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy. IEEE Trans. Biomed. Eng. 2007, 54, 205-211.
    • (2007) IEEE Trans. Biomed. Eng. , vol.54 , pp. 205-211
    • Adeli, H.1    Ghosh-Dastidar, S.2    Dadmehr, N.3
  • 8
    • 84885355149 scopus 로고    scopus 로고
    • Analysis of EEG via multivariate empirical mode decomposition for depth of anesthesia based on sample entropy
    • Wei, Q.; Liu, Q.; Fan, S.Z.; Lu, C.W.; Lin, T.Y.; Abbod, M.F.; Shieh, J.S. Analysis of EEG via multivariate empirical mode decomposition for depth of anesthesia based on sample entropy. Entropy 2013, 15, 3458-3470.
    • (2013) Entropy , vol.15 , pp. 3458-3470
    • Wei, Q.1    Liu, Q.2    Fan, S.Z.3    Lu, C.W.4    Lin, T.Y.5    Abbod, M.F.6    Shieh, J.S.7
  • 9
    • 84885363168 scopus 로고    scopus 로고
    • Application of multivariate empirical mode decomposition and sample entropy in EEG signals via artificial neural networks for interpreting depth of anesthesia
    • Huang, J.R.; Fan, S.Z.; Abbod, M.F.; Jen, K.K.; Wu, J.F.; Shieh, J.S. Application of multivariate empirical mode decomposition and sample entropy in EEG signals via artificial neural networks for interpreting depth of anesthesia. Entropy 2013, 15, 3325-3339.
    • (2013) Entropy , vol.15 , pp. 3325-3339
    • Huang, J.R.1    Fan, S.Z.2    Abbod, M.F.3    Jen, K.K.4    Wu, J.F.5    Shieh, J.S.6
  • 10
    • 77954668304 scopus 로고    scopus 로고
    • Pharmacoresistant epilepsy: From pathogenesis to current and emerging therapies
    • Pati, S.; Alexopoulos, A.V. Pharmacoresistant epilepsy: From pathogenesis to current and emerging therapies. Clevel. Clin. J. Med. 2010, 77, 457-467.
    • (2010) Clevel. Clin. J. Med. , vol.77 , pp. 457-467
    • Pati, S.1    Alexopoulos, A.V.2
  • 12
    • 0028972659 scopus 로고
    • [11C] flumazenil positron emission tomography visualizes frontal epileptogenic regions
    • Savic, I.; Thorell, J.O.; Roland, P. [11C] flumazenil positron emission tomography visualizes frontal epileptogenic regions. Epilepsia 1995, 36, 1225-1232.
    • (1995) Epilepsia , vol.36 , pp. 1225-1232
    • Savic, I.1    Thorell, J.O.2    Roland, P.3
  • 14
    • 0032924075 scopus 로고    scopus 로고
    • Sensitivity and specificity of quantitative difference SPECT analysis in seizure localization
    • Spanaki, M.V.; Spencer, S.S.; Corsi, M.; MacMullan, J.; Seibyl, J.; Zubal, I.G. Sensitivity and specificity of quantitative difference SPECT analysis in seizure localization. J. Nucl. Med. 1999, 40, 730-736.
    • (1999) J. Nucl. Med. , vol.40 , pp. 730-736
    • Spanaki, M.V.1    Spencer, S.S.2    Corsi, M.3    MacMullan, J.4    Seibyl, J.5    Zubal, I.G.6
  • 15
    • 0035689918 scopus 로고    scopus 로고
    • Analysis and localization of epileptic events using wavelet packets
    • Gutiérrez, J.; Alcántara, R.; Medina, V. Analysis and localization of epileptic events using wavelet packets. Med. Eng. Phys. 2001, 23, 623-631.
    • (2001) Med. Eng. Phys. , vol.23 , pp. 623-631
    • Gutiérrez, J.1    Alcántara, R.2    Medina, V.3
  • 18
    • 3142557935 scopus 로고    scopus 로고
    • High frequency oscillations and seizure generation in neocortical epilepsy
    • Worrell, G.A.; Parish, L.; Cranstoun, S.D.; Jonas, R.; Baltuch, G.; Litt, B. High frequency oscillations and seizure generation in neocortical epilepsy. Brain 2004, 127, 1496-1506.
    • (2004) Brain , vol.127 , pp. 1496-1506
    • Worrell, G.A.1    Parish, L.2    Cranstoun, S.D.3    Jonas, R.4    Baltuch, G.5    Litt, B.6
  • 21
    • 0034300367 scopus 로고    scopus 로고
    • Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients
    • Mormann, F.; Lehnertz, K.; David, P.; Elger, C.E. Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D 2000, 144, 358-369.
    • (2000) Physica D , vol.144 , pp. 358-369
    • Mormann, F.1    Lehnertz, K.2    David, P.3    Elger, C.E.4
  • 22
    • 0029123213 scopus 로고
    • Spatio-temporal dynamics of the primary epileptogenic area in temporal lobe epilepsy characterized by neuronal complexity loss
    • Lehnertz, K.; Elger, C.E. Spatio-temporal dynamics of the primary epileptogenic area in temporal lobe epilepsy characterized by neuronal complexity loss. Electroencephalogr. Clin. Neurophysiol. 1995, 95, 108-117.
    • (1995) Electroencephalogr. Clin. Neurophysiol. , vol.95 , pp. 108-117
    • Lehnertz, K.1    Elger, C.E.2
  • 23
    • 0033939081 scopus 로고    scopus 로고
    • Spatial distribution of neuronal complexity loss in neocortical lesional epilepsies
    • Widman, G.; Lehnertz, K.; Urbach, H.; Elger, C.E. Spatial distribution of neuronal complexity loss in neocortical lesional epilepsies. Epilepsia 2000, 41, 811-817.
    • (2000) Epilepsia , vol.41 , pp. 811-817
    • Widman, G.1    Lehnertz, K.2    Urbach, H.3    Elger, C.E.4
  • 25
    • 79961075419 scopus 로고    scopus 로고
    • Using bivariate signal analysis to characterize the epileptic focus: The benefit of surrogates
    • Andrzejak, R.G.; Chicharro, D.; Lehnertz, K.; Mormann, F. Using bivariate signal analysis to characterize the epileptic focus: The benefit of surrogates. Phys. Rev. E 2011, 83, 046203, doi:10.1103/PhysRevE.83.046203.
    • (2011) Phys. Rev. E , vol.83 , pp. 046203
    • Andrzejak, R.G.1    Chicharro, D.2    Lehnertz, K.3    Mormann, F.4
  • 26
    • 33646013297 scopus 로고    scopus 로고
    • Improved spatial characterization of the epileptic brain by focusing on nonlinearity
    • Andrzejak, R.G.; Mormann, F.; Widman, G.; Kreuz, T.; Elger, C.E.; Lehnertz, K. Improved spatial characterization of the epileptic brain by focusing on nonlinearity. Epilepsy Res. 2006, 69, 30-44.
    • (2006) Epilepsy Res. , vol.69 , pp. 30-44
    • Andrzejak, R.G.1    Mormann, F.2    Widman, G.3    Kreuz, T.4    Elger, C.E.5    Lehnertz, K.6
  • 27
    • 0035023402 scopus 로고    scopus 로고
    • The epileptic process as nonlinear deterministic dynamics in a stochastic environment: An evaluation on mesial temporal lobe epilepsy
    • Andrzejak, R.G.;Widman, G.; Lehnertz, K.; Rieke, C.; David, P.; Elger, C.E. The epileptic process as nonlinear deterministic dynamics in a stochastic environment: An evaluation on mesial temporal lobe epilepsy. Epilepsy Res. 2001, 44, 129-140.
    • (2001) Epilepsy Res. , vol.44 , pp. 129-140
    • Andrzejak R.G.1    Widman, G.2    Lehnertz, K.3    Rieke, C.4    David, P.5    Elger, C.E.6
  • 28
    • 84861191960 scopus 로고    scopus 로고
    • Epileptogenic networks of type II focal cortical dysplasia: A stereo-EEG study
    • Varotto, G.; Tassi, L.; Franceschetti, S.; Spreafico, R.; Panzica, F. Epileptogenic networks of type II focal cortical dysplasia: A stereo-EEG study. NeuroImage 2012, 61, 591-598.
    • (2012) NeuroImage , vol.61 , pp. 591-598
    • Varotto, G.1    Tassi, L.2    Franceschetti, S.3    Spreafico, R.4    Panzica, F.5
  • 29
    • 84867500693 scopus 로고    scopus 로고
    • Nonrandomness, nonlinear dependence, and nonstationarity of electroencephalographic recordings from epilepsy patients
    • Andrzejak, R.G.; Schindler, K.; Rummel, C. Nonrandomness, nonlinear dependence, and nonstationarity of electroencephalographic recordings from epilepsy patients. Phys. Rev. E 2012, 86, 046206, doi:10.1103/PhysRevE.86.046206.
    • (2012) Phys. Rev. E , vol.86 , pp. 046206
    • Andrzejak, R.G.1    Schindler, K.2    Rummel, C.3
  • 31
    • 78549254986 scopus 로고    scopus 로고
    • Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition
    • Pachori, R.B. Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition. Res. Lett. Signal Process. 2008, 2008, doi:10.1155/2008/293056.
    • (2008) Res. Lett. Signal Process. , vol.2008
    • Pachori, R.B.1
  • 32
    • 80655124711 scopus 로고    scopus 로고
    • Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition
    • Pachori, R.B.; Bajaj, V. Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition. Comput. Methods Programs Biomed. 2011, 104, 373-381.
    • (2011) Comput. Methods Programs Biomed. , vol.104 , pp. 373-381
    • Pachori, R.B.1    Bajaj, V.2
  • 33
    • 84915745194 scopus 로고    scopus 로고
    • Classification of normal and epileptic seizure EEG signals based on empirical mode decomposition
    • Zhu, Q., Azar, A.T., Eds.; Studies in Fuzziness and Soft Computing, Volume 319; Springer: Berlin/Heidelberg, Germany
    • Pachori, R.B.; Sharma, R.; Patidar, S. Classification of normal and epileptic seizure EEG signals based on empirical mode decomposition. In Complex System Modelling and Control through Intelligent Soft Computations; Zhu, Q., Azar, A.T., Eds.; Studies in Fuzziness and Soft Computing, Volume 319; Springer: Berlin/Heidelberg, Germany, 2015; pp. 367-388.
    • (2015) In Complex System Modelling and Control through Intelligent Soft Computations , pp. 367-388
    • Pachori, R.B.1    Sharma, R.2    Patidar, S.3
  • 34
    • 84892783589 scopus 로고    scopus 로고
    • Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions
    • Pachori, R.B.; Patidar, S. Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions. Comput. Methods Programs Biomed. 2014, 113, 494-502.
    • (2014) Comput. Methods Programs Biomed. , vol.113 , pp. 494-502
    • Pachori, R.B.1    Patidar, S.2
  • 35
    • 84908042448 scopus 로고    scopus 로고
    • Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions
    • Sharma, R.; Pachori, R.B. Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions. Expert Syst. Appl. 2015, 42, 1106-1117.
    • (2015) Expert Syst. Appl. , vol.42 , pp. 1106-1117
    • Sharma, R.1    Pachori, R.B.2
  • 36
    • 84908021326 scopus 로고    scopus 로고
    • Classification of seizure based on the time-frequency image of EEG signals using HHT and SVM
    • Fu, K.; Qu, J.; Chai, Y.; Dong, Y. Classification of seizure based on the time-frequency image of EEG signals using HHT and SVM. Biomed. Signal Process. Control 2014, 13, 15-22.
    • (2014) Biomed. Signal Process. Control , vol.13 , pp. 15-22
    • Fu, K.1    Qu, J.2    Chai, Y.3    Dong, Y.4
  • 38
    • 84878902261 scopus 로고    scopus 로고
    • Feature extraction and recognition of ictal EEG using EMD and SVM
    • Li, S.; Zhou, W.; Yuan, Q.; Geng, S.; Cai, D. Feature extraction and recognition of ictal EEG using EMD and SVM. Comput. Biol. Med. 2013, 43, 807-816.
    • (2013) Comput. Biol. Med. , vol.43 , pp. 807-816
    • Li, S.1    Zhou, W.2    Yuan, Q.3    Geng, S.4    Cai, D.5
  • 41
    • 84856043672 scopus 로고
    • A mathematical theory of communication
    • Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379-423.
    • (1948) Bell Syst. Tech. J. , vol.27 , pp. 379-423
    • Shannon, C.E.1
  • 42
    • 0342398227 scopus 로고    scopus 로고
    • Discrimination of sleep stages: A comparison between spectral and nonlinear EEG measures
    • Fell, J.; Röschke, J.; Mann, K.; Schäffner, C. Discrimination of sleep stages: A comparison between spectral and nonlinear EEG measures. Electroencephalogr. Clin. Neurophysiol. 1996, 98, 401-410.
    • (1996) Electroencephalogr. Clin. Neurophysiol. , vol.98 , pp. 401-410
    • Fell, J.1    Röschke, J.2    Mann, K.3    Schäffner, C.4
  • 44
    • 0036979359 scopus 로고    scopus 로고
    • A data-derived quadratic independence measure for adaptive blind source recovery in practical applications
    • III-473-III-476 Tulsa, OK, USA, 4-7 August
    • Waheed, K.; Salam, F. A data-derived quadratic independence measure for adaptive blind source recovery in practical applications. In Proceedings of the 45th Midwest Symposium on Circuits and Systems, Tulsa, OK, USA, 4-7 August 2002; Volume 3, pp. III-473-III-476.
    • (2002) In Proceedings of the 45th Midwest Symposium on Circuits and Systems , vol.3
    • Waheed, K.1    Salam, F.2
  • 45
    • 0026015905 scopus 로고
    • Approximate entropy as a measure of system complexity
    • Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297-2301.
    • (1991) Proc. Natl. Acad. Sci. USA , vol.88 , pp. 2297-2301
    • Pincus, S.M.1
  • 46
    • 77957685691 scopus 로고    scopus 로고
    • Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks
    • Guo, L.; Rivero, D.; Pazos, A. Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks. J. Neurosci. Methods 2010, 193, 156-163.
    • (2010) J. Neurosci. Methods , vol.193 , pp. 156-163
    • Guo, L.1    Rivero, D.2    Pazos, A.3
  • 47
    • 22844434541 scopus 로고    scopus 로고
    • Analysis of regularity in the EEG background activity of Alzheimer's disease patients with approximate entropy
    • Abásolo, D.; Hornero, R.; Espino, P.; Poza, J.; Sánchez, C.I.; de la Rosa, R. Analysis of regularity in the EEG background activity of Alzheimer's disease patients with approximate entropy. Clin. Neurophysiol. 2005, 116, 1826-1834.
    • (2005) Clin. Neurophysiol. , vol.116 , pp. 1826-1834
    • Abásolo, D.1    Hornero, R.2    Espino, P.3    Poza, J.4    Sánchez, C.I.5    de la Rosa, R.6
  • 50
    • 0033949457 scopus 로고    scopus 로고
    • Physiological time-series analysis using approximate entropy and sample entropy
    • Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039-H2049.
    • (2000) Am. J. Physiol. Heart Circ. Physiol. , vol.278 , pp. H2039-H2049
    • Richman, J.S.1    Moorman, J.R.2
  • 51
    • 84923370964 scopus 로고    scopus 로고
    • Analysis of entropies based on empirical mode decomposition in amnesic mild cognitive impairment of diabetes mellitus
    • Cui, D.; Wang, J.; Bian, Z.; Li, Q.; Wang, L.; Li, X. Analysis of entropies based on empirical mode decomposition in amnesic mild cognitive impairment of diabetes mellitus. J. Innov. Opt. Health Sci. 2015, 8, 1-20.
    • (2015) J. Innov. Opt. Health Sci. , vol.8 , pp. 1-20
    • Cui, D.1    Wang, J.2    Bian, Z.3    Li, Q.4    Wang, L.5    Li, X.6
  • 53
  • 55
    • 84882932054 scopus 로고    scopus 로고
    • Automated identification of normal and diabetes heart rate signals using nonlinear measures
    • Acharya, U.R.; Faust, O.; Kadri, N.A.; Suri, J.S.; Yu, W. Automated identification of normal and diabetes heart rate signals using nonlinear measures. Comput. Biol. Med. 2013, 43, 1523-1529.
    • (2013) Comput. Biol. Med. , vol.43 , pp. 1523-1529
    • Acharya, U.R.1    Faust, O.2    Kadri, N.A.3    Suri, J.S.4    Yu, W.5
  • 57
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens, J.A.; Vandewalle, J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9, 293-300.
    • (1999) Neural Process. Lett. , vol.9 , pp. 293-300
    • Suykens, J.A.1    Vandewalle, J.2
  • 58
    • 37249031426 scopus 로고    scopus 로고
    • Wavelet-based feature extraction for support vector machines for screening balance impairments in the elderly
    • Khandoker, A.H.; Lai, D.T.; Begg, R.K.; Palaniswami, M. Wavelet-based feature extraction for support vector machines for screening balance impairments in the elderly. IEEE Trans. Neural Syst. Rehabil. Eng. 2007, 15, 587-597.
    • (2007) IEEE Trans. Neural Syst. Rehabil. Eng. , vol.15 , pp. 587-597
    • Khandoker, A.H.1    Lai, D.T.2    Begg, R.K.3    Palaniswami, M.4
  • 59
    • 79955594660 scopus 로고    scopus 로고
    • Evolutionary model selection in a wavelet-based support vector machine for automated seizure detection
    • Zavar, M.; Rahati, S.; Akbarzadeh-T, M.R.; Ghasemifard, H. Evolutionary model selection in a wavelet-based support vector machine for automated seizure detection. Expert Syst. Appl. 2011, 38, 10751-10758.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 10751-10758
    • Zavar, M.1    Rahati, S.2    Akbarzadeh-T, M.R.3    Ghasemifard, H.4
  • 60
    • 84865980798 scopus 로고    scopus 로고
    • Classification of seizure and nonseizure EEG signals using empirical mode decomposition
    • Bajaj, V.; Pachori, R.B. Classification of seizure and nonseizure EEG signals using empirical mode decomposition. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 1135-1142.
    • (2012) IEEE Trans. Inf. Technol. Biomed. , vol.16 , pp. 1135-1142
    • Bajaj, V.1    Pachori, R.B.2
  • 61
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • Montreal, Canada, 20-25 August 1995; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA
    • Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the 14th International Joint Conference on Artificial Intelligence, Montreal, Canada, 20-25 August 1995; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1995; pp. 1137-1143.
    • (1995) In Proceedings of the 14th International Joint Conference on Artificial Intelligence , pp. 1137-1143
    • Kohavi, R.1
  • 62
    • 84900583659 scopus 로고    scopus 로고
    • Performance analysis of support vector machines classifiers in breast cancer mammography recognition
    • Azar, A.T.; El-Said, S.A. Performance analysis of support vector machines classifiers in breast cancer mammography recognition. Neural Comput. Appl. 2014, 24, 1163-1177.
    • (2014) Neural Comput. Appl. , vol.24 , pp. 1163-1177
    • Azar, A.T.1    El-Said, S.A.2
  • 63
    • 84908049235 scopus 로고    scopus 로고
    • Diagnosis of breast tumours and evaluation of prognostic risk by usingmachine learning approaches
    • Proceedings of the Third International Conference on Intelligent Computing, Qingdao, China, 21-24 August 2007; Huang, D.S., Heutte, L., Loog, M., Eds.; Communications in Computer and Information Science, Volume 2; Springer: Berlin/Heidelberg, Germany
    • Yuan, Q.; Cai, C.; Xiao, H.; Liu, X.; Wen, Y. Diagnosis of breast tumours and evaluation of prognostic risk by usingmachine learning approaches. In Advanced Intelligent Computing Theories and Applications. With Aspects of Contemporary Intelligent Computing Techniques, Proceedings of the Third International Conference on Intelligent Computing, Qingdao, China, 21-24 August 2007; Huang, D.S., Heutte, L., Loog, M., Eds.; Communications in Computer and Information Science, Volume 2; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1250-1260.
    • (2007) In Advanced Intelligent Computing Theories and Applications. With Aspects of Contemporary Intelligent Computing Techniques , pp. 1250-1260
    • Yuan, Q.1    Cai, C.2    Xiao, H.3    Liu, X.4    Wen, Y.5
  • 64
    • 0142224780 scopus 로고
    • The effects of violations of assumptions underlying the t test
    • Boneau, C.A. The effects of violations of assumptions underlying the t test. Psychol. Bull. 1960, 57, 49-64.
    • (1960) Psychol. Bull. , vol.57 , pp. 49-64
    • Boneau, C.A.1
  • 65
    • 84887971931 scopus 로고    scopus 로고
    • Epileptogenic focus detection in intracranial EEG based on delay permutation entropy
    • Zhu, G.; Li, Y.; Wen, P.P.; Wang, S.; Xi, M. Epileptogenic focus detection in intracranial EEG based on delay permutation entropy. AIP Conf. Proc. 2013, 1559, 31-36.
    • (2013) AIP Conf. Proc. , vol.1559 , pp. 31-36
    • Zhu, G.1    Li, Y.2    Wen, P.P.3    Wang, S.4    Xi, M.5
  • 68
    • 35248825924 scopus 로고    scopus 로고
    • EEG signal analysis using FB expansion and second-order linear TVAR process
    • Pachori, R.B.; Sircar, P. EEG signal analysis using FB expansion and second-order linear TVAR process. Signal Process. 2008, 88, 415-420.
    • (2008) Signal Process. , vol.88 , pp. 415-420
    • Pachori, R.B.1    Sircar, P.2
  • 70
    • 84886533463 scopus 로고    scopus 로고
    • Gender classification from ECG signal analysis using least square support vector machine
    • Tripathy, R.K.; Acharya, A.; Choudhary, S.K. Gender classification from ECG signal analysis using least square support vector machine. Am. J. Signal Process. 2012, 2, 145-149.
    • (2012) Am. J. Signal Process. , vol.2 , pp. 145-149
    • Tripathy, R.K.1    Acharya, A.2    Choudhary, S.K.3
  • 71
    • 50049126632 scopus 로고    scopus 로고
    • Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal
    • Asl, B.M.; Setarehdan, S.K.; Mohebbi, M. Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal. Artif. Intell. Med. 2008, 44, 51-64.
    • (2008) Artif. Intell. Med. , vol.44 , pp. 51-64
    • Asl, B.M.1    Setarehdan, S.K.2    Mohebbi, M.3
  • 72
    • 84904367466 scopus 로고    scopus 로고
    • Classification of cardiac sound signals using constrained tunable-Q wavelet transform
    • Patidar, S.; Pachori, R.B. Classification of cardiac sound signals using constrained tunable-Q wavelet transform. Expert Syst. Appl. 2014, 41, 7161-7170.
    • (2014) Expert Syst. Appl. , vol.41 , pp. 7161-7170
    • Patidar, S.1    Pachori, R.B.2
  • 74
    • 69049087866 scopus 로고    scopus 로고
    • Classification of EEG signals using sampling techniques and least square support vector machines
    • Proceedings of the 4th International Conference, Gold Coast, Australia, 14-16 July 2009; Wen, P., Li, Y., Polkowski, L., Yao, Y., Tsumoto, S., Wang, G., Eds.; Lecture Notes in Computer Science, Volume 5589; Springer: Berlin/Heidelberg, Germany
    • Siuly; Li, Y.; Wen, P. Classification of EEG signals using sampling techniques and least square support vector machines. In Rough Sets and Knowledge Technology, Proceedings of the 4th International Conference, Gold Coast, Australia, 14-16 July 2009; Wen, P., Li, Y., Polkowski, L., Yao, Y., Tsumoto, S., Wang, G., Eds.; Lecture Notes in Computer Science, Volume 5589; Springer: Berlin/Heidelberg, Germany, 2009; pp. 375-382.
    • (2009) In Rough Sets and Knowledge Technology , pp. 375-382
    • Siuly1    Li, Y.2    Wen, P.3
  • 75
    • 80055040385 scopus 로고    scopus 로고
    • Clustering technique-based least square support vector machine for EEG signal classification
    • Siuly; Li, Y.; Wen, P. Clustering technique-based least square support vector machine for EEG signal classification. Comput. Methods Programs Biomed. 2011, 104, 358-372.
    • (2011) Comput. Methods Programs Biomed. , vol.104 , pp. 358-372
    • Siuly1    Li, Y.2    Wen, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.