메뉴 건너뛰기




Volumn 45, Issue 9, 2015, Pages 1913-1926

Fully Empirical and Data-Dependent Stability-Based Bounds

Author keywords

Algorithmic stability; data dependent bounds; fully empirical bounds; in sample; model selection; out of sample; support vector machine (SVM)

Indexed keywords

ALGORITHMS; CLASSIFICATION (OF INFORMATION); LEARNING ALGORITHMS; STABILITY;

EID: 84939779196     PISSN: 21682267     EISSN: None     Source Type: Journal    
DOI: 10.1109/TCYB.2014.2361857     Document Type: Article
Times cited : (29)

References (85)
  • 1
    • 0038368335 scopus 로고    scopus 로고
    • Stability and generalization
    • Mar.
    • O. Bousquet and A. Elisseeff, "Stability and generalization, " J. Mach. Learn. Res., vol. 2, pp. 499-526, Mar. 2002.
    • (2002) J. Mach. Learn. Res. , vol.2 , pp. 499-526
    • Bousquet, O.1    Elisseeff, A.2
  • 2
    • 1842420581 scopus 로고    scopus 로고
    • General conditions for predictivity in learning theory
    • T. Poggio, R. Rifkin, S. Mukherjee, and P. Niyogi, "General conditions for predictivity in learning theory, " Nature, vol. 428, no. 6981, pp. 419-422, 2004.
    • (2004) Nature , vol.428 , Issue.6981 , pp. 419-422
    • Poggio, T.1    Rifkin, R.2    Mukherjee, S.3    Niyogi, P.4
  • 3
    • 33745655665 scopus 로고    scopus 로고
    • Learning theory: Stability is sufficient for generalization and necessary and sufficient for consistency of empirical risk minimization
    • S. Mukherjee, P. Niyogi, T. Poggio, and R. Rifkin, "Learning theory: Stability is sufficient for generalization and necessary and sufficient for consistency of empirical risk minimization, " Adv. Comput. Math., vol. 25, no. 1, pp. 161-193, 2006.
    • (2006) Adv. Comput. Math. , vol.25 , Issue.1 , pp. 161-193
    • Mukherjee, S.1    Niyogi, P.2    Poggio, T.3    Rifkin, R.4
  • 5
    • 0036913330 scopus 로고    scopus 로고
    • A PAC-Bayesian margin bound for linear classifiers
    • Dec.
    • R. Herbrich and T. Graepel, "A PAC-Bayesian margin bound for linear classifiers, " IEEE Trans. Inf. Theory, vol. 48, no. 12, pp. 3140-3150, Dec. 2002.
    • (2002) IEEE Trans. Inf. Theory , vol.48 , Issue.12 , pp. 3140-3150
    • Herbrich, R.1    Graepel, T.2
  • 6
    • 0037399538 scopus 로고    scopus 로고
    • PAC-Bayesian stochastic model selection
    • D. A. McAllester, "PAC-Bayesian stochastic model selection, " Mach. Learn., vol. 51, no. 1, pp. 5-21, 2003.
    • (2003) Mach. Learn. , vol.51 , Issue.1 , pp. 5-21
    • McAllester, D.A.1
  • 8
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • Sep.
    • V. N. Vapnik, "An overview of statistical learning theory, " IEEE Trans. Neural Netw., vol. 10, no. 5, pp. 988-999, Sep. 1999.
    • (1999) IEEE Trans. Neural Netw. , vol.10 , Issue.5 , pp. 988-999
    • Vapnik, V.N.1
  • 9
  • 10
    • 0038453192 scopus 로고    scopus 로고
    • Rademacher and Gaussian complexities: Risk bounds and structural results
    • Mar.
    • P. L. Bartlett and S. Mendelson, "Rademacher and Gaussian complexities: Risk bounds and structural results, " J. Mach. Learn. Res., vol. 3, pp. 463-482, Mar. 2003.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 463-482
    • Bartlett, P.L.1    Mendelson, S.2
  • 12
    • 84875879529 scopus 로고    scopus 로고
    • In-sample and out-of-sample model selection and error estimation for support vector machines
    • Jun.
    • D. Anguita, A. Ghio, L. Oneto, and S. Ridella, "In-sample and out-of-sample model selection and error estimation for support vector machines, " IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 9, pp. 1390-1406, Jun. 2012.
    • (2012) IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , Issue.9 , pp. 1390-1406
    • Anguita, D.1    Ghio, A.2    Oneto, L.3    Ridella, S.4
  • 13
    • 0036643049 scopus 로고    scopus 로고
    • Model selection and error estimation
    • P. L. Bartlett, S. Boucheron, and G. Lugosi, "Model selection and error estimation, " Mach. Learn., vol. 48, nos. 1-3, pp. 85-113, 2002.
    • (2002) Mach. Learn. , vol.48 , Issue.1-3 , pp. 85-113
    • Bartlett, P.L.1    Boucheron, S.2    Lugosi, G.3
  • 14
    • 76749118521 scopus 로고    scopus 로고
    • Model selection: Beyond the Bayesian/frequentist divide
    • Jan.
    • I. Guyon, A. Saffari, G. Dror, and G. Cawley, "Model selection: Beyond the Bayesian/frequentist divide, " J. Mach. Learn. Res., vol. 11, pp. 61-87, Jan. 2010.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 61-87
    • Guyon, I.1    Saffari, A.2    Dror, G.3    Cawley, G.4
  • 15
    • 0037551756 scopus 로고
    • A finite sample distribution-free performance bound for local discrimination rules
    • W. H. Rogers and T. J. Wagner, "A finite sample distribution-free performance bound for local discrimination rules, " Ann. Stat., vol. 6, no. 3, pp. 506-514, 1978.
    • (1978) Ann. Stat. , vol.6 , Issue.3 , pp. 506-514
    • Rogers, W.H.1    Wagner, T.J.2
  • 17
    • 84890080043 scopus 로고    scopus 로고
    • A novel decision-tree method for structured continuous-label classification
    • Jan.
    • H.-W. Hu, Y.-L. Chen, and K. Tang, "A novel decision-tree method for structured continuous-label classification, " IEEE Trans. Cybern., vol. 43, no. 6, pp. 1734-1746, Jan. 2013.
    • (2013) IEEE Trans. Cybern. , vol.43 , Issue.6 , pp. 1734-1746
    • Hu, H.-W.1    Chen, Y.-L.2    Tang, K.3
  • 18
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks, " Science, vol. 313, no. 5786, pp. 504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 19
    • 84890110727 scopus 로고    scopus 로고
    • Dynamic extreme learning machine and its approximation capability
    • Feb.
    • R. Zhang, Y. Lan, G.-B. Huang, Z.-B. Xu, and Y. C. Soh, "Dynamic extreme learning machine and its approximation capability, " IEEE Trans. Cybern., vol. 43, no. 6, pp. 2054-2065, Feb. 2013.
    • (2013) IEEE Trans. Cybern. , vol.43 , Issue.6 , pp. 2054-2065
    • Zhang, R.1    Lan, Y.2    Huang, G.-B.3    Xu, Z.-B.4    Soh, Y.C.5
  • 20
    • 80052561333 scopus 로고    scopus 로고
    • Sets of approximating functions with finite Vapnik-Chervonenkis dimension for nearest-neighbors algorithms
    • P. Klesk and M. Korzen, "Sets of approximating functions with finite Vapnik-Chervonenkis dimension for nearest-neighbors algorithms, " Pattern Recognit. Lett., vol. 32, no. 14, pp. 1882-1893, 2011.
    • (2011) Pattern Recognit. Lett. , vol.32 , Issue.14 , pp. 1882-1893
    • Klesk, P.1    Korzen, M.2
  • 22
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • R. Kohavi, "A study of cross-validation and bootstrap for accuracy estimation and model selection, " in Proc. Int. Joint Conf. Artif. Intell., San Francisco, CA, USA, 1995, pp. 1137-1143.
    • (1995) Proc. Int. Joint Conf. Artif. Intell., San Francisco, CA, USA , pp. 1137-1143
    • Kohavi, R.1
  • 23
    • 1342330535 scopus 로고    scopus 로고
    • Is cross-validation valid for small-sample microarray classification?
    • U. M. Braga-Neto and E. R. Dougherty, "Is cross-validation valid for small-sample microarray classification?" Bioinformatics, vol. 20, no. 3, pp. 374-380, 2004.
    • (2004) Bioinformatics , vol.20 , Issue.3 , pp. 374-380
    • Braga-Neto, U.M.1    Dougherty, E.R.2
  • 24
    • 84954358500 scopus 로고    scopus 로고
    • Learning with sample dependent hypothesis spaces
    • Q. Wu and D.-X. Zhou, "Learning with sample dependent hypothesis spaces, " Comput. Math. Appl., vol. 56, no. 11, pp. 2896-2907, 2008.
    • (2008) Comput. Math. Appl. , vol.56 , Issue.11 , pp. 2896-2907
    • Wu, Q.1    Zhou, D.-X.2
  • 25
    • 0001161118 scopus 로고    scopus 로고
    • Machine learning with data dependent hypothesis classes
    • Jan.
    • A. Cannon, J. M. Ettinger, D. Hush, and C. Scovel, "Machine learning with data dependent hypothesis classes, " J. Mach. Learn. Res., vol. 2, pp. 335-358, Jan. 2002.
    • (2002) J. Mach. Learn. Res. , vol.2 , pp. 335-358
    • Cannon, A.1    Ettinger, J.M.2    Hush, D.3    Scovel, C.4
  • 26
    • 33746061490 scopus 로고    scopus 로고
    • Stability results in learning theory
    • A. Rakhlin, S. Mukherjee, and T. Poggio, "Stability results in learning theory, " Anal. Appl., vol. 3, no. 4, pp. 397-417, 2005.
    • (2005) Anal. Appl. , vol.3 , Issue.4 , pp. 397-417
    • Rakhlin, A.1    Mukherjee, S.2    Poggio, T.3
  • 28
    • 0033566418 scopus 로고    scopus 로고
    • Algorithmic stability and sanity-check bounds for leave-one-out cross-validation
    • M. Kearns and D. Ron, "Algorithmic stability and sanity-check bounds for leave-one-out cross-validation, " Neural Comput., vol. 11, no. 6, pp. 1427-1453, 1999.
    • (1999) Neural Comput. , vol.11 , Issue.6 , pp. 1427-1453
    • Kearns, M.1    Ron, D.2
  • 29
    • 21844448886 scopus 로고    scopus 로고
    • Stability of randomized learning algorithms
    • A. Elisseeff, T. Evgeniou, and M. Pontil, "Stability of randomized learning algorithms, " J. Mach. Learn. Res., vol. 6, no. 1, p. 55, 2006.
    • (2006) J. Mach. Learn. Res. , vol.6 , Issue.1 , pp. 55
    • Elisseeff, A.1    Evgeniou, T.2    Pontil, M.3
  • 31
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes and V. Vapnik, "Support-vector networks, " Mach. Learn., vol. 20, no. 3, pp. 273-297, 1995.
    • (1995) Mach. Learn. , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 33
    • 46349083014 scopus 로고    scopus 로고
    • A tail inequality for suprema of unbounded empirical processes with applications to Markov chains
    • R. Adamczak, "A tail inequality for suprema of unbounded empirical processes with applications to Markov chains, " Electron. J. Probab., vol. 13, no. 34, pp. 1000-1034, 2007.
    • (2007) Electron. J. Probab. , vol.13 , Issue.34 , pp. 1000-1034
    • Adamczak, R.1
  • 35
    • 0024646861 scopus 로고
    • Leave-one-out procedures for non-parametric error estimates
    • Aug.
    • K. Fukunaga and D. M. Hummels, "Leave-one-out procedures for non-parametric error estimates, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 11, no. 4, pp. 421-423, Aug. 1989.
    • (1989) IEEE Trans. Pattern Anal. Mach. Intell. , vol.11 , Issue.4 , pp. 421-423
    • Fukunaga, K.1    Hummels, D.M.2
  • 36
    • 2542639357 scopus 로고    scopus 로고
    • An efficient method for computing leave-one-out error in support vector machines with Gaussian kernels
    • May
    • M. M. Lee, S. S. Keerthi, C. J. Ong, and D. DeCoste, "An efficient method for computing leave-one-out error in support vector machines with Gaussian kernels, " IEEE Trans. Neural Netw., vol. 15, no. 3, pp. 750-757, May 2004.
    • (2004) IEEE Trans. Neural Netw. , vol.15 , Issue.3 , pp. 750-757
    • Lee, M.M.1    Keerthi, S.S.2    Ong, C.J.3    DeCoste, D.4
  • 37
    • 0001035413 scopus 로고
    • On the method of bounded differences
    • C. McDiarmid, "On the method of bounded differences, " Surv. Comb., vol. 141, no. 1, pp. 148-188, 1989.
    • (1989) Surv. Comb. , vol.141 , Issue.1 , pp. 148-188
    • McDiarmid, C.1
  • 39
    • 0018444763 scopus 로고
    • Distribution-free inequalities for the deleted and holdout error estimates
    • Jan.
    • L. Devroye and T. Wagner, "Distribution-free inequalities for the deleted and holdout error estimates, " IEEE Trans. Inf. Theory, vol. 25, no. 2, pp. 202-207, Jan. 1979.
    • (1979) IEEE Trans. Inf. Theory , vol.25 , Issue.2 , pp. 202-207
    • Devroye, L.1    Wagner, T.2
  • 41
    • 12444265838 scopus 로고    scopus 로고
    • Consistency of support vector machines and other regularized kernel classifiers
    • Jan.
    • I. Steinwart, "Consistency of support vector machines and other regularized kernel classifiers, " IEEE Trans. Inf. Theory, vol. 51, no. 1, pp. 128-142, Jan. 2005.
    • (2005) IEEE Trans. Inf. Theory , vol.51 , Issue.1 , pp. 128-142
    • Steinwart, I.1
  • 42
    • 0000149970 scopus 로고    scopus 로고
    • Statistical mechanics of support vector networks
    • R. Dietrich, M. Opper, and H. Sompolinsky, "Statistical mechanics of support vector networks, " Phys. Rev. Lett., vol. 82, no. 14, p. 2975, 1999.
    • (1999) Phys. Rev. Lett. , vol.82 , Issue.14 , pp. 2975
    • Dietrich, R.1    Opper, M.2    Sompolinsky, H.3
  • 43
    • 0008238669 scopus 로고
    • On the ability of the optimal perceptron to generalise
    • M. Opper, W. Kinzel, J. Kleinz, and R. Nehl, "On the ability of the optimal perceptron to generalise, " J. Phys. A. Math. Gen., vol. 23, no. 11, p. L581, 1990.
    • (1990) J. Phys. A. Math. Gen. , vol.23 , Issue.11 , pp. L581
    • Opper, M.1    Kinzel, W.2    Kleinz, J.3    Nehl, R.4
  • 44
    • 84939820168 scopus 로고    scopus 로고
    • Statistical mechanics of learning: Generalization
    • Cambridge, MA, USA: MIT Press
    • M. Opper, "Statistical mechanics of learning: Generalization, " in The Handbook of Brain Theory and Neural Networks, 2nd ed, Cambridge, MA, USA: MIT Press, 2002, pp. 922-925.
    • (2002) The Handbook of Brain Theory and Neural Networks, 2nd Ed , pp. 922-925
    • Opper, M.1
  • 45
    • 0038237368 scopus 로고    scopus 로고
    • Estimating dataset size requirements for classifying DNA microarray data
    • S. Mukherjee et al., "Estimating dataset size requirements for classifying DNA microarray data, " J. Comput. Biol., vol. 10, no. 2, pp. 119-142, 2003.
    • (2003) J. Comput. Biol. , vol.10 , Issue.2 , pp. 119-142
    • Mukherjee, S.1
  • 46
    • 84947403595 scopus 로고
    • Probability inequalities for sums of bounded Random variables
    • W. Hoeffding, "Probability inequalities for sums of bounded random variables, " J. Amer. Stat. Assoc., vol. 58, no. 301, pp. 13-30, 1963.
    • (1963) J. Amer. Stat. Assoc. , vol.58 , Issue.301 , pp. 13-30
    • Hoeffding, W.1
  • 47
    • 61849142212 scopus 로고    scopus 로고
    • Nearly homogeneous multi-partitioning with a deterministic generator
    • M. Aupetit, "Nearly homogeneous multi-partitioning with a deterministic generator, " Neurocomputing, vol. 72, nos. 7-9, pp. 1379-1389, 2009.
    • (2009) Neurocomputing , vol.72 , Issue.7-9 , pp. 1379-1389
    • Aupetit, M.1
  • 51
    • 67649403178 scopus 로고    scopus 로고
    • Fast and efficient strategies for model selection of Gaussian support vector machine
    • Mar.
    • Z. Xu, M. Dai, and D. Meng, "Fast and efficient strategies for model selection of Gaussian support vector machine, " IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 39, no. 5, pp. 1292-1307, Mar. 2009.
    • (2009) IEEE Trans. Syst., Man, Cybern. B, Cybern. , vol.39 , Issue.5 , pp. 1292-1307
    • Xu, Z.1    Dai, M.2    Meng, D.3
  • 52
    • 77953812676 scopus 로고    scopus 로고
    • Maximum likelihood model selection for 1-norm soft margin SVMS with multiple parameters
    • Apr.
    • T. Glasmachers and C. Igel, "Maximum likelihood model selection for 1-norm soft margin SVMS with multiple parameters, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 8, pp. 1522-1528, Apr. 2010.
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , Issue.8 , pp. 1522-1528
    • Glasmachers, T.1    Igel, C.2
  • 53
    • 78651267218 scopus 로고    scopus 로고
    • Approximate confidence and prediction intervals for least squares support vector regression
    • Nov.
    • K. De Brabanter, J. De Brabanter, J. Suykens, and B. De Moor, "Approximate confidence and prediction intervals for least squares support vector regression, " IEEE Trans. Neural Netw., vol. 22, no. 1, pp. 110-120, Nov. 2011.
    • (2011) IEEE Trans. Neural Netw. , vol.22 , Issue.1 , pp. 110-120
    • De Brabanter, K.1    De Brabanter, J.2    Suykens, J.3    De Moor, B.4
  • 54
    • 80053646089 scopus 로고    scopus 로고
    • Nonlinear regularization path for quadratic loss support vector machines
    • Aug.
    • M. Karasuyama and I. Takeuchi, "Nonlinear regularization path for quadratic loss support vector machines, " IEEE Trans. Neural Netw., vol. 22, no. 10, pp. 1613-1625, Aug. 2011.
    • (2011) IEEE Trans. Neural Netw. , vol.22 , Issue.10 , pp. 1613-1625
    • Karasuyama, M.1    Takeuchi, I.2
  • 55
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • B. Schölkopf, C. J. C. Burges, and A. J. Smola, Eds. Cambridge, MA, USA: MIT Press
    • J. Platt, "Fast training of support vector machines using sequential minimal optimization, " in Advances in Kernel Methods, B. Schölkopf, C. J. C. Burges, and A. J. Smola, Eds. Cambridge, MA, USA: MIT Press, 1999, pp. 185-208.
    • (1999) Advances in Kernel Methods , pp. 185-208
    • Platt, J.1
  • 56
    • 33746869623 scopus 로고    scopus 로고
    • Parallel sequential minimal optimization for the training of support vector machines
    • Jul.
    • L. J. Cao et al., "Parallel sequential minimal optimization for the training of support vector machines, " IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 1039-1049, Jul. 2006.
    • (2006) IEEE Trans. Neural Netw. , vol.17 , Issue.4 , pp. 1039-1049
    • Cao, L.J.1
  • 58
    • 0037822222 scopus 로고    scopus 로고
    • Asymptotic behaviors of support vector machines with Gaussian kernel
    • S. Keerthi and C. Lin, "Asymptotic behaviors of support vector machines with Gaussian kernel, " Neural Comput., vol. 15, no. 7, pp. 1667-1689, 2003.
    • (2003) Neural Comput. , vol.15 , Issue.7 , pp. 1667-1689
    • Keerthi, S.1    Lin, C.2
  • 59
    • 77956649096 scopus 로고    scopus 로고
    • A survey of cross-validation procedures for model selection
    • S. Arlot and A. Celisse, "A survey of cross-validation procedures for model selection, " Stat. Surv., vol. 4, pp. 40-79, 2010.
    • (2010) Stat. Surv. , vol.4 , pp. 40-79
    • Arlot, S.1    Celisse, A.2
  • 60
    • 85008025524 scopus 로고    scopus 로고
    • Sensitivity analysis of k-fold cross validation in prediction error estimation
    • Mar.
    • J. D. Rodriguez, A. Perez, and J. A. Lozano, "Sensitivity analysis of k-fold cross validation in prediction error estimation, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 3, pp. 569-575, Mar. 2010.
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , Issue.3 , pp. 569-575
    • Rodriguez, J.D.1    Perez, A.2    Lozano, J.A.3
  • 61
    • 84876917722 scopus 로고    scopus 로고
    • Study on the impact of partition-induced dataset shift on k-fold cross-validation
    • Jun.
    • J. G. Moreno-Torres, J. A. Sáez, and F. Herrera, "Study on the impact of partition-induced dataset shift on k-fold cross-validation, " IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 8, pp. 1304-1312, Jun. 2012.
    • (2012) IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , Issue.8 , pp. 1304-1312
    • Moreno-Torres, J.G.1    Sáez, J.A.2    Herrera, F.3
  • 65
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Dec.
    • H. Akaike, "A new look at the statistical model identification, " IEEE Trans. Autom. Control, vol. 19, no. 6, pp. 716-723, Dec. 1974.
    • (1974) IEEE Trans. Autom. Control , vol.19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 67
    • 0036583160 scopus 로고    scopus 로고
    • A parallel mixture of SVMS for very large scale problems
    • R. Collobert, S. Bengio, and Y. Bengio, "A parallel mixture of SVMS for very large scale problems, " Neural Comput., vol. 14, no. 5, pp. 1105-1114, 2002.
    • (2002) Neural Comput. , vol.14 , Issue.5 , pp. 1105-1114
    • Collobert, R.1    Bengio, S.2    Bengio, Y.3
  • 69
    • 80052955921 scopus 로고    scopus 로고
    • A review of optimization methodologies in support vector machines
    • J. Shawe-Taylor and S. Sun, "A review of optimization methodologies in support vector machines, " Neurocomputing, vol. 74, no. 17, pp. 3609-3618, 2011.
    • (2011) Neurocomputing , vol.74 , Issue.17 , pp. 3609-3618
    • Shawe-Taylor, J.1    Sun, S.2
  • 70
    • 0000545946 scopus 로고    scopus 로고
    • Improvements to Platt's SMO algorithm for SVM classifier design
    • S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy, "Improvements to Platt's SMO algorithm for SVM classifier design, " Neural Comput., vol. 13, no. 3, pp. 637-649, 2001.
    • (2001) Neural Comput. , vol.13 , Issue.3 , pp. 637-649
    • Keerthi, S.S.1    Shevade, S.K.2    Bhattacharyya, C.3    Murthy, K.R.K.4
  • 71
    • 29144499905 scopus 로고    scopus 로고
    • Working set selection using second order information for training support vector machines
    • Dec.
    • R.-E. Fan, P.-H. Chen, and C.-J. Lin, "Working set selection using second order information for training support vector machines, " J. Mach. Learn. Res., vol. 6, pp. 1889-1918, Dec. 2005.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1889-1918
    • Fan, R.-E.1    Chen, P.-H.2    Lin, C.-J.3
  • 73
    • 80053620586 scopus 로고    scopus 로고
    • Multiple incremental decremental learning of support vector machines
    • M. Karasuyama and I. Takeuchi, "Multiple incremental decremental learning of support vector machines, " in Proc. Adv. Neural Inf. Process. Syst., 2009, pp. 1048-1059.
    • (2009) Proc. Adv. Neural Inf. Process. Syst. , pp. 1048-1059
    • Karasuyama, M.1    Takeuchi, I.2
  • 74
    • 0033400675 scopus 로고    scopus 로고
    • Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables
    • J. A. Blackard and D. J. Dean, "Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables, " Comput. Electron. Agr., vol. 24, no. 3, pp. 131-151, 1999.
    • (1999) Comput. Electron. Agr. , vol.24 , Issue.3 , pp. 131-151
    • Blackard, J.A.1    Dean, D.J.2
  • 75
    • 33846581659 scopus 로고    scopus 로고
    • An experimental study on pedestrian classification
    • Nov.
    • S. Munder and D. M. Gavrila, "An experimental study on pedestrian classification, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 11, pp. 1863-1868, Nov. 2006.
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell. , vol.28 , Issue.11 , pp. 1863-1868
    • Munder, S.1    Gavrila, D.M.2
  • 77
    • 84939820170 scopus 로고    scopus 로고
    • Google (Books/OCR), Tech. Rep [Online]
    • Y. Bulatov, (2011). "Notmnist dataset, " Google (Books/OCR), Tech. Rep. [Online]. Available: http://yaroslavvb.blogspot.it/2011/09/notmnist-dataset.html
    • (2011) Notmnist Dataset
    • Bulatov, Y.1
  • 78
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • Mar.
    • C.-W. Hsu and C.-J. Lin, "A comparison of methods for multiclass support vector machines, " IEEE Trans. Neural Netw., vol. 13, no. 2, pp. 415-425, Mar. 2002.
    • (2002) IEEE Trans. Neural Netw. , vol.13 , Issue.2 , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2
  • 80
    • 0030522124 scopus 로고    scopus 로고
    • A new look at independence
    • M. Talagrand, "A new look at independence, " Ann. Probab., vol. 24, no. 1, pp. 1-34, 1996.
    • (1996) Ann. Probab. , vol.24 , Issue.1 , pp. 1-34
    • Talagrand, M.1
  • 81
    • 0034344120 scopus 로고    scopus 로고
    • A sharp concentration inequality with applications, Random
    • May
    • S. Boucheron, G. Lugosi, and P. Massart, "A sharp concentration inequality with applications, " Random Struct. Algorithms, vol. 16, no. 3, pp. 277-292, May 2000.
    • (2000) Struct. Algorithms , vol.16 , Issue.3 , pp. 277-292
    • Boucheron, S.1    Lugosi, G.2    Massart, P.3
  • 82
    • 0037561860 scopus 로고    scopus 로고
    • A Bennett concentration inequality and its application to suprema of empirical processes
    • O. Bousquet, "A Bennett concentration inequality and its application to suprema of empirical processes, " CR Math., vol. 334, no. 6, pp. 495-500, 2002.
    • (2002) CR Math. , vol.334 , Issue.6 , pp. 495-500
    • Bousquet, O.1
  • 84
    • 0033234630 scopus 로고    scopus 로고
    • Smooth discrimination analysis
    • E. Mammen and A. B. Tsybakov, "Smooth discrimination analysis, " Ann. Stat., vol. 27, no. 6, pp. 1808-1829, 1999.
    • (1999) Ann. Stat. , vol.27 , Issue.6 , pp. 1808-1829
    • Mammen, E.1    Tsybakov, A.B.2
  • 85
    • 68649088331 scopus 로고    scopus 로고
    • Fast learning rates in statistical inference through aggregation
    • J.-Y. Audibert, "Fast learning rates in statistical inference through aggregation, " Ann. Stat., vol. 37, no. 4, pp. 1591-1646, 2009.
    • (2009) Ann. Stat. , vol.37 , Issue.4 , pp. 1591-1646
    • Audibert, J.-Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.