-
1
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
B.E. Boser, I.M. Guyon, and V.N. Vapnik, "A Training Algorithm for Optimal Margin Classifiers," Proc. Fifth Ann. Workshop Computational Learning Theory, pp. 144-152, 1992.
-
(1992)
Proc. Fifth Ann. Workshop Computational Learning Theory
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.N.3
-
2
-
-
34249753618
-
Support-vector networks
-
C. Cortes and V. Vapnik, "Support-Vector Networks," Machine Learning, vol.20, no.3, pp. 273-297, 1995.
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
3
-
-
33846575231
-
Statistical learning theory
-
V. Vapnik, Statistical Learning Theory. Wiley, 1998.
-
(1998)
Wiley
-
-
Vapnik, V.1
-
4
-
-
10844278603
-
The elements of statistical learning: Data mining
-
Springer-Verlag
-
T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer-Verlag, 2001.
-
(2001)
Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
5
-
-
0033289037
-
Using the fisher kernel method to detect remote protein homologies
-
T. Jaakkola, M. Diekhaus, and D. Haussler, "Using the Fisher Kernel Method to Detect Remote Protein Homologies," Proc. Seventh Int'l Conf. Intelligent Systems for Molecular Biology, pp. 149-158, 1999.
-
(1999)
Proc. Seventh Int'l Conf. Intelligent Systems for Molecular Biology
, pp. 149-158
-
-
Jaakkola, T.1
Diekhaus, M.2
Haussler, D.3
-
6
-
-
0034264380
-
Bounds on error expectation for support vector machines
-
V. Vapnik and O. Chapelle, "Bounds on Error Expectation for Support Vector Machines," Neural Computation, vol.12, pp. 2013-2036, 2000.
-
(2000)
Neural Computation
, vol.12
, pp. 2013-2036
-
-
Vapnik, V.1
Chapelle, O.2
-
7
-
-
0041995195
-
On kernel-target alignment
-
MIT Press
-
N. Cristianini, A. Elisseeff, J. Shawe-Taylor, and J. Kandola, "On Kernel-Target Alignment," Advances in Neural Information Processing Systems, pp. 367-373, MIT Press, 2001.
-
(2001)
Advances in Neural Information Processing Systems
, pp. 367-373
-
-
Cristianini, N.1
Elisseeff, A.2
Shawe-Taylor, J.3
Kandola, J.4
-
8
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
DOI 10.1023/A:1012450327387
-
O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, "Choosing Multiple Parameters for Support Vector Machines," Machine Learning, vol.46, no.1, pp. 131-159, 2002. (Pubitemid 34129966)
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
9
-
-
0036738840
-
Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms
-
Sept.
-
S.S. Keerthi, "Efficient Tuning of SVM Hyperparameters Using Radius/Margin Bound and Iterative Algorithms," IEEE Trans. Neural Networks, vol.13, no.5, pp. 1225-1229, Sept. 2002.
-
(2002)
IEEE Trans. Neural Networks
, vol.13
, Issue.5
, pp. 1225-1229
-
-
Keerthi, S.S.1
-
10
-
-
23944487822
-
Gradient-based adaptation of general gaussian kernels
-
T. Glasmachers and C. Igel, "Gradient-Based Adaptation of General Gaussian Kernels," Neural Computation, vol.17, no.10, pp. 2099-2105, 2005.
-
(2005)
Neural Computation
, vol.17
, Issue.10
, pp. 2099-2105
-
-
Glasmachers, T.1
Igel, C.2
-
11
-
-
84864039082
-
An efficient method for gradient-based adaptation of hyperparameters in SVM models
-
B. Schölkopf, J. Platt, and T. Hoffman, eds., MIT Press
-
S.S. Keerthi, V. Sindhwani, and O. Chapelle, "An Efficient Method for Gradient-Based Adaptation of Hyperparameters in SVM Models," Advances in Neural Information Processing Systems, vol.19, B. Schölkopf, J. Platt, and T. Hoffman, eds., MIT Press, 2007.
-
(2007)
Advances in Neural Information Processing Systems
, vol.19
-
-
Keerthi, S.S.1
Sindhwani, V.2
Chapelle, O.3
-
12
-
-
34248374186
-
Gradient-based optimization of kernel-target alignment for sequence kernels applied to bacterial gene start detection
-
Apr.
-
C. Igel, T. Glasmachers, B. Mersch, N. Pfeifer, and P. Meinicke, "Gradient-Based Optimization of Kernel-Target Alignment for Sequence Kernels Applied to Bacterial Gene Start Detection," IEEE/ACM Trans. Computational Biology and Bioinformatics, vol.4, no.2, pp. 216-226, Apr. 2007.
-
(2007)
IEEE/ACM Trans. Computational Biology and Bioinformatics
, vol.4
, Issue.2
, pp. 216-226
-
-
Igel, C.1
Glasmachers, T.2
Mersch, B.3
Pfeifer, N.4
Meinicke, P.5
-
13
-
-
0002709342
-
Feature selection via concave minimization and support vector machines
-
P.S. Bradley and O.L. Mangasarian, "Feature Selection via Concave Minimization and Support Vector Machines," Proc. Int'l Conf. Machine Learning, pp. 82-90, 1998.
-
(1998)
Proc. Int'l Conf. Machine Learning
, pp. 82-90
-
-
Bradley, P.S.1
Mangasarian, O.L.2
-
14
-
-
0003243224
-
Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
-
MIT Press
-
J. Platt, "Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods," Advances in Large Margin Classifiers, pp. 61-74, MIT Press, 1999.
-
(1999)
Advances in Large Margin Classifiers
, pp. 61-74
-
-
Platt, J.1
-
15
-
-
0001224048
-
Sparse bayesian learning and the relevance vector machine
-
M.E. Tipping, "Sparse Bayesian Learning and the Relevance Vector Machine," J. Machine Learning Research, vol.1, pp. 211-244, 2001.
-
(2001)
J. Machine Learning Research
, vol.1
, pp. 211-244
-
-
Tipping, M.E.1
-
16
-
-
4644257995
-
Statistical behavior and consistency of classification methods based on convex risk minimization
-
T. Zhang, "Statistical Behavior and Consistency of Classification Methods Based on Convex Risk Minimization," Annals of Statistics, vol.32, no.1, pp. 56-85, 2004.
-
(2004)
Annals of Statistics
, vol.32
, Issue.1
, pp. 56-85
-
-
Zhang, T.1
-
17
-
-
34247596518
-
Sparseness vs estimating conditional probabilities: Some asymptotic results
-
P.L. Bartlett and A. Tewari, "Sparseness vs Estimating Conditional Probabilities: Some Asymptotic Results," J. Machine Learning Research, vol.8, pp. 775-790, 2007.
-
(2007)
J. Machine Learning Research
, vol.8
, pp. 775-790
-
-
Bartlett, P.L.1
Tewari, A.2
-
18
-
-
0002755771
-
Gaussian process classification and svm: Mean field results
-
P. Bartlett, B. Schölkopf, D. Schuurmans, and A. Smola, eds., MIT Press
-
M. Opper and O. Winther, "Gaussian Process Classification and SVM: Mean Field Results," Advances in Large Margin Classifiers, P. Bartlett, B. Schölkopf, D. Schuurmans, and A. Smola, eds., MIT Press, 1999.
-
(1999)
Advances in Large Margin Classifiers
-
-
Opper, M.1
Winther, O.2
-
19
-
-
84898947199
-
Bayesian model selection for support vector machines, gaussian processes and other kernel classifiers
-
MIT Press
-
M. Seeger, "Bayesian Model Selection for Support Vector Machines, Gaussian Processes and Other Kernel Classifiers," Advances in Neural Information Processing Systems, vol.12, pp. 603-609, MIT Press, 2000.
-
(2000)
Advances in Neural Information Processing Systems
, vol.12
, pp. 603-609
-
-
Seeger, M.1
-
20
-
-
0242288807
-
Model selection for support vector machine classification
-
C. Gold and P. Sollich, "Model Selection for Support Vector Machine Classification," Neurocomputing, vol.55, nos. 1-2, pp. 221-249, 2003.
-
(2003)
Neurocomputing
, vol.55
, Issue.1-2
, pp. 221-249
-
-
Gold, C.1
Sollich, P.2
-
21
-
-
34247558132
-
Preventing over-fitting during model selection via bayesian regularisation of the hyper-parameters
-
G.C. Cawley and N.L.C. Talbot, "Preventing Over-Fitting During Model Selection via Bayesian Regularisation of the Hyper-Parameters," J. Machine Learning Research, vol.8, pp. 841-861, 2007.
-
(2007)
J. Machine Learning Research
, vol.8
, pp. 841-861
-
-
Cawley, G.C.1
Talbot, N.L.C.2
-
22
-
-
33745784639
-
Maximum-gain working set selection for support vector machines
-
T. Glasmachers and C. Igel, "Maximum-Gain Working Set Selection for Support Vector Machines," J. Machine Learning Research, vol.7, pp. 1437-1466, 2006.
-
(2006)
J. Machine Learning Research
, vol.7
, pp. 1437-1466
-
-
Glasmachers, T.1
Igel, C.2
-
23
-
-
46249090365
-
Shark
-
C. Igel, T. Glasmachers, and V. Heidrich-Meisner, "Shark," J. Machine Learning Research, vol.9, pp. 993-996, 2008.
-
(2008)
J. Machine Learning Research
, vol.9
, pp. 993-996
-
-
Igel, C.1
Glasmachers, T.2
Heidrich-Meisner, V.3
-
24
-
-
15844394276
-
Evolutionary tuning of multiple svm parameters
-
F. Friedrichs and C. Igel, "Evolutionary Tuning of Multiple SVM Parameters," Neurocomputing, vol.64, no.C, pp. 107-117, 2005.
-
(2005)
Neurocomputing
, vol.64
, Issue.C
, pp. 107-117
-
-
Friedrichs, F.1
Igel, C.2
-
25
-
-
56449125243
-
Uncertainty handling in model selection for support vector machines
-
G. Rudolph, T. Jansen, S. Lucas, C. Poloni, and N. Beume, eds. Springer
-
T. Glasmachers and C. Igel, "Uncertainty Handling in Model Selection for Support Vector Machines," Parallel Problem Solving from Nature, G. Rudolph, T. Jansen, S. Lucas, C. Poloni, and N. Beume, eds., pp. 185-194, Springer, 2008.
-
(2008)
Parallel Problem Solving from Nature
, pp. 185-194
-
-
Glasmachers, T.1
Igel, C.2
-
26
-
-
0141430928
-
Radius margin bounds for support vector machines with the rbf kernel
-
K.M. Chung, W.C. Kao, C.L. Sun, L.L. Wang, and C.-J. Lin, "Radius Margin Bounds for Support Vector Machines with the RBF Kernel," Neural Computation, vol.15, no.11, pp. 2643-2681, 2003.
-
(2003)
Neural Computation
, vol.15
, Issue.11
, pp. 2643-2681
-
-
Chung, K.M.1
Kao, W.C.2
Sun, C.L.3
Wang, L.L.4
Lin, C.-J.5
-
27
-
-
0037382208
-
Evaluation of simple performance measures for tuning svm hyperparameters
-
K. Duan, S.S. Keerthi, and A.N. Poo, "Evaluation of Simple Performance Measures for Tuning SVM Hyperparameters," Neurocomputing, vol.51, no.1, pp. 41-60, 2003.
-
(2003)
Neurocomputing
, vol.51
, Issue.1
, pp. 41-60
-
-
Duan, K.1
Keerthi, S.S.2
Poo, A.N.3
-
28
-
-
34548160247
-
A note on platt's probabilistic outputs for support vector machines
-
H.-T. Lin, C.-J. Lin, and R.C. Weng, "A Note on Platt's Probabilistic Outputs for Support Vector Machines," Machine Learning, vol.68, pp. 267-276, 2007.
-
(2007)
Machine Learning
, vol.68
, pp. 267-276
-
-
Lin, H.-T.1
Lin, C.-J.2
Weng, R.C.3
-
30
-
-
0037168506
-
Soft and hard classification by reproducing kernel hilbert space methods
-
G. Wahba, "Soft and Hard Classification by Reproducing Kernel Hilbert Space Methods," Proc. Nat'l Academy of Sciences USA, vol.99, no.26, pp. 16524-16530, 2002.
-
(2002)
Proc. Nat'l Academy of Sciences USA
, vol.99
, Issue.26
, pp. 16524-16530
-
-
Wahba, G.1
-
31
-
-
43049121679
-
Efficient approximate leave-one-out cross-validation for kernel logistic regression
-
G.C. Cawley and N.L.C. Talbot, "Efficient Approximate Leave-One-Out Cross-Validation for Kernel Logistic Regression," Machine Learning, vol.71, no.2, pp. 243-264, 2008.
-
(2008)
Machine Learning
, vol.71
, Issue.2
, pp. 243-264
-
-
Cawley, G.C.1
Talbot, N.L.C.2
-
32
-
-
62149099100
-
Efficient covariance matrix update for variable metric evolution strategies
-
T. Suttorp, N. Hansen, and C. Igel, "Efficient Covariance Matrix Update for Variable Metric Evolution Strategies," Machine Learning, vol.75, no.2, pp. 167-197, 2009.
-
(2009)
Machine Learning
, vol.75
, Issue.2
, pp. 167-197
-
-
Suttorp, T.1
Hansen, N.2
Igel, C.3
-
33
-
-
0035377566
-
Completely derandomized self-adaptation in evolution strategies
-
N. Hansen and A. Ostermeier, "Completely Derandomized Self-Adaptation in Evolution Strategies," Evolutionary Computation, vol.9, no.2, pp. 159-195, 2001.
-
(2001)
Evolutionary Computation
, vol.9
, Issue.2
, pp. 159-195
-
-
Hansen, N.1
Ostermeier, A.2
-
34
-
-
0037238922
-
Empirical evaluation of the improved rprop learning algorithm
-
C. Igel and M. Hüsken, "Empirical Evaluation of the Improved Rprop Learning Algorithm," Neurocomputing, vol.50, pp. 105-123, 2003.
-
(2003)
Neurocomputing
, vol.50
, pp. 105-123
-
-
Igel, C.1
Hüsken, M.2
-
35
-
-
0342502195
-
Soft margins for adaboost
-
G. Rätsch, T. Onoda, and K.-R. Müller, "Soft Margins for AdaBoost," Machine Learning, vol.42, no.3, pp. 287-320, 2001.
-
(2001)
Machine Learning
, vol.42
, Issue.3
, pp. 287-320
-
-
Rätsch, G.1
Onoda, T.2
Müller, K.-R.3
|