메뉴 건너뛰기




Volumn 43, Issue 6, 2013, Pages 2054-2065

Dynamic extreme learning machine and its approximation capability

Author keywords

Dynamic learning; extreme learning machine (ELM); feedforward neural networks; universal approximation

Indexed keywords

ACTIVATION FUNCTIONS; APPROXIMATION CAPABILITIES; DYNAMIC LEARNING; EXTREME LEARNING MACHINE; FEED-FORWARD NETWORK; GENERALIZATION PERFORMANCE; NETWORK SIZE; UNIVERSAL APPROXIMATION;

EID: 84890110727     PISSN: 21682267     EISSN: None     Source Type: Journal    
DOI: 10.1109/TCYB.2013.2239987     Document Type: Article
Times cited : (64)

References (36)
  • 1
    • 0027599793 scopus 로고
    • Universal approximation bounds for superpositions of a sigmoidal functions
    • May
    • A. R. Barron, "Universal approximation bounds for superpositions of a sigmoidal functions," IEEE Trans. Inf. Theory, vol. 39, no. 3, pp. 930-945, May 1993.
    • (1993) IEEE Trans. Inf. Theory , vol.39 , Issue.3 , pp. 930-945
    • Barron, A.R.1
  • 2
    • 0001632845 scopus 로고    scopus 로고
    • On the capabilities of multilayer perceptrons
    • Sep
    • E. B. Baum, "On the capabilities of multilayer perceptrons," J. Complexity, vol. 4, no. 3, pp. 193-215, Sep. 1998.
    • (1998) J. Complexity , vol.4 , Issue.3 , pp. 193-215
    • Baum, E.B.1
  • 6
    • 68949200808 scopus 로고    scopus 로고
    • Error minimized extreme learning machine with growth of hidden nodes and incremental learning
    • Aug
    • G. Feng, G.-B. Huang, Q. Lin, and R. Gay, "Error minimized extreme learning machine with growth of hidden nodes and incremental learning," IEEE Trans. Neural Netw., vol. 20, no. 8, pp. 1352-1357, Aug. 2009.
    • (2009) IEEE Trans. Neural Netw , vol.20 , Issue.8 , pp. 1352-1357
    • Feng, G.1    Huang, G.-B.2    Lin, Q.3    Gay, R.4
  • 9
    • 0025751820 scopus 로고
    • Approximation capabilities of multilayer feedforward networks
    • K. Hornik, "Approximation capabilities of multilayer feedforward networks," Neural Netw., vol. 4, no. 2, pp. 251-257, 1991.
    • (1991) Neural Netw , vol.4 , Issue.2 , pp. 251-257
    • Hornik, K.1
  • 10
    • 0037361264 scopus 로고    scopus 로고
    • Learning capability and storage capacity of two-hidden layer feedforward networks
    • Mar
    • G.-B. Huang, "Learning capability and storage capacity of two-hidden layer feedforward networks," IEEE Trans. Neural Netw., vol. 14, no. 2, pp. 274-281, Mar. 2003.
    • (2003) IEEE Trans. Neural Netw , vol.14 , Issue.2 , pp. 274-281
    • Huang, G.-B.1
  • 11
    • 34548158996 scopus 로고    scopus 로고
    • Convex incremental extreme learning machine
    • DOI 10.1016/j.neucom.2007.02.009, PII S0925231207000677
    • G.-B. Huang and L. Chen, "Convex incremental extreme learning machine," Neurocomputing, vol. 70, no. 16-18, pp. 3056-3062, Oct. 2007. (Pubitemid 47308612)
    • (2007) Neurocomputing , vol.70 , Issue.16-18 , pp. 3056-3062
    • Huang, G.-B.1    Chen, L.2
  • 12
    • 56549090053 scopus 로고    scopus 로고
    • Enhanced random search based incremental extreme learning machine
    • Oct
    • G.-B. Huang and L. Chen, "Enhanced random search based incremental extreme learning machine," Neurocomputing, vol. 71, no. 16-18, pp. 3460-3468, Oct. 2008.
    • (2008) Neurocomputing , vol.71 , Issue.16-18 , pp. 3460-3468
    • Huang, G.-B.1    Chen, L.2
  • 13
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • DOI 10.1109/TNN.2006.875977
    • G.-B. Huang, L. Chen, and C.-K. Siew, "Universal approximation using incremental constructive feedforward networks with random hidden nodes," IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 879-892, Jul. 2006. (Pubitemid 44194149)
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.4 , pp. 879-892
    • Huang, G.-B.1    Chen, L.2    Siew, C.-K.3
  • 14
    • 78649492473 scopus 로고    scopus 로고
    • Optimization method based extreme learning machine for classification
    • Dec
    • G.-B. Huang, X. Ding, and H. Zhou, "Optimization method based extreme learning machine for classification," Neurocomputing, vol. 74, no. 1-3, pp. 155-163, Dec. 2010.
    • (2010) Neurocomputing , vol.74 , Issue.1-3 , pp. 155-163
    • Huang, G.-B.1    Ding, X.2    Zhou, H.3
  • 17
    • 33645588429 scopus 로고    scopus 로고
    • Extreme learning machine with randomly assigned RBF kernels
    • G.-B. Huang and C.-K. Siew, "Extreme learning machine with randomly assigned RBF kernels," Int. J. Technol., vol. 11, no. 1, pp. 16-24, 2005.
    • (2005) Int. J. Technol , vol.11 , Issue.1 , pp. 16-24
    • Huang, G.-B.1    Siew, C.-K.2
  • 18
    • 79958178274 scopus 로고    scopus 로고
    • Extreme learning machines: A survey
    • Jun
    • G.-B. Huang, D. Wang, and L. Yuan, "Extreme learning machines: A survey," Int. J. Mach. Learn. Cybern., vol. 2, no. 2, pp. 107-122, Jun. 2011.
    • (2011) Int. J. Mach. Learn. Cybern , vol.2 , Issue.2 , pp. 107-122
    • Huang, G.-B.1    Wang, D.2    Yuan, L.3
  • 19
    • 84859007933 scopus 로고    scopus 로고
    • Extreme learning machines for regression and multi-class classification
    • Apr
    • G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, "Extreme learning machines for regression and multi-class classification," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 42, no. 2, pp. 513-529, Apr. 2012.
    • (2012) IEEE Trans. Syst., Man, Cybern. B, Cybern , vol.42 , Issue.2 , pp. 513-529
    • Huang, G.-B.1    Zhou, H.2    Ding, X.3    Zhang, R.4
  • 21
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • DOI 10.1016/j.neucom.2005.12.126, PII S0925231206000385
    • G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, "Extreme learning machine: Theory and applications," Neurocomputing, vol. 70, no. 1-3, pp. 489-501, Dec. 2006. (Pubitemid 44615772)
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 22
    • 33746916409 scopus 로고    scopus 로고
    • Real-time learning capability of neural networks
    • DOI 10.1109/TNN.2006.875974
    • G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, "Real-time learning capability of neural networks," IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 863-878, Jul. 2006. (Pubitemid 44194148)
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.4 , pp. 863-878
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 24
    • 0031236099 scopus 로고    scopus 로고
    • Objective functions for training new hidden units in constructive neural networks
    • PII S1045922797049072
    • T.-Y. Kwok and D.-Y. Yeung, "Objective functions for training new hidden units in constructive neural networks," IEEE Trans. Neural Netw., vol. 8, no. 5, pp. 1131-1148, Sep. 1997. (Pubitemid 127763344)
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.5 , pp. 1131-1148
    • Kwok, T.-Y.1    Yeung, D.-Y.2
  • 25
    • 77954299719 scopus 로고    scopus 로고
    • Ensemble of online sequential extreme learning machine
    • Aug
    • Y. Lan, Y. C. Soh, and G.-B. Huang, "Ensemble of online sequential extreme learning machine," Neurocomputing, vol. 72, no. 13-15, pp. 3391-3395, Aug. 2009.
    • (2009) Neurocomputing , vol.72 , Issue.13-15 , pp. 3391-3395
    • Lan, Y.1    Soh, Y.C.2    Huang, G.-B.3
  • 26
    • 0027262895 scopus 로고
    • Multilayer feedforward networks with a nonpolynomial activation function can approximate any function
    • M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken, "Multilayer feedforward networks with a nonpolynomial activation function can approximate any function," Neural Netw., vol. 6, no. 6, pp. 861-867, 1993. (Pubitemid 23713273)
    • (1993) Neural Networks , vol.6 , Issue.6 , pp. 861-867
    • Leshno Moshe1    Lin Vladimir, Ya.2    Pinkus Allan3    Schocken Shimon4
  • 27
    • 22844451535 scopus 로고    scopus 로고
    • Fully complex extreme learning machine
    • DOI 10.1016/j.neucom.2005.03.002, PII S0925231205000500
    • M.-B. Li, G.-B. Huang, P. Saratchandran, and N. Sundararajan, "Fully complex extreme learning machine," Neurocomputing, vol. 68, pp. 306-314, Oct. 2005. (Pubitemid 41235768)
    • (2005) Neurocomputing , vol.68 , Issue.1-4 , pp. 306-314
    • Li, M.-B.1    Huang, G.-B.2    Saratchandran, P.3    Sundararajan, N.4
  • 28
    • 34047174077 scopus 로고    scopus 로고
    • A fast and accurate online sequential learning algorithm for feedforward networks
    • DOI 10.1109/TNN.2006.880583
    • N.-Y. Liang, G.-B. Huang, P. Saratchandran, and N. Sundararajan, "A fast and accurate online sequential learning algorithm for feedforward networks," IEEE Trans. Neural Netw., vol. 17, no. 6, pp. 1411-1423, Nov. 2006. (Pubitemid 44824256)
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.6 , pp. 1411-1423
    • Liang, N.-Y.1    Huang, G.-B.2    Saratchandran, P.3    Sundararajan, N.4
  • 30
    • 0033732457 scopus 로고    scopus 로고
    • On the optimality of neural-network approximation using incremental algorithms
    • Mar
    • R. Meir and V. E.Maiorov, "On the optimality of neural-network approximation using incremental algorithms," IEEE Trans. Neural Netw., vol. 11, no. 2, pp. 323-337, Mar. 2000.
    • (2000) IEEE Trans. Neural Netw , vol.11 , Issue.2 , pp. 323-337
    • Meir, R.1    Maiorov, V.E.2
  • 31
    • 0000106040 scopus 로고
    • Universal approximation using radialbasis- function networks
    • Jun
    • J. Park and I. W. Sandberg, "Universal approximation using radialbasis- function networks," Neural Comput., vol. 3, no. 2, pp. 246-257, Jun. 1991.
    • (1991) Neural Comput , vol.3 , Issue.2 , pp. 246-257
    • Park, J.1    Sandberg, I.W.2
  • 33
    • 85008039450 scopus 로고    scopus 로고
    • Online sequential fuzzy learning machine for function approximation and classfication problem
    • Aug
    • H.-J. Rong, G.-B. Huang, N. Sundararajan, and P. Saratchandran, "Online sequential fuzzy learning machine for function approximation and classfication problem," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 39, no. 4, pp. 1067-1072, Aug. 2009.
    • (2009) IEEE Trans. Syst., Man, Cybern. B, Cybern , vol.39 , Issue.4 , pp. 1067-1072
    • Rong, H.-J.1    Huang, G.-B.2    Sundararajan, N.3    Saratchandran, P.4
  • 34
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on supprot vector regression
    • Aug
    • A. J. Smola and B. Scholkopf, "A tutorial on supprot vector regression," Stat. Comput., vol. 14, no. 3, pp. 199-222, Aug. 2004.
    • (2004) Stat. Comput , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Scholkopf, B.2
  • 35
    • 79960094031 scopus 로고    scopus 로고
    • Extreme learning machine with adaptive growth of hidden nodes and incremental updating of output weights
    • Lecture Notes in Artificial Intelligence
    • R. Zhang, Y. Lan, G.-B. Huang, and Y. C. Soh, "Extreme learning machine with adaptive growth of hidden nodes and incremental updating of output weights," in Proc. 2nd Int. Conf. Auton. Intell. Syst., 2011, vol. 6752, pp. 253-262, Lecture Notes in Artificial Intelligence.
    • (2011) Proc. 2nd Int. Conf. Auton. Intell. Syst , vol.6752 , pp. 253-262
    • Zhang, R.1    Lan, Y.2    Huang, G.-B.3    Soh, Y.C.4
  • 36
    • 84867839878 scopus 로고    scopus 로고
    • Universal approximation of extreme learning machine with adaptive growth of hidden nodes
    • Feb
    • R. Zhang, Y. Lan, G.-B. Huang, and Z.-B. Xu, "Universal approximation of extreme learning machine with adaptive growth of hidden nodes," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 2, pp. 365-371, Feb. 2012.
    • (2012) IEEE Trans. Neural Netw. Learn. Syst , vol.23 , Issue.2 , pp. 365-371
    • Zhang, R.1    Lan, Y.2    Huang, G.-B.3    Xu, Z.-B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.