-
1
-
-
33746225022
-
Kddcup 2004: Results and analysis
-
R. Caruana, T. Joachims, and L. Backstrom. Kddcup 2004: Results and analysis. ACM SIGKDD Newsletter, 6(2):95-108, 2004.
-
(2004)
ACM SIGKDD Newsletter
, vol.6
, Issue.2
, pp. 95-108
-
-
Caruana, R.1
Joachims, T.2
Backstrom, L.3
-
3
-
-
0000913324
-
Svmtorch: Support vector machines for large-scale regression problems
-
R. Collobert and S. Bengio. Svmtorch: Support vector machines for large-scale regression problems. Journal of Machine Learning Research (JMLR), 1:143-160, 2001.
-
(2001)
Journal of Machine Learning Research (JMLR)
, vol.1
, pp. 143-160
-
-
Collobert, R.1
Bengio, S.2
-
4
-
-
33749556401
-
A support vector method for ranking minimizing the number of swapped pairs
-
Artificial Intelligence Centre, Universidad de Oviedo at Gijn
-
J. Dez, J. del Coz, and A. Bahamonde. A support vector method for ranking minimizing the number of swapped pairs. Technical report, Artificial Intelligence Centre, Universidad de Oviedo at Gijn, 2006.
-
(2006)
Technical Report
-
-
Dez, J.1
Del Coz, J.2
Bahamonde, A.3
-
6
-
-
0041657519
-
Interior-point methods for massive support vector machines
-
M. Ferris and T. Munson. Interior-point methods for massive support vector machines. SIAM Journal of Optimization, 13(3):783-804, 2003.
-
(2003)
SIAM Journal of Optimization
, vol.13
, Issue.3
, pp. 783-804
-
-
Ferris, M.1
Munson, T.2
-
8
-
-
0008371352
-
Large margin rank boundaries for ordinal regression
-
MIT Press, Cambridge, MA
-
R. Herbrich, T. Graepel, and K. Obermayer. Large margin rank boundaries for ordinal regression. In Advances in Large Margin Classifiers, pages 115-132. MIT Press, Cambridge, MA, 2000.
-
(2000)
Advances in Large Margin Classifiers
, pp. 115-132
-
-
Herbrich, R.1
Graepel, T.2
Obermayer, K.3
-
9
-
-
0037399781
-
Polynomial-time decomposition algorithms for support vector machines
-
D. Hush and C. Scovel: Polynomial-time decomposition algorithms for support vector machines. Machine Learning, 51:51-71, 2003.
-
(2003)
Machine Learning
, vol.51
, pp. 51-71
-
-
Hush, D.1
Scovel, C.2
-
10
-
-
84957069814
-
Text categorization with support vector machines: Learning with many relevant features
-
Berlin. Springer
-
T. Joachims. Text categorization with support vector machines: Learning with many relevant features. In Proceedings of the European Conference on Machine Learning, pages 137-142, Berlin, 1998. Springer.
-
(1998)
Proceedings of the European Conference on Machine Learning
, pp. 137-142
-
-
Joachims, T.1
-
11
-
-
0002714543
-
Making large-scale SVM learning practical
-
B. Schölkopf, C. Burges, and A. Smola, editors. chapter 11, MIT Press, Cambridge, MA
-
T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods - Support Vector Learning, chapter 11, pages 169-184. MIT Press, Cambridge, MA, 1999.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 169-184
-
-
Joachims, T.1
-
15
-
-
21844461582
-
A modified finite newton method for fast solution of large scale linear svms
-
S. Keerthi and D. DeCoste. A modified finite newton method for fast solution of large scale linear svms. Journal of Machine Learning Research (JMLR), 6:341-361, 2005.
-
(2005)
Journal of Machine Learning Research (JMLR)
, vol.6
, pp. 341-361
-
-
Keerthi, S.1
DeCoste, D.2
-
17
-
-
84876811202
-
Rcv1: A new benchmark collection for text categorization research
-
D. Lewis, Y. Yang, T. Rose, and F. Li. Rcv1: A new benchmark collection for text categorization research. Journal of Machine Learning Research (JMLR), 5:361-397, 2004.
-
(2004)
Journal of Machine Learning Research (JMLR)
, vol.5
, pp. 361-397
-
-
Lewis, D.1
Yang, Y.2
Rose, T.3
Li, F.4
-
19
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
B. Schölkopf, C. Burges, and A. Smola, editors, chapter 12. MIT-Press
-
J. Platt. Fast training of support vector machines using sequential minimal optimization. In B. Schölkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods - Support Vector Learning, chapter 12. MIT-Press, 1999.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
-
-
Platt, J.1
-
20
-
-
34249279786
-
Svms and area under roc curve
-
PSI-INSA de Rouen
-
A. Rakotomamonjy. Svms and area under roc curve. Technical report, PSI-INSA de Rouen, 2004.
-
(2004)
Technical Report
-
-
Rakotomamonjy, A.1
-
22
-
-
17444438778
-
New support vector algorithms
-
B. Schölkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett. New support vector algorithms. Neural Computation, 12:1207-1245, 2000.
-
(2000)
Neural Computation
, vol.12
, pp. 1207-1245
-
-
Schölkopf, B.1
Smola, A.J.2
Williamson, R.C.3
Bartlett, P.L.4
-
24
-
-
24944537843
-
Large margin methods for structured and interdependent output variables
-
September
-
I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and interdependent output variables. Journal of Machine Learning Research (JMLR), 6:1453-1484, September 2005.
-
(2005)
Journal of Machine Learning Research (JMLR)
, vol.6
, pp. 1453-1484
-
-
Tsochantaridis, I.1
Joachims, T.2
Hofmann, T.3
Altun, Y.4
|