메뉴 건너뛰기




Volumn 2006, Issue , 2006, Pages 217-226

Training linear SVMs in linear time

Author keywords

Large Scale Problems; Ordinal Regression; ROC Area; Support Vector Machines (SVM); Training Algorithms

Indexed keywords

DATA REDUCTION; FEATURE EXTRACTION; LINEAR PROGRAMMING; OPTIMIZATION; REGRESSION ANALYSIS; TEXT PROCESSING;

EID: 33749563073     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1150402.1150429     Document Type: Conference Paper
Times cited : (1694)

References (24)
  • 3
    • 0000913324 scopus 로고    scopus 로고
    • Svmtorch: Support vector machines for large-scale regression problems
    • R. Collobert and S. Bengio. Svmtorch: Support vector machines for large-scale regression problems. Journal of Machine Learning Research (JMLR), 1:143-160, 2001.
    • (2001) Journal of Machine Learning Research (JMLR) , vol.1 , pp. 143-160
    • Collobert, R.1    Bengio, S.2
  • 4
    • 33749556401 scopus 로고    scopus 로고
    • A support vector method for ranking minimizing the number of swapped pairs
    • Artificial Intelligence Centre, Universidad de Oviedo at Gijn
    • J. Dez, J. del Coz, and A. Bahamonde. A support vector method for ranking minimizing the number of swapped pairs. Technical report, Artificial Intelligence Centre, Universidad de Oviedo at Gijn, 2006.
    • (2006) Technical Report
    • Dez, J.1    Del Coz, J.2    Bahamonde, A.3
  • 5
    • 0002205930 scopus 로고    scopus 로고
    • Inductive learning algorithms and representations for text categorization
    • November
    • S. Dumais, J. Platt, D. Heckerman, and M. Sahami. Inductive learning algorithms and representations for text categorization. In Proceedings of ACM-CIKM98, November 1998.
    • (1998) Proceedings of ACM-CIKM98
    • Dumais, S.1    Platt, J.2    Heckerman, D.3    Sahami, M.4
  • 6
    • 0041657519 scopus 로고    scopus 로고
    • Interior-point methods for massive support vector machines
    • M. Ferris and T. Munson. Interior-point methods for massive support vector machines. SIAM Journal of Optimization, 13(3):783-804, 2003.
    • (2003) SIAM Journal of Optimization , vol.13 , Issue.3 , pp. 783-804
    • Ferris, M.1    Munson, T.2
  • 8
    • 0008371352 scopus 로고    scopus 로고
    • Large margin rank boundaries for ordinal regression
    • MIT Press, Cambridge, MA
    • R. Herbrich, T. Graepel, and K. Obermayer. Large margin rank boundaries for ordinal regression. In Advances in Large Margin Classifiers, pages 115-132. MIT Press, Cambridge, MA, 2000.
    • (2000) Advances in Large Margin Classifiers , pp. 115-132
    • Herbrich, R.1    Graepel, T.2    Obermayer, K.3
  • 9
    • 0037399781 scopus 로고    scopus 로고
    • Polynomial-time decomposition algorithms for support vector machines
    • D. Hush and C. Scovel: Polynomial-time decomposition algorithms for support vector machines. Machine Learning, 51:51-71, 2003.
    • (2003) Machine Learning , vol.51 , pp. 51-71
    • Hush, D.1    Scovel, C.2
  • 10
    • 84957069814 scopus 로고    scopus 로고
    • Text categorization with support vector machines: Learning with many relevant features
    • Berlin. Springer
    • T. Joachims. Text categorization with support vector machines: Learning with many relevant features. In Proceedings of the European Conference on Machine Learning, pages 137-142, Berlin, 1998. Springer.
    • (1998) Proceedings of the European Conference on Machine Learning , pp. 137-142
    • Joachims, T.1
  • 11
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • B. Schölkopf, C. Burges, and A. Smola, editors. chapter 11, MIT Press, Cambridge, MA
    • T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods - Support Vector Learning, chapter 11, pages 169-184. MIT Press, Cambridge, MA, 1999.
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 169-184
    • Joachims, T.1
  • 15
    • 21844461582 scopus 로고    scopus 로고
    • A modified finite newton method for fast solution of large scale linear svms
    • S. Keerthi and D. DeCoste. A modified finite newton method for fast solution of large scale linear svms. Journal of Machine Learning Research (JMLR), 6:341-361, 2005.
    • (2005) Journal of Machine Learning Research (JMLR) , vol.6 , pp. 341-361
    • Keerthi, S.1    DeCoste, D.2
  • 19
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • B. Schölkopf, C. Burges, and A. Smola, editors, chapter 12. MIT-Press
    • J. Platt. Fast training of support vector machines using sequential minimal optimization. In B. Schölkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods - Support Vector Learning, chapter 12. MIT-Press, 1999.
    • (1999) Advances in Kernel Methods - Support Vector Learning
    • Platt, J.1
  • 20
    • 34249279786 scopus 로고    scopus 로고
    • Svms and area under roc curve
    • PSI-INSA de Rouen
    • A. Rakotomamonjy. Svms and area under roc curve. Technical report, PSI-INSA de Rouen, 2004.
    • (2004) Technical Report
    • Rakotomamonjy, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.