-
2
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for support vector machines. Machine Learning, 46(1):131–159, 2002.
-
(2002)
Machine Learning
, vol.46
, Issue.1
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
3
-
-
76749118521
-
Model selection: Beyond the bayesian– frequentist divide
-
I. Guyon, A. Saffari, G. Dror, and G. Cawley. Model selection: beyond the bayesian– frequentist divide. The Journal of Machine Learning Research, 11:61–87, 2010.
-
(2010)
The Journal of Machine Learning Research
, vol.11
, pp. 61-87
-
-
Guyon, I.1
Saffari, A.2
Dror, G.3
Cawley, G.4
-
5
-
-
0000259511
-
Approximate statistical tests for comparing supervised classification learning algorithms
-
T.G. Dietterich. Approximate statistical tests for comparing supervised classification learning algorithms. Neural computation, 10(7):1895–1923, 1998.
-
(1998)
Neural Computation
, vol.10
, Issue.7
, pp. 1895-1923
-
-
Dietterich, T.G.1
-
7
-
-
85161148381
-
The elements of statistical learning: Data mining, inference and prediction
-
T. Hastie, R. Tibshirani, J. Friedman, and J. Franklin. The elements of statistical learning: data mining, inference and prediction. The Mathematical Intelligencer, 27(2):83–85, 2005.
-
(2005)
The Mathematical Intelligencer
, vol.27
, Issue.2
, pp. 83-85
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
Franklin, J.4
-
8
-
-
79952972776
-
Data warehouses and data mining tools for the legal profession: Using information technology to raise the standard of practice
-
L. Roberge, S. B. Long, and D. B. Burnham. Data warehouses and data mining tools for the legal profession: using information technology to raise the standard of practice. Syracuse Law Review, 2002.
-
(2002)
Syracuse Law Review
-
-
Roberge, L.1
Long, S.B.2
Burnham, D.B.3
-
10
-
-
0001072895
-
The use of confidence intervals for fiducial limits illustrated in the case of the binomial
-
C.J. Clopper and E.S. Pearson. The use of confidence intervals for fiducial limits illustrated in the case of the binomial. Biometrika, 1934.
-
(1934)
Biometrika
-
-
Clopper, C.J.1
Pearson, E.S.2
-
12
-
-
85164392958
-
A study of cross-validation and bootstrap for accuracy estimation and model selection
-
R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model selection. In International joint Conference on artificial intelligence, volume 14, pages 1137–1145, 1995.
-
(1995)
International Joint Conference on Artificial Intelligence
, vol.14
, pp. 1137-1145
-
-
Kohavi, R.1
-
13
-
-
77956649096
-
A survey of cross-validation procedures for model selection
-
S. Arlot and A. Celisse. A survey of cross-validation procedures for model selection. Statistics Surveys, 4:40–79, 2010.
-
(2010)
Statistics Surveys
, vol.4
, pp. 40-79
-
-
Arlot, S.1
Celisse, A.2
-
14
-
-
0342502195
-
Soft margins for adaboost
-
G. Rätsch, T. Onoda, and K.R. Müller. Soft margins for adaboost. Machine Learning, 42(3):287–320, 2001.
-
(2001)
Machine Learning
, vol.42
, Issue.3
, pp. 287-320
-
-
Rätsch, G.1
Onoda, T.2
Müller, K.R.3
|