메뉴 건너뛰기




Volumn 39, Issue 5, 2009, Pages 1292-1307

Fast and efficient strategies for model selection of Gaussian support vector machine

Author keywords

Approximation methods; Data mining; Distance measurement; Kernel; Kernel methods; Optimized production technology; Pattern classification; Support vector machine (SVM); Support vector machines; Training; Visualization

Indexed keywords

APPROXIMATION METHODS; KERNEL; KERNEL METHODS; OPTIMIZED PRODUCTION TECHNOLOGY; PATTERN CLASSIFICATION; SUPPORT VECTOR MACHINE (SVM); TRAINING;

EID: 67649403178     PISSN: 10834419     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSMCB.2009.2015672     Document Type: Article
Times cited : (88)

References (51)
  • 2
    • 0008674874 scopus 로고    scopus 로고
    • Introduction to support vector learning
    • B. Schökopf, C. Burges, and A. Smola, Eds, Cambridge, MA: MIT Press
    • B. Schökopf, C. Burges, and A. Smola, Eds., "Introduction to support vector learning," in Advances in Kernel Methods-Support Vector Learning. Cambridge, MA: MIT Press, 1999, pp. 1-15.
    • (1999) Advances in Kernel Methods-Support Vector Learning , pp. 1-15
  • 4
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vectormachines for pattern recognition
    • Jun
    • C. J. C. Burges, "A tutorial on support vectormachines for pattern recognition," Data Mining Knowl. Discov., vol. 2, no. 2, pp. 121-167, Jun. 1998.
    • (1998) Data Mining Knowl. Discov , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 6
    • 34249753618 scopus 로고
    • Support vector networks
    • Sep
    • C. Cortes and V. N. Vapnik, "Support vector networks," Mach. Learn. vol. 20, no. 3, pp. 273-297, Sep. 1995.
    • (1995) Mach. Learn , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.N.2
  • 8
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • Sep
    • V. N. Vapnik, "An overview of statistical learning theory," IEEE Trans. Neural Netw., vol. 10, no. 5, pp. 988-999, Sep. 1999.
    • (1999) IEEE Trans. Neural Netw , vol.10 , Issue.5 , pp. 988-999
    • Vapnik, V.N.1
  • 9
    • 1042289791 scopus 로고    scopus 로고
    • Identifying speakers with support vector networks
    • Sydney, Australia
    • M. Schmidt, "Identifying speakers with support vector networks," in Proc. 28th Symp. Interface, Sydney, Australia, 1996.
    • (1996) Proc. 28th Symp. Interface
    • Schmidt, M.1
  • 11
    • 0030673582 scopus 로고    scopus 로고
    • Training support vector machines: An application to face detection
    • E. Osuna, R. Freund, and F. Girosi, "Training support vector machines: An application to face detection," in Proc. IEEE Comput. Soc. Conf. CVPR, 1997, pp. 130-136.
    • (1997) Proc. IEEE Comput. Soc. Conf. CVPR , pp. 130-136
    • Osuna, E.1    Freund, R.2    Girosi, F.3
  • 12
    • 0032594950 scopus 로고    scopus 로고
    • Support vector machines for spam categorization
    • Sep
    • H. Drucker, D. Wu, and V. N. Vapnik, "Support vector machines for spam categorization," IEEE Trans. Neural Netw., vol. 10, no. 5, pp. 1048-1054, Sep. 1999.
    • (1999) IEEE Trans. Neural Netw , vol.10 , Issue.5 , pp. 1048-1054
    • Drucker, H.1    Wu, D.2    Vapnik, V.N.3
  • 13
    • 0037382208 scopus 로고    scopus 로고
    • Evaluation of simple performance measures for tuning SVM hyperparameters
    • Apr
    • K. Duan, S. Sathiya Keerthi, and A. N. Poo, "Evaluation of simple performance measures for tuning SVM hyperparameters," Neurocomputing vol. 51, pp. 41-59, Apr. 2003.
    • (2003) Neurocomputing , vol.51 , pp. 41-59
    • Duan, K.1    Sathiya Keerthi, S.2    Poo, A.N.3
  • 14
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • M. Stone, "Cross-validatory choice and assessment of statistical predictions," J. R. Stat. Soc., B, vol. 36, no. 1, pp. 111-147, 1974.
    • (1974) J. R. Stat. Soc., B , vol.36 , Issue.1 , pp. 111-147
    • Stone, M.1
  • 15
    • 0141667720 scopus 로고    scopus 로고
    • Leave-one-out error and stability of learning algorithms with applications
    • Washington, DC: IOS Press
    • A. Elisseeff and M. Pontil, "Leave-one-out error and stability of learning algorithms with applications," in Learning Theory and Practice. Washington, DC: IOS Press, 2002.
    • (2002) Learning Theory and Practice
    • Elisseeff, A.1    Pontil, M.2
  • 16
    • 0012718560 scopus 로고    scopus 로고
    • The maximum-margin approach to learning text classifiers: Method, theory and algorithms,
    • Ph.D. dissertation, Dept. Comput. Sci, Univ. Dortmund, Dortmund, Germany
    • T. Joachims, "The maximum-margin approach to learning text classifiers: Method, theory and algorithms," Ph.D. dissertation, Dept. Comput. Sci., Univ. Dortmund, Dortmund, Germany, 2000.
    • (2000)
    • Joachims, T.1
  • 17
    • 0038928834 scopus 로고    scopus 로고
    • Bounds on error expectation for support vector machine
    • Cambridge, MA: MIT Press
    • V. N. Vapnik and O. Chapelle, "Bounds on error expectation for support vector machine," in Advances in Large Margin ClassiBers. Cambridge, MA: MIT Press, 1999.
    • (1999) Advances in Large Margin ClassiBers
    • Vapnik, V.N.1    Chapelle, O.2
  • 19
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple kernel parameters for support vector machines
    • Jan
    • O. Chapelle, V. N. Vapnik, O. Bousquet, and S. Mukherjee, "Choosing multiple kernel parameters for support vector machines," Mach. Learn., vol. 46, no. 1-3, pp. 131-159, Jan. 2002.
    • (2002) Mach. Learn , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.N.2    Bousquet, O.3    Mukherjee, S.4
  • 20
    • 0036738840 scopus 로고    scopus 로고
    • Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms
    • Sep
    • S. Sathiya Keerthi, "Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms," IEEE Trans. Neural Netw., vol. 13, no. 5, pp. 1225-1229, Sep. 2002.
    • (2002) IEEE Trans. Neural Netw , vol.13 , Issue.5 , pp. 1225-1229
    • Sathiya Keerthi, S.1
  • 21
    • 0141430928 scopus 로고    scopus 로고
    • Radius margin bounds for support vector machines with the RBF kernel
    • Nov
    • K. M. Chung, W. C. Kao, C. L. Sun, L. L. Wang, and C. J. Lin, "Radius margin bounds for support vector machines with the RBF kernel," Neural Comput., vol. 15, no. 11, pp. 2643-2681, Nov. 2003.
    • (2003) Neural Comput , vol.15 , Issue.11 , pp. 2643-2681
    • Chung, K.M.1    Kao, W.C.2    Sun, C.L.3    Wang, L.L.4    Lin, C.J.5
  • 22
    • 0345688978 scopus 로고    scopus 로고
    • Determination of the spread parameter in the Gaussian kernel for classification and regression
    • Oct
    • W. J. Wang, Z. B. Xu, W. Z. Lu, and X. Y. Zhang, "Determination of the spread parameter in the Gaussian kernel for classification and regression," Neurocomputing, vol. 55, no. 3, pp. 643-663, Oct. 2003.
    • (2003) Neurocomputing , vol.55 , Issue.3 , pp. 643-663
    • Wang, W.J.1    Xu, Z.B.2    Lu, W.Z.3    Zhang, X.Y.4
  • 23
    • 84958774009 scopus 로고    scopus 로고
    • Optimization of the SVM kernels using an empirical error minimization scheme
    • S. W. Lee and A. Verri, Eds. Berlin, Germany: Springer-Verlag
    • N. E. Ayat, M. Cheriet, and C. Y. Suen, "Optimization of the SVM kernels using an empirical error minimization scheme," in Pattern Recognition with Support Vector Machines, vol. 2388, S. W. Lee and A. Verri, Eds. Berlin, Germany: Springer-Verlag, 2002, pp. 354-369.
    • (2002) Pattern Recognition with Support Vector Machines , vol.2388 , pp. 354-369
    • Ayat, N.E.1    Cheriet, M.2    Suen, C.Y.3
  • 24
    • 84898998301 scopus 로고    scopus 로고
    • Dynamically adapting kernels in support vector machines
    • M. S. Kearns, S. A. Solla, and D. A. Cohn, Eds. Cambridge, MA: MIT Press
    • N. Cristianini, C. Campbell, and J. Shawe-Taylor, "Dynamically adapting kernels in support vector machines," in Advances in Neural Information Processing Systems, vol. 11, M. S. Kearns, S. A. Solla, and D. A. Cohn, Eds. Cambridge, MA: MIT Press, 1999, pp. 204-210.
    • (1999) Advances in Neural Information Processing Systems , vol.11 , pp. 204-210
    • Cristianini, N.1    Campbell, C.2    Shawe-Taylor, J.3
  • 25
    • 84899010634 scopus 로고    scopus 로고
    • Model selection for support vector machines
    • S. Solla, T. Leen, and K.-R. Müller, Eds. Cambridge, MA: MIT Press
    • O. Chapelle and V.N. Vapnik, "Model selection for support vector machines," in Proc. 12th Conf. Adv. Neural Inf. Process. Syst., S. Solla, T. Leen, and K.-R. Müller, Eds. Cambridge, MA: MIT Press, 2000, vol. 12, pp. 230-236.
    • (2000) Proc. 12th Conf. Adv. Neural Inf. Process. Syst , vol.12 , pp. 230-236
    • Chapelle, O.1    Vapnik, V.N.2
  • 26
    • 50149108380 scopus 로고    scopus 로고
    • A distributed PSO-SVM hybrid system with feature selection and parameter optimization
    • Sep
    • C. L. Huang and J. F. Dun, "A distributed PSO-SVM hybrid system with feature selection and parameter optimization," Appl. Soft Comput. vol. 8, no. 4, pp. 1381-1391, Sep. 2008.
    • (2008) Appl. Soft Comput , vol.8 , Issue.4 , pp. 1381-1391
    • Huang, C.L.1    Dun, J.F.2
  • 27
    • 34250158805 scopus 로고    scopus 로고
    • Support vector machines with PSO algorithm for short-term load forecasting
    • C. Y. Sun and D. C. Gong, "Support vector machines with PSO algorithm for short-term load forecasting," in Proc. IEEE ICNSC, 2006, pp. 676-680.
    • (2006) Proc. IEEE ICNSC , pp. 676-680
    • Sun, C.Y.1    Gong, D.C.2
  • 28
    • 33846199647 scopus 로고    scopus 로고
    • A new support vector machine optimized by improved particle swarm optimization and its application
    • Oct
    • X. Li, S. D. Yang, and J. X. Qi, "A new support vector machine optimized by improved particle swarm optimization and its application," J. Central South Univ. Technol., vol. 13, no. 5, pp. 568-572, Oct. 2006.
    • (2006) J. Central South Univ. Technol , vol.13 , Issue.5 , pp. 568-572
    • Li, X.1    Yang, S.D.2    Qi, J.X.3
  • 29
    • 50149095980 scopus 로고    scopus 로고
    • Parameter determination of support vector machine and feature selection using simulated annealing approach
    • Sep
    • S. W. Lin, Z. J. Lee, S. C. Chen, and T. Y. Tseng, "Parameter determination of support vector machine and feature selection using simulated annealing approach," Appl. Soft Comput., vol. 8, no. 4, pp. 1505-1512, Sep. 2008.
    • (2008) Appl. Soft Comput , vol.8 , Issue.4 , pp. 1505-1512
    • Lin, S.W.1    Lee, Z.J.2    Chen, S.C.3    Tseng, T.Y.4
  • 30
    • 28444486603 scopus 로고    scopus 로고
    • A new weighted support vector machine with GA-based parameter selection
    • S. Liu, C. Y. Jia, and H. Ma, "A new weighted support vector machine with GA-based parameter selection," in Proc. Int. Conf. Mach. Learn. Cybern., 2005, vol. 7, pp. 4351-4355.
    • (2005) Proc. Int. Conf. Mach. Learn. Cybern , vol.7 , pp. 4351-4355
    • Liu, S.1    Jia, C.Y.2    Ma, H.3
  • 31
    • 33748076461 scopus 로고    scopus 로고
    • A GA-based feature selection and parameters optimization for support vector machines
    • C. L. Huang and C. J. Wang, "A GA-based feature selection and parameters optimization for support vector machines," Expert Syst. Appl., vol. 31, no. 2, pp. 231-240, 2006.
    • (2006) Expert Syst. Appl , vol.31 , Issue.2 , pp. 231-240
    • Huang, C.L.1    Wang, C.J.2
  • 32
    • 33947534833 scopus 로고    scopus 로고
    • Determining parameters of support vector machines by genetic algorithms - Applications to reliability prediction
    • W. C. Hong, "Determining parameters of support vector machines by genetic algorithms - Applications to reliability prediction," Int. J. Oper. Res., vol. 2, no. 1, pp. 1-7, 2005.
    • (2005) Int. J. Oper. Res , vol.2 , Issue.1 , pp. 1-7
    • Hong, W.C.1
  • 33
    • 56349086986 scopus 로고    scopus 로고
    • Model selection for kernel regression using the influence function
    • Oct
    • M. Debruyne, M. Hubert, and J. Suykens, "Model selection for kernel regression using the influence function," J. Mach. Learn. Res., vol. 9, pp. 2377-2400, Oct. 2008.
    • (2008) J. Mach. Learn. Res , vol.9 , pp. 2377-2400
    • Debruyne, M.1    Hubert, M.2    Suykens, J.3
  • 34
    • 67649396975 scopus 로고    scopus 로고
    • Robustness of censored depth quantiles, PCA and kernel based regression, with new tools for model selection,
    • Ph.D. dissertation, Katholieke Universiteit Leuven, Leuven, Belgium, 91 p
    • M. Debruyne, "Robustness of censored depth quantiles, PCA and kernel based regression, with new tools for model selection," Ph.D. dissertation, Katholieke Universiteit Leuven, Leuven, Belgium, 2007. 91 p.
    • (2007)
    • Debruyne, M.1
  • 36
    • 0037822222 scopus 로고    scopus 로고
    • Asymptotic behaviors of support vector machines with Gaussian kernel
    • Jul
    • S. Sathiya Keerthi and C.J. Lin, "Asymptotic behaviors of support vector machines with Gaussian kernel," Neural Comput., vol. 15, no. 7, pp. 1667-1689, Jul. 2003.
    • (2003) Neural Comput , vol.15 , Issue.7 , pp. 1667-1689
    • Sathiya Keerthi, S.1    Lin, C.J.2
  • 39
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • Cambridge, MA: MIT Press
    • J. C. Platt, "Fast training of support vector machines using sequential minimal optimization," in Advances in Kernel Methods: Support Vector Learning. Cambridge, MA: MIT Press, 1999.
    • (1999) Advances in Kernel Methods: Support Vector Learning
    • Platt, J.C.1
  • 40
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • B. Schökopf, C. Burges, and A. Smola, Eds. Cambridge, MA: MIT Press, ch. 11
    • T. Joachims, "Making large-scale SVM learning practical," in Advances in Kernel Methods-Support Vector Learning, B. Schökopf, C. Burges, and A. Smola, Eds. Cambridge, MA: MIT Press, 1999, ch. 11.
    • (1999) Advances in Kernel Methods-Support Vector Learning
    • Joachims, T.1
  • 41
    • 62549106468 scopus 로고    scopus 로고
    • Online, Available
    • G. Rätsch, Benchmark Data Sets, 1999. [Online]. Available: http://ida.first.fhg.de/projects/bench/benchmarks.htm
    • (1999) Benchmark Data Sets
    • Rätsch, G.1
  • 42
    • 0342502195 scopus 로고    scopus 로고
    • Soft margins for AdaBoost
    • Mar
    • G. Räatsch, T. Onoda, and K. R. Muller, "Soft margins for AdaBoost," Mach. Learn., vol. 42, no. 3, pp. 287-320, Mar. 2001.
    • (2001) Mach. Learn , vol.42 , Issue.3 , pp. 287-320
    • Räatsch, G.1    Onoda, T.2    Muller, K.R.3
  • 44
    • 0034876406 scopus 로고    scopus 로고
    • IJCNN 2001 challenge: Generalization ability and text decoding
    • C. C. Chang and C. J. Lin, "IJCNN 2001 challenge: Generalization ability and text decoding," in Proc. IEEE IJCNN, 2001, pp. 1031-1036.
    • (2001) Proc. IEEE IJCNN , pp. 1031-1036
    • Chang, C.C.1    Lin, C.J.2
  • 45
    • 84925605946 scopus 로고    scopus 로고
    • The entire regularization path for the support vector machine
    • Dec
    • T. Hastie, S. Rosset, R. Tibishirani, and J. Zhu, "The entire regularization path for the support vector machine," J. Mach. Learn. Res., vol. 5, pp. 1391-1415, Dec. 2004.
    • (2004) J. Mach. Learn. Res , vol.5 , pp. 1391-1415
    • Hastie, T.1    Rosset, S.2    Tibishirani, R.3    Zhu, J.4
  • 46
    • 34547849507 scopus 로고    scopus 로고
    • 1 regularization path algorithm for generalized linear models
    • Sep
    • 1 regularization path algorithm for generalized linear models," J. R. Stat. Soc. B, vol. 69, no. 4, pp. 659-677, Sep. 2007.
    • (2007) J. R. Stat. Soc. B , vol.69 , Issue.4 , pp. 659-677
    • Park, M.Y.1    Hastie, T.2
  • 47
    • 47249158951 scopus 로고    scopus 로고
    • Classification model selection via bilevel programming
    • Aug
    • G. Kunapuli, K. Bennett, J. Hu, and J. S. Pang, "Classification model selection via bilevel programming," Optim. Methods Softw., vol. 23, no. 4, pp. 475-489, Aug. 2008.
    • (2008) Optim. Methods Softw , vol.23 , Issue.4 , pp. 475-489
    • Kunapuli, G.1    Bennett, K.2    Hu, J.3    Pang, J.S.4
  • 49
    • 73549124275 scopus 로고    scopus 로고
    • Bilevel model selection for support vector machines
    • G. Kunapuli, K. Bennett, J. Hu, and J. S. Pang, "Bilevel model selection for support vector machines," in Proc. CRM, Lecture Notes 2008, vol. 45, pp. 129-158.
    • (2008) Proc. CRM, Lecture Notes , vol.45 , pp. 129-158
    • Kunapuli, G.1    Bennett, K.2    Hu, J.3    Pang, J.S.4
  • 51
    • 0041657519 scopus 로고    scopus 로고
    • Interior-point methods for massive support vector machines
    • M. C. Ferris and T. S. Munson, "Interior-point methods for massive support vector machines," SIAM J. Optim., vol. 13, no. 3, pp. 783-804, 2002.
    • (2002) SIAM J. Optim , vol.13 , Issue.3 , pp. 783-804
    • Ferris, M.C.1    Munson, T.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.