메뉴 건너뛰기




Volumn 37, Issue 4, 2009, Pages 1591-1646

Fast learning rates in statistical inference through aggregation

Author keywords

Aggregation; Convex loss; Excess risk; Fast rates of convergence; Lower bounds in VC classes; Lq regression; Minimax lower bounds; Statistical learning

Indexed keywords


EID: 68649088331     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/08-AOS623     Document Type: Article
Times cited : (92)

References (56)
  • 1
    • 77951801598 scopus 로고    scopus 로고
    • ALQUIER, P. (2008). Iterative feature selection in least square regression estimation. Ann. Inst. H. Poincaré Probab. Statist. MR2451571
    • ALQUIER, P. (2008). Iterative feature selection in least square regression estimation. Ann. Inst. H. Poincaré Probab. Statist. MR2451571
  • 2
    • 0037031026 scopus 로고    scopus 로고
    • Lower bounds for the rate of convergence in nonparametric pattern recognition
    • MR1915064
    • ANTOS, A. (2002). Lower bounds for the rate of convergence in nonparametric pattern recognition. Theoret. Comput. Sci. 284 3-24. MR1915064
    • (2002) Theoret. Comput. Sci , vol.284 , pp. 3-24
    • ANTOS, A.1
  • 3
    • 0009290472 scopus 로고
    • Deux remarques sur l'estimation.
    • MR0777600
    • ASSOUAD, P. (1983). Deux remarques sur l'estimation. C. R. Acad. Sci. Paris 296 1021-1024. MR0777600
    • (1983) C. R. Acad. Sci. Paris , vol.296 , pp. 1021-1024
    • ASSOUAD, P.1
  • 4
    • 4944233194 scopus 로고    scopus 로고
    • Aggregated estimators and empirical complexity for least square regression
    • MR2096215
    • AUDIBERT, J.-Y. (2004). Aggregated estimators and empirical complexity for least square regression. Ann. Inst. H. Poincaré Probab. Statist. 40 685-736. MR2096215
    • (2004) Ann. Inst. H. Poincaré Probab. Statist , vol.40 , pp. 685-736
    • AUDIBERT, J.-Y.1
  • 5
    • 68649113668 scopus 로고    scopus 로고
    • AUDIBERT, J.-Y. (2004). A better variance control for PAC-Bayesian classification. Preprint n. 905, Laboratoire de Probabilités et Modèles Aléatoires, Universités Paris 6 and Paris 7. Available at http://www.proba.jussieu.fr/mathdoc/textes/PMA-905Bis.pdf.
    • AUDIBERT, J.-Y. (2004). A better variance control for PAC-Bayesian classification. Preprint n. 905, Laboratoire de Probabilités et Modèles Aléatoires, Universités Paris 6 and Paris 7. Available at http://www.proba.jussieu.fr/mathdoc/textes/PMA-905Bis.pdf.
  • 6
    • 68649098640 scopus 로고    scopus 로고
    • AUDIBERT, J.-Y. (2004). Classification under polynomial entropy and margin assumptions and randomized estimators. Preprint n. 908, Laboratoire de Probabilités et Modèles Aléatoires, Universités Paris 6 and Paris 7. Available at http://www.proba.jussieu.fr/mathdoc/preprints/ index.html#2004.
    • AUDIBERT, J.-Y. (2004). Classification under polynomial entropy and margin assumptions and randomized estimators. Preprint n. 908, Laboratoire de Probabilités et Modèles Aléatoires, Universités Paris 6 and Paris 7. Available at http://www.proba.jussieu.fr/mathdoc/preprints/ index.html#2004.
  • 7
    • 33645704704 scopus 로고    scopus 로고
    • Ph.D. thesis, Laboratoire de Probabilités et Modèles Aléatoires. Univ. Paris 6 and Paris 7. Available at
    • AUDIBERT, J.-Y. (2004). PAC-Bayesian statistical learning theory. Ph.D. thesis, Laboratoire de Probabilités et Modèles Aléatoires. Univ. Paris 6 and Paris 7. Available at http://certis.enpc. fr/~audibert/ThesePack.zip.
    • (2004) PAC-Bayesian statistical learning theory
    • AUDIBERT, J.-Y.1
  • 8
    • 68649111055 scopus 로고    scopus 로고
    • Fast learning rates in statistical inference through aggregation
    • 06-20, Certis-Ecole des Ponts. Available at
    • AUDIBERT, J.-Y. (2006). Fast learning rates in statistical inference through aggregation. Research Report 06-20, Certis-Ecole des Ponts. Available at http://arxiv.org/abs/math/0703854.
    • (2006) Research Report
    • AUDIBERT, J.-Y.1
  • 9
    • 84964412044 scopus 로고    scopus 로고
    • Progressive mixture rules are deviation suboptimal
    • AUDIBERT, J.-Y. (2007). Progressive mixture rules are deviation suboptimal. Adv. Neural Inf. Process. Syst. 20.
    • (2007) Adv. Neural Inf. Process. Syst , vol.20
    • AUDIBERT, J.-Y.1
  • 10
    • 34547706430 scopus 로고    scopus 로고
    • Fast learning rates for plug-in classifiers
    • MR2336861
    • AUDIBERT, J.-Y. and TSYBAKOV, A. B. (2007). Fast learning rates for plug-in classifiers. Ann. Statist. 35 608-633. MR2336861
    • (2007) Ann. Statist , vol.35 , pp. 608-633
    • AUDIBERT, J.-Y.1    TSYBAKOV, A.B.2
  • 11
    • 68649096273 scopus 로고    scopus 로고
    • BARRON, A. (1987). Are bayes rules consistent in information? In Open Problems in Communication and Computation (T. M. Cover and B. Gopinath, eds.) 85-91. Springer, New York. MR0922073
    • BARRON, A. (1987). Are bayes rules consistent in information? In Open Problems in Communication and Computation (T. M. Cover and B. Gopinath, eds.) 85-91. Springer, New York. MR0922073
  • 12
    • 0033233737 scopus 로고    scopus 로고
    • Information-theoretic determination of minimax rates of convergence
    • MR1742500
    • BARRON, A. and YANG, Y. (1999). Information-theoretic determination of minimax rates of convergence. Ann. Statist. 27 1564-1599. MR1742500
    • (1999) Ann. Statist , vol.27 , pp. 1564-1599
    • BARRON, A.1    YANG, Y.2
  • 13
    • 84937440359 scopus 로고    scopus 로고
    • BARTLETT, P. L., BOUSQUET, O. and MENDELSON S. (2002). Localized rademacher complexities. In Proceedings of the 15th Annual Conference on Computational Learning Theory (K. Kivinen, ed.). Lecture Notes in Computer Science 2375 Springer, London. MR2040404
    • BARTLETT, P. L., BOUSQUET, O. and MENDELSON S. (2002). Localized rademacher complexities. In Proceedings of the 15th Annual Conference on Computational Learning Theory (K. Kivinen, ed.). Lecture Notes in Computer Science 2375 Springer, London. MR2040404
  • 14
    • 34250136988 scopus 로고
    • Approximation dans les espaces métriques et théorie de l'estimation.
    • MR0722129
    • BIRGÉ, L. (1983). Approximation dans les espaces métriques et théorie de l'estimation. Z. Wahrsch. Verw. Gebiete 65 181-237. MR0722129
    • (1983) Z. Wahrsch. Verw. Gebiete , vol.65 , pp. 181-237
    • BIRGÉ, L.1
  • 15
    • 17644420339 scopus 로고    scopus 로고
    • A new lower bound for multiple hypothesis testing
    • MR2241522
    • BIRGÉ, L. (2005). A new lower bound for multiple hypothesis testing. IEEE Trans. Inform. Theory 51 1611-1615. MR2241522
    • (2005) IEEE Trans. Inform. Theory , vol.51 , pp. 1611-1615
    • BIRGÉ, L.1
  • 16
    • 0033228662 scopus 로고    scopus 로고
    • The progressive mixture estimator for regression trees
    • MR1725711
    • BLANCHARD, G. (1999). The progressive mixture estimator for regression trees. Ann. Inst. H. Poincaré Probab. Statist. 35 793-820. MR1725711
    • (1999) Ann. Inst. H. Poincaré Probab. Statist , vol.35 , pp. 793-820
    • BLANCHARD, G.1
  • 17
    • 84924053271 scopus 로고    scopus 로고
    • BOUCHERON, S., BOUSQUET, O. and LUGOSI, G. (2005). Theory of classification: Some recent advances. ESAIM Probab. Stat. 9 323-375. MR2182250
    • BOUCHERON, S., BOUSQUET, O. and LUGOSI, G. (2005). Theory of classification: Some recent advances. ESAIM Probab. Stat. 9 323-375. MR2182250
  • 18
    • 0000982196 scopus 로고
    • Estimation des densités: Risque minimax.
    • MR0523165
    • BRETAGNOLLE, J. and HUBER, C. (1979). Estimation des densités: Risque minimax. Z. Wahrsch. Verw. Gebiete 47 119-137. MR0523165
    • (1979) Z. Wahrsch. Verw. Gebiete , vol.47 , pp. 119-137
    • BRETAGNOLLE, J.1    HUBER, C.2
  • 19
    • 33746077372 scopus 로고    scopus 로고
    • Sequential procedures for aggregating arbitrary estimators of a conditional mean
    • Technical report. Available at
    • BUNEA, F. and NOBEL, A. (2005). Sequential procedures for aggregating arbitrary estimators of a conditional mean. Technical report. Available at http://stat.fsu.edu/~flori/ps/bnapril2005IEEE.pdf.
    • (2005)
    • BUNEA, F.1    NOBEL, A.2
  • 20
    • 68649085275 scopus 로고    scopus 로고
    • CATONI, O. (1997). A mixture approach to universal model selection. Preprint LMENS 97-30, Available at http://www.dma.ens.fr/edition/ preprints/Index.97.html.
    • CATONI, O. (1997). A mixture approach to universal model selection. Preprint LMENS 97-30, Available at http://www.dma.ens.fr/edition/ preprints/Index.97.html.
  • 22
    • 68649112476 scopus 로고    scopus 로고
    • CATONI, O. (2004). Statistical learning theory and stochastic optimization. In Ecole d'été de Probabilités de Saint-Flour XXXI-2001. Lecture Notes in Math. 1851. Springer, Berlin. MR2163920
    • CATONI, O. (2004). Statistical learning theory and stochastic optimization. In Ecole d'été de Probabilités de Saint-Flour XXXI-2001. Lecture Notes in Math. 1851. Springer, Berlin. MR2163920
  • 23
    • 4544304381 scopus 로고    scopus 로고
    • On the generalization ability of on-line learning algorithms
    • MR2097190
    • CESA-BIANCHI, N., CONCONI, A. and GENTILE, C. (2004). On the generalization ability of on-line learning algorithms. IEEE Trans. Inform. Theory 50 2050-2057. MR2097190
    • (2004) IEEE Trans. Inform. Theory , vol.50 , pp. 2050-2057
    • CESA-BIANCHI, N.1    CONCONI, A.2    GENTILE, C.3
  • 25
    • 0033234631 scopus 로고    scopus 로고
    • CESA-BIANCHI, N. and LUGOSI, G. (1999). On prediction of individual sequences. Ann. Statist. 27 1865-1895. MR1765620
    • CESA-BIANCHI, N. and LUGOSI, G. (1999). On prediction of individual sequences. Ann. Statist. 27 1865-1895. MR1765620
  • 26
    • 84926078662 scopus 로고    scopus 로고
    • CESA-BIANCHI, N. and LUGOSI, G. (2006). Prediction, Learning and Games. Cambridge Univ. Press, Cambridge. MR2409394
    • CESA-BIANCHI, N. and LUGOSI, G. (2006). Prediction, Learning and Games. Cambridge Univ. Press, Cambridge. MR2409394
  • 27
    • 33847624608 scopus 로고    scopus 로고
    • Improved second-order bounds for prediction with expert advice
    • CESA-BIANCHI, N., MANSOUR, Y. and STOLTZ, G. (2007). Improved second-order bounds for prediction with expert advice. Mach. Learn. 66 321-252.
    • (2007) Mach. Learn , vol.66 , pp. 321-252
    • CESA-BIANCHI, N.1    MANSOUR, Y.2    STOLTZ, G.3
  • 28
    • 0000489740 scopus 로고
    • Information-type measures of difference of probability distributions and indirect observations
    • MR0219345
    • CSISZAR, I. (1967). Information-type measures of difference of probability distributions and indirect observations. Stud. Math. Hung. 2 299-318. MR0219345
    • (1967) Stud. Math. Hung , vol.2 , pp. 299-318
    • CSISZAR, I.1
  • 29
    • 0020098693 scopus 로고
    • Any discrimination rule can have an arbitrarily bad probability of error for finite sample size
    • DEVROYE, L. (1982). Any discrimination rule can have an arbitrarily bad probability of error for finite sample size. IEEE Trans. Pattern Analysis and Machine Intelligence 4 154-157.
    • (1982) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.4 , pp. 154-157
    • DEVROYE, L.1
  • 30
    • 68649108261 scopus 로고    scopus 로고
    • DEVROYE, L., GYÖRFI, L. and LUGOSI, G. (1996). A Probabilistic Theory of Pattern Recognition. Springer, New York. MR1383093
    • DEVROYE, L., GYÖRFI, L. and LUGOSI, G. (1996). A Probabilistic Theory of Pattern Recognition. Springer, New York. MR1383093
  • 31
    • 68649129176 scopus 로고    scopus 로고
    • DEVROYE, L. and LUGOSI, G. (2000). Combinatorial Methods in Density Estimation. Springer, New York. MR1843146
    • DEVROYE, L. and LUGOSI, G. (2000). Combinatorial Methods in Density Estimation. Springer, New York. MR1843146
  • 32
    • 0000421687 scopus 로고
    • Central limit theorems for empirical measures
    • MR0512411
    • DUDLEY, R. M. (1978). Central limit theorems for empirical measures. Ann. Probab. 6 899-929. MR0512411
    • (1978) Ann. Probab , vol.6 , pp. 899-929
    • DUDLEY, R.M.1
  • 33
    • 0032164946 scopus 로고    scopus 로고
    • HAUSSLER, D., KIVINEN, J. and WARMUTH, M. K. (1998). Sequential prediction of individual sequences under general loss functions. IEEE Trans. Inform. Theory 44 1906-1925. MR1664051
    • HAUSSLER, D., KIVINEN, J. and WARMUTH, M. K. (1998). Sequential prediction of individual sequences under general loss functions. IEEE Trans. Inform. Theory 44 1906-1925. MR1664051
  • 36
    • 84947774618 scopus 로고    scopus 로고
    • KIVINEN, J. and WARMUTH, M. K. (1999). Averaging expert predictions. In Lecture Notes in Computer Science 1572 153-167. Springer, Berlin. MR1724987
    • KIVINEN, J. and WARMUTH, M. K. (1999). Averaging expert predictions. In Lecture Notes in Computer Science 1572 153-167. Springer, Berlin. MR1724987
  • 37
    • 33746194045 scopus 로고    scopus 로고
    • KOLTCHINSKII, V. (2006). Local rademacher complexities and oracle inequalities in risk minimization. Ann. Statist. 34. MR2329442
    • KOLTCHINSKII, V. (2006). Local rademacher complexities and oracle inequalities in risk minimization. Ann. Statist. 34. MR2329442
  • 38
    • 47249139879 scopus 로고    scopus 로고
    • Optimal rates of aggregation in classification under low noise assumption
    • MR2364224
    • LECUÉ, G. (2007). Optimal rates of aggregation in classification under low noise assumption. Bernoulli 13 1000-1022. MR2364224
    • (2007) Bernoulli , vol.13 , pp. 1000-1022
    • LECUÉ, G.1
  • 39
    • 48849097549 scopus 로고    scopus 로고
    • Simultaneous adaptation to the margin and to complexity in classification
    • MR2351102
    • LECUÉ, G. (2007). Simultaneous adaptation to the margin and to complexity in classification. Ann. Statist. 35 1698-1721. MR2351102
    • (2007) Ann. Statist , vol.35 , pp. 1698-1721
    • LECUÉ, G.1
  • 40
    • 38049026180 scopus 로고    scopus 로고
    • LECUÉ, G. (2007). Suboptimality of penalized empirical risk minimization in classification. In Proceedings of the 20th annual conference on Computational Learning Theory (COLT). Lecture Notes in Computer Science 4539 142-156. Springer, Berlin. MR2397584
    • LECUÉ, G. (2007). Suboptimality of penalized empirical risk minimization in classification. In Proceedings of the 20th annual conference on Computational Learning Theory (COLT). Lecture Notes in Computer Science 4539 142-156. Springer, Berlin. MR2397584
  • 41
    • 0033234630 scopus 로고    scopus 로고
    • MAMMEN, E. and TSYBAKOV, A. B. (1999). Smooth discrimination analysis. Ann. Statist. 27 1808-1829. MR1765618
    • MAMMEN, E. and TSYBAKOV, A. B. (1999). Smooth discrimination analysis. Ann. Statist. 27 1808-1829. MR1765618
  • 42
    • 0000595627 scopus 로고    scopus 로고
    • Some applications of concentration inequalities to statistics
    • MR1813803
    • MASSART, P. (2000). Some applications of concentration inequalities to statistics. Ann. Fac. Sci. Toulouse Math. 9 245-303. MR1813803
    • (2000) Ann. Fac. Sci. Toulouse Math , vol.9 , pp. 245-303
    • MASSART, P.1
  • 43
  • 44
    • 0001030653 scopus 로고
    • Measuring mass concentrations and estimating density contour clustersan excess mass approach
    • MR1345204
    • POLONIK, W. (1995). Measuring mass concentrations and estimating density contour clustersan excess mass approach. Ann. Statist. 23 855-881. MR1345204
    • (1995) Ann. Statist , vol.23 , pp. 855-881
    • POLONIK, W.1
  • 45
    • 9444226947 scopus 로고    scopus 로고
    • Optimal rates of aggregation
    • Computational Learning Theory and Kernel Machines B. Scholkopf and M. Warmuth, eds, Springer, Heidelberg
    • TSYBAKOV, A. B. (2003). Optimal rates of aggregation. In Computational Learning Theory and Kernel Machines (B. Scholkopf and M. Warmuth, eds). Lecture Notes in Artificial Intelligence 2777 303-313. Springer, Heidelberg.
    • (2003) Lecture Notes in Artificial Intelligence , vol.2777 , pp. 303-313
    • TSYBAKOV, A.B.1
  • 46
    • 68649123703 scopus 로고    scopus 로고
    • TSYBAKOV, A. B. (2004). Introduction à L'estimation non Paramétrique. Springer, Berlin. MR2013911
    • TSYBAKOV, A. B. (2004). Introduction à L'estimation non Paramétrique. Springer, Berlin. MR2013911
  • 47
    • 3142725508 scopus 로고    scopus 로고
    • Optimal aggregation of classifiers in statistical learning
    • MR2051002
    • TSYBAKOV, A. B. (2004). Optimal aggregation of classifiers in statistical learning. Ann. Statist. 32 135-166. MR2051002
    • (2004) Ann. Statist , vol.32 , pp. 135-166
    • TSYBAKOV, A.B.1
  • 48
    • 68649114699 scopus 로고    scopus 로고
    • VAPNIK, V. (1982). Estimation of Dependences Based on Empirical Data. Springer, Berlin. MR0672244
    • VAPNIK, V. (1982). Estimation of Dependences Based on Empirical Data. Springer, Berlin. MR0672244
  • 49
    • 68649127460 scopus 로고    scopus 로고
    • VAPNIK, V. (1995). The Nature of Statistical Learning Theory, 2nd ed. Springer, New York. MR1367965
    • VAPNIK, V. (1995). The Nature of Statistical Learning Theory, 2nd ed. Springer, New York. MR1367965
  • 50
    • 68649086791 scopus 로고    scopus 로고
    • VAPNIK, V. and CHERVONENKIS, A. (1974). Theory of Pattern Recognition. Nauka, Moscow. MR0474638
    • VAPNIK, V. and CHERVONENKIS, A. (1974). Theory of Pattern Recognition. Nauka, Moscow. MR0474638
  • 52
    • 0032047115 scopus 로고    scopus 로고
    • VOVK, V. G. (1998). A game of prediction with expert advice. J. Comput. System Sci. 153-173. MR1629690
    • VOVK, V. G. (1998). A game of prediction with expert advice. J. Comput. System Sci. 153-173. MR1629690
  • 53
    • 0004599527 scopus 로고    scopus 로고
    • Combining different procedures for adaptive regression
    • MR1790617
    • YANG, Y. (2000). Combining different procedures for adaptive regression. J. Multivariate Anal. 74 135-161. MR1790617
    • (2000) J. Multivariate Anal , vol.74 , pp. 135-161
    • YANG, Y.1
  • 55
    • 26944500557 scopus 로고    scopus 로고
    • ZHANG, T. (2005). Data dependent concentration bounds for sequential prediction algorithms. In Proceedings of the 18th Annual Conference on Computational Learning Theory (COLT). Lecture Notes in Computer Science 173-187. Springer, Berlin. MR2203261
    • ZHANG, T. (2005). Data dependent concentration bounds for sequential prediction algorithms. In Proceedings of the 18th Annual Conference on Computational Learning Theory (COLT). Lecture Notes in Computer Science 173-187. Springer, Berlin. MR2203261
  • 56
    • 33645722194 scopus 로고    scopus 로고
    • Information theoretical upper and lower bounds for statistical estimation
    • MR2241190
    • ZHANG, T. (2006). Information theoretical upper and lower bounds for statistical estimation. IEEE Trans. Inform. Theory 52 1307-1321. MR2241190
    • (2006) IEEE Trans. Inform. Theory , vol.52 , pp. 1307-1321
    • ZHANG, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.