메뉴 건너뛰기




Volumn 4, Issue , 2010, Pages 40-79

A survey of cross-validation procedures for model selection

Author keywords

Cross validation; Leave one out; Model selection

Indexed keywords


EID: 77956649096     PISSN: None     EISSN: 19357516     Source Type: Journal    
DOI: 10.1214/09-SS054     Document Type: Article
Times cited : (3105)

References (129)
  • 1
    • 51249190305 scopus 로고
    • Statistical predictor identification
    • Akaike, H. (1970). Statistical predictor identification. Ann. Inst. Statist. Math., 22:203-217.
    • (1970) Ann. Inst. Statist. Math. , vol.22 , pp. 203-217
    • Akaike, H.1
  • 2
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • (Tsahkadsor, 1971), Akadémiai Kiad ́o, Budapest
    • Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In Second International Symposium on Information Theory (Tsahkadsor, 1971), pages 267-281. Akadémiai Kiad ́o, Budapest.
    • (1973) Second International Symposium On Information Theory , pp. 267-281
    • Akaike, H.1
  • 3
    • 0016029778 scopus 로고
    • The relationship between variable selection and data augmentation and a method for prediction
    • Allen, D. M. (1974). The relationship between variable selection and data augmentation and a method for prediction. Technometrics, 16:125-127.
    • (1974) Technometrics , vol.16 , pp. 125-127
    • Allen, D.M.1
  • 4
    • 0033570831 scopus 로고    scopus 로고
    • Combined 5 x 2 cv F test for comparing supervised classification learning algorithms. Neur
    • Alpaydin, E. (1999). Combined 5 x 2 cv F test for comparing supervised classification learning algorithms. Neur. Comp., 11(8):1885-1892.
    • (1999) Comp , vol.11 , Issue.8 , pp. 1885-1892
    • Alpaydin, E.1
  • 5
    • 84938046237 scopus 로고
    • Selection of predictor variables in linear multiple regression
    • In bancroft, T. A., editor, Iowa: iowa State University Press
    • Anderson, R. L., Allen, D. M., and Cady, F. B. (1972). Selection of predictor variables in linear multiple regression. In bancroft, T. A., editor, In Statistical papers in Honor of George W. Snedecor. Iowa: iowa State University Press.
    • (1972) In Statistical Papers In Honor of George W. Snedecor
    • Anderson, R.L.1    Allen, D.M.2    Cady, F.B.3
  • 6
    • 73949122133 scopus 로고    scopus 로고
    • PhD thesis, University Paris-Sud
    • Arlot, S. (2007). Resampling and Model Selection. PhD thesis, University Paris-Sud 11. http://tel.archives-ouvertes.fr/tel-00198803/en/.
    • (2007) Resampling and Model Selection , pp. 11
    • Arlot, S.1
  • 9
    • 77952562051 scopus 로고    scopus 로고
    • Model selection by resampling penalization
    • (electronic)
    • Arlot, S. (2009). Model selection by resampling penalization. Electron. J. Stat., 3:557-624 (electronic).
    • (2009) Electron. J. Stat. , vol.3 , pp. 557-624
    • Arlot, S.1
  • 11
    • 0036997840 scopus 로고    scopus 로고
    • Model selection for regression on a random design
    • (electronic)
    • Baraud, Y. (2002). Model selection for regression on a random design. ESAIM Probab. Statist., 6:127-146 (electronic).
    • (2002) ESAIM Probab. Statist. , vol.6 , pp. 127-146
    • Baraud, Y.1
  • 12
    • 0033459856 scopus 로고    scopus 로고
    • Risk bounds for model selection via penalization
    • Barron, A., Birgé, L., and Massart, P. (1999). Risk bounds for model selection via penalization. Probab. Theory Related Fields, 113(3):301-413.
    • (1999) Probab. Theory Related Fields , vol.113 , Issue.3 , pp. 301-413
    • Barron, A.1    Birgé, L.2    Massart, P.3
  • 15
    • 84925604888 scopus 로고    scopus 로고
    • No unbiased estimator of the variance of K-fold cross-validation
    • electronic
    • Bengio, Y. and Grandvalet, Y. (2004). No unbiased estimator of the variance of K-fold cross-validation. J. Mach. Learn. Res., 5:1089-1105 (electronic).
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1089-1105
    • Bengio, Y.1    Grandvalet, Y.2
  • 16
    • 0017657558 scopus 로고
    • Some properties of the order of an autoregressivemodel selected by a generalization of Akaike's FPE criterion
    • Bhansali, R. J. and Downham, D. Y. (1977). Some properties of the order of an autoregressivemodel selected by a generalization of Akaike's FPE criterion. Biometrika, 64(3):547-551.
    • (1977) Biometrika , vol.64 , Issue.3 , pp. 547-551
    • Bhansali, R.J.1    Downham, D.Y.2
  • 18
    • 33847613502 scopus 로고    scopus 로고
    • Minimal penalties for Gaussian model selection
    • Birgé, L. and Massart, P. (2007). Minimal penalties for Gaussian model selection. Probab. Theory Related Fields, 138(1-2):33-73.
    • (2007) Probab. Theory Related Fields , vol.138 , Issue.1-2 , pp. 33-73
    • Birgé, L.1    Massart, P.2
  • 19
    • 79953837525 scopus 로고    scopus 로고
    • Discussion: "Local Rademacher complexities and oracle inequalities in risk minimization"
    • [Ann. Statist. 34 (2006), no. 6, 2593-2656] by V. Koltchinskii
    • Blanchard, G. and Massart, P. (2006). Discussion: "Local Rademacher complexities and oracle inequalities in risk minimization" [Ann. Statist. 34 (2006), no. 6, 2593-2656] by V. Koltchinskii. Ann. Statist., 34(6):2664-2671.
    • (2006) Ann. Statist. , vol.34 , Issue.6 , pp. 2664-2671
    • Blanchard, G.1    Massart, P.2
  • 20
    • 84924053271 scopus 로고    scopus 로고
    • Theory of classification: A survey of some recent advances
    • (electronic)
    • Boucheron, S., Bousquet, O., and Lugosi, G. (2005). Theory of classification: a survey of some recent advances. ESAIM Probab. Stat., 9:323-375 (electronic).
    • (2005) ESAIM Probab. Stat. , vol.9 , pp. 323-375
    • Boucheron, S.1    Bousquet, O.2    Lugosi, G.3
  • 22
    • 0001245944 scopus 로고
    • An alternative method of cross-validation for the smoothing of density estimates
    • Bowman, A. W. (1984). An alternative method of cross-validation for the smoothing of density estimates. Biometrika, 71(2):353-360.
    • (1984) Biometrika , vol.71 , Issue.2 , pp. 353-360
    • Bowman, A.W.1
  • 23
    • 0030344230 scopus 로고    scopus 로고
    • Heuristics of instability and stabilization in model selection
    • Breiman, L. (1996). Heuristics of instability and stabilization in model selection. Ann. Statist., 24(6):2350-2383.
    • (1996) Ann. Statist. , vol.24 , Issue.6 , pp. 2350-2383
    • Breiman, L.1
  • 25
    • 0000343716 scopus 로고
    • Infmodel selection and evaluation in regression. the x-random case
    • Breiman, L. and Spector, P. (1992). infmodel selection and evaluation in regression. the x-random case. International Statistical Review, 60(3):291-319.
    • (1992) International Statistical Review , vol.60 , Issue.3 , pp. 291-319
    • Breiman, L.1    Spector, P.2
  • 26
    • 0000354976 scopus 로고
    • A comparative study of ordinary cross-validation, vfold cross-validation and the repeated learning-testing methods
    • Burman, P. (1989). A comparative study of ordinary cross-validation, vfold cross-validation and the repeated learning-testing methods. Biometrika, 76(3):503-514.
    • (1989) Biometrika , vol.76 , Issue.3 , pp. 503-514
    • Burman, P.1
  • 27
    • 0009935784 scopus 로고
    • Estimation of optimal transformations using v-fold cross validation and repeated learning-testing methods
    • Burman, P. (1990). Estimation of optimal transformations using v-fold cross validation and repeated learning-testing methods. Sankhyā Ser. A, 52(3):314-345.
    • (1990) Sankhyā Ser. A. , vol.52 , Issue.3 , pp. 314-345
    • Burman, P.1
  • 28
    • 0039012351 scopus 로고
    • A cross-validatory method for dependent data
    • Burman, P., Chow, E., and Nolan, D. (1994). A cross-validatory method for dependent data. Biometrika, 81(2):351-358.
    • (1994) Biometrika , vol.81 , Issue.2 , pp. 351-358
    • Burman, P.1    Chow, E.2    Nolan, D.3
  • 29
    • 84981455583 scopus 로고
    • Data-dependent estimation of prediction functions
    • Burman, P. and Nolan, D. (1992). Data-dependent estimation of prediction functions. J. Time Ser. Anal., 13(3):189-207.
    • (1992) J. Time Ser. Anal. , vol.13 , Issue.3 , pp. 189-207
    • Burman, P.1    Nolan, D.2
  • 30
    • 0003576417 scopus 로고    scopus 로고
    • Springer-Verlag, New York, second edition. A practical information-theoretic approach
    • Burnham, K. P. and Anderson, D. R. (2002). Model selection and multimodel inference. Springer-Verlag, New York, second edition. A practical information-theoretic approach.
    • (2002) Model Selection and Multimodel Inference
    • Burnham, K.P.1    Anderson, D.R.2
  • 31
    • 77954257134 scopus 로고    scopus 로고
    • On oracle inequalities related to smoothing splines
    • Cao, Y. and Golubev, Y. (2006). On oracle inequalities related to smoothing splines. Math. Methods Statist., 15(4):398-414.
    • (2006) Math. Methods Statist. , vol.15 , Issue.4 , pp. 398-414
    • Cao, Y.1    Golubev, Y.2
  • 34
    • 38349048234 scopus 로고    scopus 로고
    • Nonparametric density estimation by exact leave-p-out cross-validation
    • Celisse, A. and Robin, S. (2008). Nonparametric density estimation by exact leave-p-out cross-validation. Computational Statistics and Data Analysis, 52(5):2350-2368.
    • (2008) Computational Statistics and Data Analysis , vol.52 , Issue.5 , pp. 2350-2368
    • Celisse, A.1    Robin, S.2
  • 35
    • 0040235492 scopus 로고
    • Consistent cross-validated density estimation
    • Chow, Y. S., Geman, S., and Wu, L. D. (1987). Consistent cross-validated density estimation. Ann. Statist., 11:25-38.
    • (1987) Ann. Statist. , vol.11 , pp. 25-38
    • Chow, Y.S.1    Geman, S.2    Wu, L.D.3
  • 36
    • 0000615064 scopus 로고
    • Comparison of two bandwidth selectors with dependent errors
    • Chu, C.-K. and Marron, J. S. (1991). Comparison of two bandwidth selectors with dependent errors. Ann. Statist., 19(4):1906-1918.
    • (1991) Ann. Statist. , vol.19 , Issue.4 , pp. 1906-1918
    • Chu, C.-K.1    Marron, J.S.2
  • 37
    • 34250263445 scopus 로고
    • Smoothing noisy data with spline functions. Estimating the correct degree of smoothing by the method of generalized cross-validation
    • Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions. Estimating the correct degree of smoothing by the method of generalized cross-validation. Numer. Math., 31(4):377-403.
    • (1979) Numer. Math. , vol.31 , Issue.4 , pp. 377-403
    • Craven, P.1    Wahba, G.2
  • 39
    • 39049150829 scopus 로고    scopus 로고
    • Estimation of the conditional risk in classification: The swapping method
    • Daudin, J.-J. and Mary-Huard, T. (2008). Estimation of the conditional risk in classification: The swapping method. Comput. Stat. Data Anal., 52(6):3220-3232.
    • (2008) Comput. Stat. Data Anal. , vol.52 , Issue.6 , pp. 3220-3232
    • Daudin, J.-J.1    Mary-Huard, T.2
  • 40
    • 33644771361 scopus 로고    scopus 로고
    • Cross validation model selection criteria for linear regression based on the Kullback-Leibler discrepancy
    • Davies, S. L., Neath, A. A., and Cavanaugh, J. E. (2005). Cross validation model selection criteria for linear regression based on the Kullback-Leibler discrepancy. Stat. Methodol., 2(4):249-266.
    • (2005) Stat. Methodol. , vol.2 , Issue.4 , pp. 249-266
    • Davies, S.L.1    Neath, A.A.2    Cavanaugh, J.E.3
  • 41
    • 0009772779 scopus 로고
    • On the bias and variability of bootstrap and cross-validation estimates of error rate in discrimination problems
    • Davison, A. C. and Hall, P. (1992). On the bias and variability of bootstrap and cross-validation estimates of error rate in discrimination problems. Biometrika, 79(2):279-284.
    • (1992) Biometrika , vol.79 , Issue.2 , pp. 279-284
    • Davison, A.C.1    Hall, P.2
  • 43
    • 0018520640 scopus 로고
    • Distribution-Free performance Bounds for Potential Function Rules
    • Devroye, L. and Wagner, T. J. (1979). Distribution-Free performance Bounds for Potential Function Rules. IEEE Transaction in Information Theory, 25(5):601-604.
    • (1979) IEEE Transaction In Information Theory , vol.25 , Issue.5 , pp. 601-604
    • Devroye, L.1    Wagner, T.J.2
  • 44
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • Dietterich, T. G. (1998). Approximate statistical tests for comparing supervised classification learning algorithms. Neur. Comp., 10(7):1895-1924.
    • (1998) Neur. Comp. , vol.10 , Issue.7 , pp. 1895-1924
    • Dietterich, T.G.1
  • 45
    • 84950461478 scopus 로고
    • Estimating the error rate of a prediction rule: Improvement on cross-validation
    • Efron, B. (1983). Estimating the error rate of a prediction rule: improvement on cross-validation. J. Amer. Statist. Assoc., 78(382):316-331.
    • (1983) J. Amer. Statist. Assoc. , vol.78 , Issue.382 , pp. 316-331
    • Efron, B.1
  • 46
    • 80053264999 scopus 로고
    • How biased is the apparent error rate of a prediction rule
    • Efron, B. (1986). How biased is the apparent error rate of a prediction rule? J. Amer. Statist. Assoc., 81(394):461-470.
    • (1986) J. Amer. Statist. Assoc. , vol.81 , Issue.394 , pp. 461-470
    • Efron, B.1
  • 47
    • 4944239996 scopus 로고    scopus 로고
    • The estimation of prediction error: Covariance penalties and cross-validation
    • With comments and a rejoinder by the author
    • Efron, B. (2004). The estimation of prediction error: covariance penalties and cross-validation. J. Amer. Statist. Assoc., 99(467):619-642. With comments and a rejoinder by the author.
    • (2004) J. Amer. Statist. Assoc. , vol.99 , Issue.467 , pp. 619-642
    • Efron, B.1
  • 48
    • 0000053186 scopus 로고
    • Combining possibly related estimation problems (with discussion)
    • Efron, B. and Morris, C. (1973). Combining possibly related estimation problems (with discussion). J. R. Statist. Soc. B, 35:379.
    • (1973) J. R. Statist. Soc. B. , vol.35 , pp. 379
    • Efron, B.1    Morris, C.2
  • 49
    • 0031536511 scopus 로고    scopus 로고
    • Improvements on cross-validation: The.632+ bootstrap method
    • Efron, B. and Tibshirani, R. (1997). Improvements on cross-validation: the.632+ bootstrap method. J. Amer. Statist. Assoc., 92(438):548-560.
    • (1997) J. Amer. Statist. Assoc. , vol.92 , Issue.438 , pp. 548-560
    • Efron, B.1    Tibshirani, R.2
  • 50
    • 33847642140 scopus 로고    scopus 로고
    • Model selection by bootstrap penalization for classification
    • Fromont, M. (2007). Model selection by bootstrap penalization for classification. Mach. Learn., 66(2-3):165-207.
    • (2007) Mach. Learn. , vol.66 , Issue.2-3 , pp. 165-207
    • Fromont, M.1
  • 51
    • 0015973904 scopus 로고
    • A predictive approach to the random effect model
    • Geisser, S. (1974). A predictive approach to the random effect model. Biometrika, 61(1):101-107.
    • (1974) Biometrika , vol.61 , Issue.1 , pp. 101-107
    • Geisser, S.1
  • 52
    • 84950645271 scopus 로고
    • The predictive sample reuse method with applications
    • Geisser, S. (1975). The predictive sample reuse method with applications. J. Amer. Statist. Assoc., 70:320-328.
    • (1975) J. Amer. Statist. Assoc. , vol.70 , pp. 320-328
    • Geisser, S.1
  • 53
    • 0032387768 scopus 로고    scopus 로고
    • Asymptotic comparison of (partial) cross-validation, GCV and randomized GCV in nonparametric regression
    • Girard, D. A. (1998). Asymptotic comparison of (partial) cross-validation, GCV and randomized GCV in nonparametric regression. Ann. Statist., 26(1):315-334.
    • (1998) Ann. Statist. , vol.26 , Issue.1 , pp. 315-334
    • Girard, D.A.1
  • 56
    • 0000638595 scopus 로고
    • Large sample optimality of least squares cross-validation in density estimation
    • Hall, P. (1983). Large sample optimality of least squares cross-validation in density estimation. Ann. Statist., 11(4):1156-1174.
    • (1983) Ann. Statist. , vol.11 , Issue.4 , pp. 1156-1174
    • Hall, P.1
  • 57
    • 0000418028 scopus 로고
    • On Kullback-Leibler loss and density estimation
    • Hall, P. (1987). On Kullback-Leibler loss and density estimation. The Annals of Statistics, 15(4):1491-1519.
    • (1987) The Annals of Statistics , vol.15 , Issue.4 , pp. 1491-1519
    • Hall, P.1
  • 58
    • 0011081704 scopus 로고
    • On bandwidth choice in nonparametric regression with both short- and long-range dependent errors
    • Hall, P., Lahiri, S. N., and Polzehl, J. (1995). On bandwidth choice in nonparametric regression with both short- and long-range dependent errors. Ann. Statist., 23(6):1921-1936.
    • (1995) Ann. Statist. , vol.23 , Issue.6 , pp. 1921-1936
    • Hall, P.1    Lahiri, S.N.2    Polzehl, J.3
  • 60
    • 0000871679 scopus 로고
    • A local cross-validation algorithm
    • Hall, P. and Schucany, W. R. (1989). A local cross-validation algorithm. Statist. Probab. Lett., 8(2):109-117.
    • (1989) Statist. Probab. Lett. , vol.8 , Issue.2 , pp. 109-117
    • Hall, P.1    Schucany, W.R.2
  • 61
    • 30344468012 scopus 로고
    • How to determine the bandwidth of some nonlinear smoothers in practice
    • (Heidel-berg, 1983), of Lecture Notes in Statist, Springer, New York
    • Härdle, W. (1984). How to determine the bandwidth of some nonlinear smoothers in practice. In Robust and nonlinear time series analysis (Heidel-berg, 1983), volume 26 of Lecture Notes in Statist., pages 163-184. Springer, New York.
    • (1984) Robust and Nonlinear Time Series Analysis , vol.26 , pp. 163-184
    • Härdle, W.1
  • 62
    • 84909719647 scopus 로고
    • How far are automatically chosen regression smoothing parameters from their optimum?
    • With comments by David W. Scott and Iain Johnstone and a reply by the authors
    • Härdle, W., Hall, P., and Marron, J. S. (1988). How far are automatically chosen regression smoothing parameters from their optimum? J. Amer. Statist. Assoc., 83(401):86-101. With comments by David W. Scott and Iain Johnstone and a reply by the authors.
    • (1988) J. Amer. Statist. Assoc. , vol.83 , Issue.401 , pp. 86-101
    • Härdle, W.1    Hall, P.2    Marron, J.S.3
  • 63
    • 0000420391 scopus 로고
    • Automated kernel smoothing of dependent data by using time series cross-validation
    • Hart, J. D. (1994). Automated kernel smoothing of dependent data by using time series cross-validation. J. Roy. Statist. Soc. Ser. B, 56(3):529-542.
    • (1994) J. Roy. Statist. Soc. Ser. B. , vol.56 , Issue.3 , pp. 529-542
    • Hart, J.D.1
  • 64
    • 0000272104 scopus 로고
    • Data-driven bandwidth choice for density estimation based on dependent data
    • Hart, J. D. and Vieu, P. (1990). Data-driven bandwidth choice for density estimation based on dependent data. Ann. Statist., 18(2):873-890.
    • (1990) Ann. Statist. , vol.18 , Issue.2 , pp. 873-890
    • Hart, J.D.1    Vieu, P.2
  • 65
    • 0000180203 scopus 로고
    • Kernel regression estimation using repeated measurements data
    • Hart, J. D. and Wehrly, T. E. (1986). Kernel regression estimation using repeated measurements data. J. Amer. Statist. Assoc., 81(396):1080-1088.
    • (1986) J. Amer. Statist. Assoc. , vol.81 , Issue.396 , pp. 1080-1088
    • Hart, J.D.1    Wehrly, T.E.2
  • 66
    • 0003684449 scopus 로고    scopus 로고
    • Springer Series in Statistics. Springer-Verlag, New York. Data mining, inference, and prediction. 2nd edition
    • Hastie, T., Tibshirani, R., and Friedman, J. (2009). The elements of statistical learning. Springer Series in Statistics. Springer-Verlag, New York. Data mining, inference, and prediction. 2nd edition.
    • (2009) The Elements of Statistical Learning
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3
  • 67
    • 0039079123 scopus 로고
    • A note on modifications of jackknife criterion for model selection
    • Herzberg, A. M. and Tsukanov, A. V. (1986). A note on modifications of jackknife criterion for model selection. Utilitas Math., 29:209-216.
    • (1986) Utilitas Math , vol.29 , pp. 209-216
    • Herzberg, A.M.1    Tsukanov, A.V.2
  • 69
    • 58349104057 scopus 로고    scopus 로고
    • Least angle and l1 penalized regression: A review
    • (electronic)
    • Hesterberg, T. C., Choi, N. H., Meier, L., and Fraley, C. (2008). Least angle and l1 penalized regression: A review. Statistics Surveys, 2:61-93 (electronic).
    • (2008) Statistics Surveys , vol.2 , pp. 61-93
    • Hesterberg, T.C.1    Choi, N.H.2    Meier, L.3    Fraley, C.4
  • 70
    • 0003093479 scopus 로고
    • Allocation Rules and their Error Rates
    • Hills, M. (1966). Allocation Rules and their Error Rates. J. Royal Statist. Soc. Series B, 28(1):1-31.
    • (1966) J. Royal Statist. Soc. Series B. , vol.28 , Issue.1 , pp. 1-31
    • Hills, M.1
  • 72
    • 0003157339 scopus 로고
    • Robust estimation of a local parameter
    • Huber, P. (1964). Robust estimation of a local parameter. Ann. Math. Statist., 35:73-101.
    • (1964) Ann. Math. Statist. , vol.35 , pp. 73-101
    • Huber, P.1
  • 74
    • 0043228681 scopus 로고    scopus 로고
    • On the use of cross-validation to assess performance in multivariate prediction
    • Jonathan, P., Krzanowki, W. J., and McCarthy, W. V. (2000). On the use of cross-validation to assess performance in multivariate prediction. Stat. and Comput., 10:209-229.
    • (2000) Stat. and Comput , vol.10 , pp. 209-229
    • Jonathan, P.1    Krzanowki, W.J.2    McCarthy, W.V.3
  • 75
    • 0031122049 scopus 로고    scopus 로고
    • An Experimental and Theoretical Comparison of Model Selection Methods
    • Kearns, M., Mansour, Y., Ng, A. Y., and Ron, D. (1997). An Experimental and Theoretical Comparison of Model Selection Methods. Machine Learning, 27:7-50.
    • (1997) Machine Learning , vol.27 , pp. 7-50
    • Kearns, M.1    Mansour, Y.2    Ng, A.Y.3    Ron, D.4
  • 76
    • 0033566418 scopus 로고    scopus 로고
    • Algorithmic Stability and Sanity-Check Bounds for Leave-One-Out Cross-Validation
    • Kearns, M. and Ron, D. (1999). Algorithmic Stability and Sanity-Check Bounds for Leave-One-Out Cross-Validation. Neural Computation, 11:1427-1453.
    • (1999) Neural Computation , vol.11 , pp. 1427-1453
    • Kearns, M.1    Ron, D.2
  • 77
    • 0035397715 scopus 로고    scopus 로고
    • Rademacher penalties and structural risk minimization
    • Koltchinskii, V. (2001). Rademacher penalties and structural risk minimization. IEEE Trans. Inform. Theory, 47(5):1902-1914.
    • (2001) IEEE Trans. Inform. Theory , vol.47 , Issue.5 , pp. 1902-1914
    • Koltchinskii, V.1
  • 78
    • 84879799188 scopus 로고
    • Estimation of Error Rates in Discriminant Analysis
    • Lachenbruch, P. A. and Mickey, M. R. (1968). Estimation of Error Rates in Discriminant Analysis. Technometrics, 10(1):1-11.
    • (1968) Technometrics , vol.10 , Issue.1 , pp. 1-11
    • Lachenbruch, P.A.1    Mickey, M.R.2
  • 79
    • 0007318509 scopus 로고
    • The shrinkage of the coefficient of multiple correlation
    • Larson, S. C. (1931). The shrinkage of the coefficient of multiple correlation. J. Edic. Psychol., 22:45-55.
    • (1931) J. Edic. Psychol. , vol.22 , pp. 45-55
    • Larson, S.C.1
  • 80
    • 33746090509 scopus 로고    scopus 로고
    • Optimal oracle inequality for aggregation of classifiers under low noise condition
    • In Gabor Lugosi, H. U. S., editor, COLT06, Springer
    • Lecué, G. (2006). Optimal oracle inequality for aggregation of classifiers under low noise condition. In Gabor Lugosi, H. U. S., editor, 19th Annual Conference On Learning Theory, COLT06., pages 364-378. Springer.
    • (2006) 19th Annual Conference On Learning Theory , pp. 364-378
    • Lecué, G.1
  • 81
    • 38049026180 scopus 로고    scopus 로고
    • Infoptimality of penalized empirical risk minimization in classification
    • In COLT 2007, Springer, Berlin
    • Lecué, G. (2007). infoptimality of penalized empirical risk minimization in classification. In COLT 2007, volume 4539 of Lecture Notes in Artificial Intelligence. Springer, Berlin.
    • (2007) Volume 4539 of Lecture Notes In Artificial Intelligence
    • Lecué, G.1
  • 83
    • 30344465030 scopus 로고    scopus 로고
    • Cross-validation in nonparametric regression with outliers
    • Leung, D. H.-Y. (2005). Cross-validation in nonparametric regression with outliers. Ann. Statist., 33(5):2291-2310.
    • (2005) Ann. Statist. , vol.33 , Issue.5 , pp. 2291-2310
    • Leung D., H.-Y.1
  • 84
    • 0000840124 scopus 로고
    • From Stein's unbiased risk estimates to the method of generalized cross validation
    • Li, K.-C. (1985). From Stein's unbiased risk estimates to the method of generalized cross validation. Ann. Statist., 13(4):1352-1377.
    • (1985) Ann. Statist. , vol.13 , Issue.4 , pp. 1352-1377
    • Li, K.-C.1
  • 85
    • 0001462696 scopus 로고
    • L, cross-validation and generalized cross-validation: Discrete index set
    • L, cross-validation and generalized cross-validation: discrete index set. Ann. Statist., 15(3):958-975.
    • (1987) Ann. Statist. , vol.15 , Issue.3 , pp. 958-975
    • Li, K.-C.1
  • 86
    • 84915425007 scopus 로고
    • p
    • Mallows, C. L. (1973). Some comments on Cp. Technometrics, 15:661-675.
    • (1973) Technometrics , vol.15 , pp. 661-675
    • Mallows, C.L.1
  • 87
    • 23244454640 scopus 로고    scopus 로고
    • Analysis of variance of cross-validation estimators of the generalization error
    • (electronic)
    • Markatou, M., Tian, H., Biswas, S., and Hripcsak, G. (2005). Analysis of variance of cross-validation estimators of the generalization error. J. Mach. Learn. Res., 6:1127-1168 (electronic).
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1127-1168
    • Markatou, M.1    Tian, H.2    Biswas, S.3    Hripcsak, G.4
  • 88
    • 84857435793 scopus 로고    scopus 로고
    • Springer, Berlin. Lectures from the 33rd Summer School on Probability Theory held in Saint-Flour, July 6-23, 2003, With a foreword by Jean Picard
    • Massart, P. (2007). Concentration inequalities and model selection, volume 1896 of Lecture Notes in Mathematics. Springer, Berlin. Lectures from the 33rd Summer School on Probability Theory held in Saint-Flour, July 6-23, 2003, With a foreword by Jean Picard.
    • (2007) Concentration Inequalities and Model Selection, Volume 1896 of Lecture Notes In Mathematics
    • Massart, P.1
  • 89
    • 25144494760 scopus 로고    scopus 로고
    • Prediction error estimation: A comparison of resampling methods
    • Molinaro, A. M., Simon, R., and Pfeiffer, R. M. (2005). Prediction error estimation: a comparison of resampling methods. Bioinformatics, 21(15):3301-3307.
    • (2005) Bioinformatics , vol.21 , Issue.15 , pp. 3301-3307
    • Molinaro, A.M.1    Simon, R.2    Pfeiffer, R.M.3
  • 90
    • 0002128914 scopus 로고
    • Data analysis, including statistics
    • In Lindzey, G. and Aronson, E., editors, Addison-Wesley
    • Mosteller, F. and Tukey, J. W. (1968). Data analysis, including statistics. In Lindzey, G. and Aronson, E., editors, Handbook of Social Psychology, Vol. 2. Addison-Wesley.
    • (1968) Handbook of Social Psychology , vol.2
    • Mosteller, F.1    Tukey, J.W.2
  • 91
    • 0042847140 scopus 로고    scopus 로고
    • Inference for the generalization error
    • Nadeau, C. and Bengio, Y. (2003). Inference for the generalization error. Machine Learning, 52:239-281.
    • (2003) Machine Learning , vol.52 , pp. 239-281
    • Nadeau, C.1    Bengio, Y.2
  • 92
    • 0007259908 scopus 로고    scopus 로고
    • Topics in Non-Parametric Statistics
    • In Bernard, P., editor, Lectures on Probability Theory and Statistics, Ecole d'ete de Probabilities de Saint-Flour XXVIII - 1998. M. Emery, A. Nemirovski, D. Voiculescu
    • Nemirovski, A. (2000). Topics in Non-Parametric Statistics. In Bernard, P., editor, Lecture Notes in Mathematics, Lectures on Probability Theory and Statistics, Ecole d'ete de Probabilities de Saint-Flour XXVIII - 1998. M. Emery, A. Nemirovski, D. Voiculescu.
    • (2000) Lecture Notes In Mathematics
    • Nemirovski, A.1
  • 93
    • 0001349324 scopus 로고
    • Asymptotic properties of criteria for selection of variables in multiple regression
    • Nishii, R. (1984). Asymptotic properties of criteria for selection of variables in multiple regression. Ann. Statist., 12(2):758-765.
    • (1984) Ann. Statist. , vol.12 , Issue.2 , pp. 758-765
    • Nishii, R.1
  • 94
    • 0009955854 scopus 로고    scopus 로고
    • Nonparametric regression with correlated errors
    • Opsomer, J., Wang, Y., and Yang, Y. (2001). Nonparametric regression with correlated errors. Statist. Sci., 16(2):134-153.
    • (2001) Statist. Sci. , vol.16 , Issue.2 , pp. 134-153
    • Opsomer, J.1    Wang, Y.2    Yang, Y.3
  • 95
    • 84950445313 scopus 로고
    • Cross-validation of regressionmodels
    • Picard, R. R. and Cook, R. D. (1984). Cross-validation of regressionmodels. J. Amer. Statist. Assoc., 79(387):575-583.
    • (1984) J. Amer. Statist. Assoc. , vol.79 , Issue.387 , pp. 575-583
    • Picard, R.R.1    Cook, R.D.2
  • 96
    • 84857395609 scopus 로고    scopus 로고
    • Springer Series In Statistics, Springer-Verlag, New York
    • Politis, D. N., Romano, J. P., and Wolf, M. (1999). infsampling. Springer Series in Statistics. Springer-Verlag, New York.
    • (1999) Infsampling
    • Politis, D.N.1    Romano, J.P.2    Wolf, M.3
  • 97
    • 0002718318 scopus 로고
    • Approximate tests of correlation in time-series
    • Quenouille, M. H. (1949). Approximate tests of correlation in time-series. J. Roy. Statist. Soc. Ser. B., 11:68-84.
    • (1949) J. Roy. Statist. Soc. Ser. B. , vol.11 , pp. 68-84
    • Quenouille, M.H.1
  • 98
    • 0001201909 scopus 로고
    • Bayesian Model Selection in Social Research
    • Raftery, A. E. (1995). Bayesian Model Selection in Social Research. Siocio-logical Methodology, 25:111-163.
    • (1995) Siocio-logical Methodology , vol.25 , pp. 111-163
    • Raftery, A.E.1
  • 100
    • 0001098776 scopus 로고
    • Universal Prior for Integers and Estimation by Minimum Description Length
    • Rissanen, J. (1983). Universal Prior for Integers and Estimation by Minimum Description Length. The Annals of Statistics, 11(2):416-431.
    • (1983) The Annals of Statistics , vol.11 , Issue.2 , pp. 416-431
    • Rissanen, J.1
  • 101
    • 21744461994 scopus 로고    scopus 로고
    • Robust linear model selection by cross-validation
    • Ronchetti, E., Field, C., and Blanchard, W. (1997). Robust linear model selection by cross-validation. J. Amer. Statist. Assoc., 92:1017-1023.
    • (1997) J. Amer. Statist. Assoc. , vol.92 , pp. 1017-1023
    • Ronchetti, E.1    Field, C.2    Blanchard, W.3
  • 102
    • 0002369909 scopus 로고
    • Empirical Choice of Histograms and Kernel Density Estimators
    • Rudemo, M. (1982). Empirical Choice of Histograms and Kernel Density Estimators. Scandinavian Journal of Statistics, 9:65-78.
    • (1982) Scandinavian Journal of Statistics , vol.9 , pp. 65-78
    • Rudemo, M.1
  • 103
    • 68349125861 scopus 로고    scopus 로고
    • Histogram selection in non gaussian regression
    • Sauvé, M. (2009). Histogram selection in non gaussian regression. ESAIM: Probability and Statistics, 13:70-86.
    • (2009) ESAIM: Probability and Statistics , vol.13 , pp. 70-86
    • Sauvé, M.1
  • 105
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978). Estimating the dimension of a model. Ann. Statist., 6(2):461-464.
    • (1978) Ann. Statist. , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 106
    • 21144474350 scopus 로고
    • Linear model selection by cross-validation
    • Shao, J. (1993). Linear model selection by cross-validation. J. Amer. Statist. Assoc., 88(422):486-494.
    • (1993) J. Amer. Statist. Assoc. , vol.88 , Issue.422 , pp. 486-494
    • Shao, J.1
  • 107
    • 0030537683 scopus 로고    scopus 로고
    • Bootstrap model selection
    • Shao, J. (1996). Bootstrap model selection. J. Amer. Statist. Assoc., 91(434):655-665.
    • (1996) J. Amer. Statist. Assoc. , vol.91 , Issue.434 , pp. 655-665
    • Shao, J.1
  • 108
    • 0642336882 scopus 로고    scopus 로고
    • An asymptotic theory for linear model selection
    • With comments and a rejoinder by the author
    • Shao, J. (1997). An asymptotic theory for linear model selection. Statist. Sinica, 7(2):221-264. With comments and a rejoinder by the author.
    • (1997) Statist. Sinica. , vol.7 , Issue.2 , pp. 221-264
    • Shao, J.1
  • 109
    • 0002872575 scopus 로고
    • Approximate efficiency of a selection procedure for the number of regression variables
    • Shibata, R. (1984). Approximate efficiency of a selection procedure for the number of regression variables. Biometrika, 71(1):43-49.
    • (1984) Biometrika , vol.71 , Issue.1 , pp. 43-49
    • Shibata, R.1
  • 110
    • 0001048793 scopus 로고
    • An asymptotically optimal window selection rule for kernel density estimates
    • Stone, C. (1984). An asymptotically optimal window selection rule for kernel density estimates. The Annals of Statistics, 12(4):1285-1297.
    • (1984) The Annals of Statistics , vol.12 , Issue.4 , pp. 1285-1297
    • Stone, C.1
  • 111
    • 0000629975 scopus 로고
    • Cross-validatory Choice and Assessment of Statistical Predictions
    • With discussion and a reply by the authors
    • Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. J. Roy. Statist. Soc. Ser. B, 36:111-147. With discussion and a reply by the authors.
    • (1974) J. Roy. Statist. Soc. Ser. B. , vol.36 , pp. 111-147
    • Stone, M.1
  • 112
    • 0017336301 scopus 로고
    • Asymptotics for and against cross-validation
    • Stone, M. (1977). Asymptotics for and against cross-validation. Biometrika, 64(1):29-35.
    • (1977) Biometrika , vol.64 , Issue.1 , pp. 29-35
    • Stone, M.1
  • 113
    • 0001287271 scopus 로고    scopus 로고
    • Regression Shrinkage and Selection via the Lasso
    • Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso. J. Royal Statist. Soc. Series B, 58(1):267-288.
    • (1996) J. Royal Statist. Soc. Series B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 115
    • 14644402543 scopus 로고    scopus 로고
    • Asymptotic optimality of likelihood-based cross-validation
    • Art. 4, electronic
    • van der Laan, M. J., Dudoit, S., and Keles, S. (2004). Asymptotic optimality of likelihood-based cross-validation. Stat. Appl. Genet. Mol. Biol., 3:Art. 4, 27 pp. (electronic).
    • (2004) Stat. Appl. Genet. Mol. Biol. , vol.3 , pp. 27
    • van der Laan, M.J.1    Dudoit, S.2    Keles, S.3
  • 117
  • 119
    • 0003969585 scopus 로고
    • Springer Series in Statistics. Springer-Verlag, New York. Translated from the Russian by Samuel Kotz
    • Vapnik, V. (1982). Estimation of dependences based on empirical data. Springer Series in Statistics. Springer-Verlag, New York. Translated from the Russian by Samuel Kotz.
    • (1982) Estimation of Dependences Based On Empirical Data
    • Vapnik, V.1
  • 121
    • 0004272441 scopus 로고
    • Teoriya raspoznavaniya obrazov
    • Izdat. "Nauka", Moscow. Theory of Pattern Recognition (In Russian)
    • Vapnik, V. N. and Chervonenkis, A. Y. (1974). Teoriya raspoznavaniya obrazov. Statisticheskie problemy obucheniya. Izdat. "Nauka", Moscow. Theory of Pattern Recognition (In Russian).
    • (1974) Statisticheskie Problemy Obucheniya
    • Vapnik, V.N.1    Chervonenkis, A.Y.2
  • 122
    • 0000620787 scopus 로고
    • Periodic splines for spectral density estimation: The use of cross validation for determining the degree of smoothing
    • Wahba, G. (1975). Periodic splines for spectral density estimation: The use of cross validation for determining the degree of smoothing. Communications in Statistics, 4:125-142.
    • (1975) Communications In Statistics , vol.4 , pp. 125-142
    • Wahba, G.1
  • 123
    • 0000544453 scopus 로고
    • Practical Approximate Solutions to Linear Operator Equations When the Data are Noisy
    • Wahba, G. (1977). Practical Approximate Solutions to Linear Operator Equations When the Data are Noisy. SIAM Journal on Numerical Analysis, 14(4):651-667.
    • (1977) SIAM Journal On Numerical Analysis , vol.14 , Issue.4 , pp. 651-667
    • Wahba, G.1
  • 124
    • 21144432799 scopus 로고    scopus 로고
    • Model selection in nonparametric regression
    • Wegkamp, M. (2003). Model selection in nonparametric regression. The Annals of Statistics, 31(1):252-273.
    • (2003) The Annals of Statistics , vol.31 , Issue.1 , pp. 252-273
    • Wegkamp, M.1
  • 125
    • 1542573460 scopus 로고    scopus 로고
    • Adaptive Regression by Mixing
    • Yang, Y. (2001). Adaptive Regression by Mixing. J. Amer. Statist. Assoc., 96(454):574-588.
    • (2001) J. Amer. Statist. Assoc. , vol.96 , Issue.454 , pp. 574-588
    • Yang, Y.1
  • 126
    • 27944460480 scopus 로고    scopus 로고
    • Can the strengths of AIC and BIC be shared? A conflict between model indentification and regression estimation
    • Yang, Y. (2005). Can the strengths of AIC and BIC be shared? A conflict between model indentification and regression estimation. Biometrika, 92(4):937-950.
    • (2005) Biometrika , vol.92 , Issue.4 , pp. 937-950
    • Yang, Y.1
  • 127
    • 33746167868 scopus 로고    scopus 로고
    • Comparing learning methods for classification
    • Yang, Y. (2006). Comparing learning methods for classification. Statist. Sinica, 16(2):635-657.
    • (2006) Statist. Sinica. , vol.16 , Issue.2 , pp. 635-657
    • Yang, Y.1
  • 128
    • 39649100346 scopus 로고    scopus 로고
    • Consistency of cross validation for comparing regression procedures
    • Yang, Y. (2007). Consistency of cross validation for comparing regression procedures. Ann. Statist., 35(6):2450-2473.
    • (2007) Ann. Statist. , vol.35 , Issue.6 , pp. 2450-2473
    • Yang, Y.1
  • 129
    • 21144472438 scopus 로고
    • Model selection via multifold cross validation
    • Zhang, P. (1993). Model selection via multifold cross validation. Ann. Statist., 21(1):299-313.
    • (1993) Ann. Statist. , vol.21 , Issue.1 , pp. 299-313
    • Zhang, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.