메뉴 건너뛰기




Volumn 22, Issue 1, 2011, Pages 110-120

Approximate confidence and prediction intervals for least squares support vector regression

Author keywords

Bias; confidence interval; heteroscedasticity; homoscedasticity; kernel based regression; variance

Indexed keywords

BIAS; CONFIDENCE INTERVAL; HETEROSCEDASTICITY; HOMOSCEDASTICITY; KERNEL-BASED REGRESSION; VARIANCE;

EID: 78651267218     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2010.2087769     Document Type: Article
Times cited : (123)

References (42)
  • 1
    • 77649273984 scopus 로고    scopus 로고
    • An improved algorithm for the solution of the regularization path of support vector machine
    • Mar.
    • C.-J. Ong, S. Shao, and J. Yang, "An improved algorithm for the solution of the regularization path of support vector machine," IEEE Trans. Neural Netw., vol. 21, no. 3, pp. 451-462, Mar. 2010.
    • (2010) IEEE Trans. Neural Netw. , vol.21 , Issue.3 , pp. 451-462
    • Ong, C.-J.1    Shao, S.2    Yang, J.3
  • 2
    • 76749157156 scopus 로고    scopus 로고
    • Cutting plane method for continuously constrained kernel-based regression
    • Feb.
    • Z. Sun, Z. Zhang, H. Wang, and M. Jiang, "Cutting plane method for continuously constrained kernel-based regression," IEEE Trans. Neural Netw., vol. 21, no. 2, pp. 238-247, Feb. 2010.
    • (2010) IEEE Trans. Neural Netw. , vol.21 , Issue.2 , pp. 238-247
    • Sun, Z.1    Zhang, Z.2    Wang, H.3    Jiang, M.4
  • 4
    • 0000629923 scopus 로고
    • On bootstrap confidence intervals in nonparametric regression
    • Jun.
    • P. Hall, "On bootstrap confidence intervals in nonparametric regression," Ann. Statist., vol. 20, no. 2, pp. 695-711, Jun. 1992.
    • (1992) Ann. Statist. , vol.20 , Issue.2 , pp. 695-711
    • Hall, P.1
  • 5
    • 0029756425 scopus 로고    scopus 로고
    • Confidence interval prediction for neural network models
    • Jan.
    • G. Chryssoloiuris, M. Lee, and A. Ramsey, "Confidence interval prediction for neural network models," IEEE Trans. Neural Netw., vol. 7, no. 1, pp. 229-232, Jan. 1996.
    • (1996) IEEE Trans. Neural Netw. , vol.7 , Issue.1 , pp. 229-232
    • Chryssoloiuris, G.1    Lee, M.2    Ramsey, A.3
  • 6
    • 0035505634 scopus 로고    scopus 로고
    • Confidence estimation methods for neural networks: A practical comparison
    • Nov.
    • G. Papadopoulos, P. J. Edwards, and A. F. Murray, "Confidence estimation methods for neural networks: A practical comparison," IEEE Trans. Neural Netw., vol. 12, no. 6, pp. 1278-1287, Nov. 2001.
    • (2001) IEEE Trans. Neural Netw. , vol.12 , Issue.6 , pp. 1278-1287
    • Papadopoulos, G.1    Edwards, P.J.2    Murray, A.F.3
  • 7
    • 0343090467 scopus 로고    scopus 로고
    • Construction of confidence intervals for neural networks based on least squares estimation
    • Jun.
    • I. Rivals and L. Personnaz, "Construction of confidence intervals for neural networks based on least squares estimation," Neural Netw., vol. 13, nos. 4-5, pp. 463-484, Jun. 2000.
    • (2000) Neural Netw , vol.13 , Issue.4-5 , pp. 463-484
    • Rivals, I.1    Personnaz, L.2
  • 8
    • 84898994542 scopus 로고    scopus 로고
    • Regression with input-dependent noise: A Bayesian treatment
    • Cambridge, MA: MIT Press
    • C. M. Bishop and C. S. Qazaz, "Regression with input-dependent noise: A Bayesian treatment," in Advances in Neural Information Processing Systems 9. Cambridge, MA: MIT Press, 1997, pp. 347-353.
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 347-353
    • Bishop, C.M.1    Qazaz, C.S.2
  • 10
    • 34547984865 scopus 로고    scopus 로고
    • Most likely heteroscedastic Gaussian process regression
    • Corvalis, OR
    • K. Kersting, C. Plagemann, P. Pfaff, and W. Burgard, "Most likely heteroscedastic Gaussian process regression," in Proc. 24th ICML, Corvalis, OR, 2007, pp. 393-400.
    • (2007) Proc. 24th ICML , pp. 393-400
    • Kersting, K.1    Plagemann, C.2    Pfaff, P.3    Burgard, W.4
  • 13
    • 33745816368 scopus 로고    scopus 로고
    • Estimating predictive variances with kernel ridge regression
    • Berlin, Germany: Springer-Verlag
    • G. C. Cawley, N. L. C. Talbot, and O. Chapelle, "Estimating predictive variances with kernel ridge regression," in Machine Learning Challenges Workshop. Berlin, Germany: Springer-Verlag, 2006, pp. 56-77.
    • (2006) Machine Learning Challenges Workshop , pp. 56-77
    • Cawley, G.C.1    Talbot, N.L.C.2    Chapelle, O.3
  • 14
    • 73149116074 scopus 로고
    • Confidence bands in nonparametric regression
    • Dec.
    • R. L. Eubank and P. L. Speckman, "Confidence bands in nonparametric regression," J. Amer. Statist. Assoc., vol. 88, no. 424, pp. 1287-1301, Dec. 1993.
    • (1993) J. Amer. Statist. Assoc. , vol.88 , Issue.424 , pp. 1287-1301
    • Eubank, R.L.1    Speckman, P.L.2
  • 15
    • 0000797991 scopus 로고
    • On some global measures of the deviations of density function estimates
    • P. J. Bickel and M. Rosenblatt, "On some global measures of the deviations of density function estimates," Ann. Statist., vol. 1, no. 6, pp. 1071-1095, 1973.
    • (1973) Ann. Statist. , vol.1 , Issue.6 , pp. 1071-1095
    • Bickel, P.J.1    Rosenblatt, M.2
  • 16
    • 0000246894 scopus 로고    scopus 로고
    • On confidence bands in nonparametric density estimation and regression
    • Oct.
    • P. Hall and D. M. Titterington, "On confidence bands in nonparametric density estimation and regression," J. Multivariate Anal., vol. 27, no. 1, pp. 228-254, Oct. 1998.
    • (1998) J. Multivariate Anal. , vol.27 , Issue.1 , pp. 228-254
    • Hall, P.1    Titterington, D.M.2
  • 17
    • 38249023605 scopus 로고
    • Asymptotic maximal deviation of M-smoothers
    • May
    • W. Härdle, "Asymptotic maximal deviation of M-smoothers," J. Multivariate Anal., vol. 29, no. 2, pp. 163-179, May 1989.
    • (1989) J. Multivariate Anal. , vol.29 , Issue.2 , pp. 163-179
    • Härdle, W.1
  • 18
    • 0042559817 scopus 로고
    • Probabilities of maximal deviations for nonparametric regression function estimates
    • Sep.
    • G. J. Johnstone, "Probabilities of maximal deviations for nonparametric regression function estimates," J. Multivariate Anal., vol. 12, no. 3, pp. 402-414, Sep. 1982.
    • (1982) J. Multivariate Anal. , vol.12 , Issue.3 , pp. 402-414
    • Johnstone, G.J.1
  • 19
    • 0000887734 scopus 로고
    • Data-driven bandwidth selection in local polynomial fitting: Variable bandwidth and spatial adaptation
    • J. Fan and I. Gijbels, "Data-driven bandwidth selection in local polynomial fitting: Variable bandwidth and spatial adaptation," J. R. Statist. Soc. B, vol. 57, no. 2, pp. 371-394, 1995.
    • (1995) J. R. Statist. Soc. B , vol.57 , Issue.2 , pp. 371-394
    • Fan, J.1    Gijbels, I.2
  • 25
    • 0001079479 scopus 로고
    • Regression smoothing parameters that are not far from their optimum
    • Mar.
    • W. Härdle, P. Hall, and J. S. Marron, "Regression smoothing parameters that are not far from their optimum," J. Amer. Statist. Assoc., vol. 87, no. 417, pp. 227-233, Mar. 1992.
    • (1992) J. Amer. Statist. Assoc. , vol.87 , Issue.417 , pp. 227-233
    • Härdle, W.1    Hall, P.2    Marron, J.S.3
  • 26
    • 0000961658 scopus 로고    scopus 로고
    • Local polynomial estimators of the volatility function in nonparametric autoregression
    • Nov.
    • W. Härdle and A. Tsybakov, "Local polynomial estimators of the volatility function in nonparametric autoregression," J. Econometrics, vol. 81, no. 1, pp. 223-242, Nov. 1997.
    • (1997) J. Econometrics , vol.81 , Issue.1 , pp. 223-242
    • Härdle, W.1    Tsybakov, A.2
  • 27
    • 0000871211 scopus 로고    scopus 로고
    • Efficient estimation of conditional variance functions in stochastic regression
    • Sep.
    • J. Fan and Q. Yao, "Efficient estimation of conditional variance functions in stochastic regression," Biometrika, vol. 85, no. 3, pp. 645-660, Sep. 1998.
    • (1998) Biometrika , vol.85 , Issue.3 , pp. 645-660
    • Fan, J.1    Yao, Q.2
  • 30
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • Feb.
    • A. E. Hoerl and R. W. Kennard, "Ridge regression: Biased estimation for nonorthogonal problems," Technometrics, vol. 12, no. 1, pp. 55-67, Feb. 1970.
    • (1970) Technometrics , vol.12 , Issue.1 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 33
    • 0040406290 scopus 로고
    • The distribution of the maxima of a random curve
    • Apr.
    • S. O. Rice, "The distribution of the maxima of a random curve," Amer. J. Math., vol. 61, no. 2, pp. 409-416, Apr. 1939.
    • (1939) Amer. J. Math. , vol.61 , Issue.2 , pp. 409-416
    • Rice, S.O.1
  • 34
    • 21844493366 scopus 로고
    • Simultaneous confidence bands for linear regression and smoothing
    • Sep.
    • J. Sun and C. R. Loader, "Simultaneous confidence bands for linear regression and smoothing," Ann. Statist., vol. 22, no. 3, pp. 1328-1345, Sep. 1994.
    • (1994) Ann. Statist. , vol.22 , Issue.3 , pp. 1328-1345
    • Sun, J.1    Loader, C.R.2
  • 35
    • 0001534482 scopus 로고
    • Confidence bands for regression functions
    • Sep.
    • G. Knafl, J. Sacks, and D. Ylvisaker, "Confidence bands for regression functions," J. Amer. Statist. Assoc., vol. 80, no. 391, pp. 683-691, Sep. 1985.
    • (1985) J. Amer. Statist. Assoc. , vol.80 , Issue.391 , pp. 683-691
    • Knafl, G.1    Sacks, J.2    Ylvisaker, D.3
  • 36
    • 77249166772 scopus 로고
    • Resampling for inference from curves
    • Bonn, Germany
    • W. Härdle, "Resampling for inference from curves," in Proc. 47th Session Int. Statist. Inst., Bonn, Germany, 1989, pp. 59-69.
    • (1989) Proc. 47th Session Int. Statist. Inst. , pp. 59-69
    • Härdle, W.1
  • 37
    • 0002344794 scopus 로고
    • Bootstrap methods: Another look at the jackknife
    • B. Efron, "Bootstrap methods: Another look at the jackknife," Ann. Statist., vol. 7, no. 1, pp. 1-26, 1979.
    • (1979) Ann. Statist. , vol.7 , Issue.1 , pp. 1-26
    • Efron, B.1
  • 38
    • 0000712557 scopus 로고
    • Bootstrap procedure under some non-I.I.D. models
    • Dec.
    • R. Y. Liu, "Bootstrap procedure under some non-I.I.D. models," Ann. Statist., vol. 16, no. 4, pp. 1696-1708, Dec. 1988.
    • (1988) Ann. Statist. , vol.16 , Issue.4 , pp. 1696-1708
    • Liu, R.Y.1
  • 39
    • 0001673027 scopus 로고
    • Jackknife, bootstrap and other resampling methods in regression analysis
    • C. F. J. Wu, "Jackknife, bootstrap and other resampling methods in regression analysis," Ann. Statist., vol. 14, no. 4, pp. 1261-1295, 1986.
    • (1986) Ann. Statist. , vol.14 , Issue.4 , pp. 1261-1295
    • Wu, C.F.J.1
  • 40
    • 0001673027 scopus 로고
    • Jackknife bootstrap and other resampling methods in regression analysis
    • C. F. J. Wu, "Jackknife bootstrap and other resampling methods in regression analysis," Ann. Statist., vol. 14, no. 4, pp. 1295-1298, 1986.
    • (1986) Ann. Statist. , vol.14 , Issue.4 , pp. 1295-1298
    • Wu, C.F.J.1
  • 41
    • 21144477186 scopus 로고
    • Bootstrap and wild bootstrap for high dimensional linear models
    • Mar.
    • E. Mammen, "Bootstrap and wild bootstrap for high dimensional linear models," Ann. Statist., vol. 21, no. 1, pp. 255-285, Mar. 1993.
    • (1993) Ann. Statist. , vol.21 , Issue.1 , pp. 255-285
    • Mammen, E.1
  • 42
    • 34347387722 scopus 로고    scopus 로고
    • Implementing the wild bootstrap using a two-point distribution
    • Sep.
    • J. Davidson, A. Monticini, and D. Peel, "Implementing the wild bootstrap using a two-point distribution," Econ. Lett., vol. 96, no. 3, pp. 309-315, Sep. 2007.
    • (2007) Econ. Lett. , vol.96 , Issue.3 , pp. 309-315
    • Davidson, J.1    Monticini, A.2    Peel, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.