-
1
-
-
80052866161
-
Incremental and decremental support vector machine learning
-
(T. K. Leen, T. G. Dietterich, and V. Tresp, eds.) (Cambridge, Massachussetts) The MIT Press
-
G. Cauwenberghs and T. Poggio, "Incremental and decremental support vector machine learning," in Advances in Neural Information Processing Systems (T. K. Leen, T. G. Dietterich, and V. Tresp, eds.), vol. 13, (Cambridge, Massachussetts), pp. 409-415, The MIT Press, 2001.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
, pp. 409-415
-
-
Cauwenberghs, G.1
Poggio, T.2
-
2
-
-
0141556297
-
On-line support vector machines for function approximation
-
University Politecnica de Catalunya
-
M. Martin, "On-line support vector machines for function approximation," tech. rep., Software Department, University Politecnica de Catalunya, 2002.
-
(2002)
Tech. Rep., Software Department
-
-
Martin, M.1
-
3
-
-
0141765796
-
Accurate online support vector regression
-
J. Ma and J. Theiler, "Accurate online support vector regression," Neural Computation, vol. 15, no. 11, pp. 2683-2703, 2003.
-
(2003)
Neural Computation
, vol.15
, Issue.11
, pp. 2683-2703
-
-
Ma, J.1
Theiler, J.2
-
4
-
-
33745777639
-
Incremental support vector learning: Analysis, implementation and applications
-
P. Laskov, C. Gehl, S. Kruger, and K.-R. Muller, "Incremental support vector learning: Analysis, implementation and applications," Journal of Machine Learning Research, vol. 7, pp. 1909-1936, 2006.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1909-1936
-
-
Laskov, P.1
Gehl, C.2
Kruger, S.3
Muller, K.-R.4
-
5
-
-
84925605946
-
The entire regularization path for the support vector machine
-
T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu, "The entire regularization path for the support vector machine," Journal of Machine Learning Research, vol. 5, pp. 1391-1415, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 1391-1415
-
-
Hastie, T.1
Rosset, S.2
Tibshirani, R.3
Zhu, J.4
-
6
-
-
34249726632
-
Efficient computation and model selection for the support vector regression
-
L. Gunter and J. Zhu, "Efficient computation and model selection for the support vector regression," Neural Computation, vol. 19, no. 6, pp. 1633-1655, 2007.
-
(2007)
Neural Computation
, vol.19
, Issue.6
, pp. 1633-1655
-
-
Gunter, L.1
Zhu, J.2
-
7
-
-
54349106864
-
A new solution path algorithm in support vector regression
-
G. Wang, D.-Y. Yeung, and F. H. Lochovsky, "A new solution path algorithm in support vector regression," IEEE Transactions on Neural Networks, vol. 19, no. 10, pp. 1753-1767, 2008.
-
(2008)
IEEE Transactions on Neural Networks
, vol.19
, Issue.10
, pp. 1753-1767
-
-
Wang, G.1
Yeung, D.-Y.2
Lochovsky, F.H.3
-
12
-
-
2542639357
-
An efficient method for computing leave-one-out error in support vector machines
-
M. M. Lee, S. S. Keerthi, C. J. Ong, and D. DeCoste, "An efficient method for computing leave-one-out error in support vector machines," IEEE transaction on neural networks, vol. 15, no. 3, pp. 750-757, 2004.
-
(2004)
IEEE Transaction on Neural Networks
, vol.15
, Issue.3
, pp. 750-757
-
-
Lee, M.M.1
Keerthi, S.S.2
Ong, C.J.3
DeCoste, D.4
-
13
-
-
10344252975
-
-
M. Meyer, "Statlib." http://lib.stat.cmu.edu/index.php.
-
Statlib
-
-
Meyer, M.1
-
14
-
-
42249094907
-
Support vector machine solvers
-
(L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, eds.) Cambridge, MA.: MIT Press
-
L. Bottou and C.-J. Lin, "Support vector machine solvers," in Large Scale Kernel Machines (L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, eds.), pp. 301-320, Cambridge, MA.: MIT Press, 2007.
-
(2007)
Large Scale Kernel Machines
, pp. 301-320
-
-
Bottou, L.1
Lin, C.-J.2
-
15
-
-
70450206749
-
Efficient leave-m-out cross-validation of support vector regression by generalizing decremental algorithm
-
Special Issue on Data-Mining and Statistical Science
-
M. Karasuyama, I. Takeuchi, and R. Nakano, "Efficient leave-m-out cross-validation of support vector regression by generalizing decremental algorithm," New Generation Computing, vol. 27, no. 4, Special Issue on Data-Mining and Statistical Science, pp. 307-318, 2009.
-
(2009)
New Generation Computing
, vol.27
, Issue.4
, pp. 307-318
-
-
Karasuyama, M.1
Takeuchi, I.2
Nakano, R.3
|