-
1
-
-
76749084159
-
Unified framework for SVM model selection.
-
I. Guyon, et al., editor. Microtome
-
M. Adankon and M. Cheriet. Unified framework for SVM model selection. In I. Guyon, et al., editor, Hands on Pattern Recognition. Microtome, 2009.
-
(2009)
Hands on Pattern Recognition
-
-
Adankon, M.1
Cheriet, M.2
-
2
-
-
0000501656
-
Information theory and an extension of the maximum likelihood principle
-
B.N. Petrov and F. Csaki, editors. Akademia Kiado, Budapest
-
H. Akaike. Information theory and an extension of the maximum likelihood principle. In B.N. Petrov and F. Csaki, editors, 2nd International Symposium on Information Theory, pages 267- 281. Akademia Kiado, Budapest, 1973.
-
(1973)
2nd International Symposium on Information Theory
, pp. 267-281
-
-
Akaike, H.1
-
4
-
-
76749147250
-
Virtual high-throughput screening with two-dimensional kernels
-
I. Guyon, et al., editor. Microtome
-
C.-A. Azencott and P. Baldi. Virtual high-throughput screening with two-dimensional kernels. In I. Guyon, et al., editor, Hands on Pattern Recognition. Microtome, 2009.
-
(2009)
Hands on Pattern Recognition
-
-
Azencott, C.-A.1
Baldi, P.2
-
5
-
-
84898957627
-
For valid generalization the size of the weights is more important than the size of the network
-
M. C. Mozer, M. I. Jordan, and T. Petsche, editors, Cambridge, MA. MIT Press
-
P. L. Bartlett. For valid generalization the size of the weights is more important than the size of the network. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors, Advances in Neural Information Processing Systems, volume 9, page 134, Cambridge, MA, 1997. MIT Press.
-
(1997)
Advances in Neural Information Processing Systems
, vol.9
, pp. 134
-
-
Bartlett, P.L.1
-
7
-
-
0031334221
-
Selection of relevant features and examples in machine learning
-
December
-
A. Blum and P. Langley. Selection of relevant features and examples in machine learning. Artificial Intelligence, 97(1-2):245-271, December 1997.
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1-2
, pp. 245-271
-
-
Blum, A.1
Langley, P.2
-
8
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
B. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin classifiers. In COLT, pages 144-152, 1992.
-
(1992)
COLT
, pp. 144-152
-
-
Boser, B.1
Guyon, I.2
Vapnik, V.3
-
9
-
-
34547688866
-
Compression-based averaging of selective naive bayes classifiers
-
I. Guyon and A. Saffari, editors, Jul
-
M. Boullé. Compression-based averaging of selective naive bayes classifiers. In I. Guyon and A. Saffari, editors, JMLR, Special Topic on Model Selection, volume 8, pages 1659-1685, Jul 2007. URL http://www.jmlr.org/papers/ volume8/boulle07a/boulle07a.pdf.
-
(2007)
JMLR, Special Topic on Model Selection
, vol.8
, pp. 1659-1685
-
-
Boullé, M.1
-
10
-
-
84877309694
-
Data grid models for preparation and modeling in supervised learning
-
I. Guyon, et al., editor. Microtome
-
M. Boullé. Data grid models for preparation and modeling in supervised learning. In I. Guyon, et al., editor, Hands on Pattern Recognition. Microtome, 2009.
-
(2009)
Hands on Pattern Recognition
-
-
Boullé, M.1
-
11
-
-
0035478854
-
Random forests
-
L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
12
-
-
0030211964
-
Bagging predictors
-
L. Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
13
-
-
40649116219
-
Leave-one-out cross-validation based model selection criteria for weighted ls-svms
-
G. Cawley. Leave-one-out cross-validation based model selection criteria for weighted ls-svms. In IJCNN, pages 1661-1668, 2006.
-
(2006)
IJCNN
, pp. 1661-1668
-
-
Cawley, G.1
-
14
-
-
76749110629
-
Over-fitting in model selection and subsequent selection bias in performance evaluation
-
G. Cawley and N. Talbot. Over-fitting in model selection and subsequent selection bias in performance evaluation. JMLR, submitted, 2009.
-
(2009)
JMLR, Submitted
-
-
Cawley, G.1
Talbot, N.2
-
15
-
-
34247558132
-
Preventing over-fitting during model selection via Bayesian regularization of the hyper-parameters
-
I. Guyon and A. Saffari, editors, Apr
-
G. Cawley and N. Talbot. Preventing over-fitting during model selection via Bayesian regularization of the hyper-parameters. In I. Guyon and A. Saffari, editors, JMLR, Special Topic on Model Selection, volume 8, pages 841-861, Apr 2007a. URL http://www.jmlr.org/papers/volume8/cawley07a/cawley07a.pdf.
-
(2007)
JMLR, Special Topic on Model Selection
, vol.8
, pp. 841-861
-
-
Cawley, G.1
Talbot, N.2
-
16
-
-
51749102156
-
Agnostic learning versus prior knowledge in the design of kernel machines
-
Orlando, Florida, Aug. INNS/IEEE
-
G. C. Cawley and N. L. C. Talbot. Agnostic learning versus prior knowledge in the design of kernel machines. In Proc. IJCNN07, Orlando, Florida, Aug 2007b. INNS/IEEE.
-
(2007)
Proc. IJCNN07
-
-
Cawley, G.C.1
Talbot, N.L.C.2
-
18
-
-
76749088285
-
Bayesian Support Vector Machines for feature ranking and selection
-
I. Guyon, et al., editor
-
W. Chu, S. Keerthi, C. J. Ong, and Z. Ghahramani. Bayesian Support Vector Machines for feature ranking and selection. In I. Guyon, et al., editor, Feature Extraction, Foundations and Applications, 2006.
-
(2006)
Feature Extraction, Foundations and Applications
-
-
Chu, W.1
Keerthi, S.2
Ong, C.J.3
Ghahramani, Z.4
-
19
-
-
41549130258
-
An information criterion for variable selection in Support Vector Machines
-
I. Guyon and A. Saffari, editors. Mar
-
G. Claeskens, C. Croux, and J. Van Kerckhoven. An information criterion for variable selection in Support Vector Machines. In I. Guyon and A. Saffari, editors, JMLR, Special Topic on Model Selection, volume 9, pages 541-558, Mar 2008. URL http://www.jmlr.org/papers/volume9/claeskens08a/claeskens08a.pdf.
-
(2008)
JMLR, Special Topic on Model Selection
, vol.9
, pp. 541-558
-
-
Claeskens, G.1
Croux, C.2
Van Kerckhoven, J.3
-
21
-
-
84860145416
-
An improved Random Forests approach with application to the performance prediction challenge datasets
-
I. Guyon, et al., editor
-
C. Dahinden. An improved Random Forests approach with application to the performance prediction challenge datasets. In I. Guyon, et al., editor, Hands on Pattern Recognition. Microtome, 2009.
-
(2009)
Hands on Pattern Recognition. Microtome
-
-
Dahinden, C.1
-
22
-
-
56349086986
-
Model selection in kernel based regression using the influence function
-
I. Guyon and A. Saffari, editors, Oct 2-8
-
M. Debruyne, M. Hubert, and J. Suykens. Model selection in kernel based regression using the influence function. In I. Guyon and A. Saffari, editors, JMLR, Special Topic on Model Selection, volume 9, pages 2377-2400, Oct 2-8. URL http://www.jmlr.org/papers/volume9/debruyne08a/debruyne08a.pdf.
-
JMLR, Special Topic on Model Selection
, vol.9
, pp. 2377-2400
-
-
Debruyne, M.1
Hubert, M.2
Suykens, J.3
-
24
-
-
0035470889
-
Greedy function approximation: A gradient boosting machine
-
J. Friedman. Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29:1189-1232, 2000.
-
(2000)
Annals of Statistics
, vol.29
, pp. 1189-1232
-
-
Friedman, J.1
-
25
-
-
0034164230
-
Additive logistic regression, a statistical view of boosting
-
J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression, a statistical view of boosting. Annals of Statistics, 28:337374, 2000.
-
(2000)
Annals of Statistics
, vol.28
, pp. 337374
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
27
-
-
71149105482
-
PAC-Bayesian learning of linear classifiers
-
New York, NY, USA. ACM. ISBN 978-1-60558-516-1
-
P. Germain, A. Lacasse, F. Laviolette, and M. Marchand. PAC-Bayesian learning of linear classifiers. In ICML '09: Proceedings of the 26th Annual International Conference on Machine Learning, pages 353-360, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-516-1.
-
(2009)
ICML ' 09: Proceedings of the 26th Annual International Conference on Machine Learning
, pp. 353-360
-
-
Germain, P.1
Lacasse, A.2
Laviolette, F.3
Marchand, M.4
-
28
-
-
36949010307
-
VC theory of large margin multi-category classifiers
-
I. Guyon and A. Saffari, editors, Nov
-
Y. Guermeur. VC theory of large margin multi-category classifiers. In I. Guyon and A. Saffari, editors, JMLR, Special Topic on Model Selection, volume 8, pages 2551-2594, Nov 2007. URL http://www.jmlr.org/papers/volume8/guermeur07a/ guermeur07a.pdf.
-
(2007)
JMLR, Special Topic on Model Selection
, vol.8
, pp. 2551-2594
-
-
Guermeur, Y.1
-
29
-
-
77955421711
-
A practical guide to model selection
-
J. Marie, editor. Springer, to appear
-
I. Guyon. A practical guide to model selection. In J. Marie, editor, Machine Learning Summer School. Springer, to appear, 2009.
-
(2009)
Machine Learning Summer School
-
-
Guyon, I.1
-
30
-
-
33745891586
-
-
I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, Editors. Studies in Fuzziness and Soft Computing. With data, results and sample code for the NIPS 2003 feature selection challenge. Physica-Verlag, Springer
-
I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, Editors. Feature Extraction, Foundations and Applications. Studies in Fuzziness and Soft Computing. With data, results and sample code for the NIPS 2003 feature selection challenge. Physica-Verlag, Springer, 2006a. URL http: //clopinet.com/fextract-book/.
-
(2006)
Feature Extraction, Foundations and Applications
-
-
-
31
-
-
34247558363
-
Performance prediction challenge
-
Vancouver, Canada, July 16-21
-
I. Guyon, A. Saffari, G. Dror, and J. Buhmann. Performance prediction challenge. In IEEE/INNS conference IJCNN 2006, Vancouver, Canada, July 16-21 2006b.
-
(2006)
IEEE/INNS Conference IJCNN 2006
-
-
Guyon, I.1
Saffari, A.2
Dror, G.3
Buhmann, J.4
-
32
-
-
51749088353
-
Agnostic learning vs. prior knowledge challenge
-
Orlando, Florida, August 12-17
-
I. Guyon, A. Saffari, G. Dror, and G. Cawley. Agnostic learning vs. prior knowledge challenge.In IEEE/INNS conference IJCNN 2007, Orlando, Florida, August 12-17 2007.
-
(2007)
IEEE/INNS Conference IJCNN 2007
-
-
Guyon, I.1
Saffari, A.2
Dror, G.3
Cawley, G.4
-
33
-
-
77956412560
-
Design and analysis of the causation and prediction challenge
-
WCCI2008 workshop on causality, Hong Kong, June 3-4
-
I. Guyon, C. Aliferis, G. Cooper, A. Elisseeff, J.-P. Pellet, P. Spirtes, and A. Statnikov. Design and analysis of the causation and prediction challenge. In JMLR W&CP, volume 3, pages 1-33, WCCI2008 workshop on causality, Hong Kong, June 3-4 2008a. URL http://jmlr.csail.mit.edu/papers/ topic/causality.html.
-
(2008)
JMLR W&CP
, vol.3
, pp. 1-33
-
-
Guyon, I.1
Aliferis, C.2
Cooper, G.3
Elisseeff, A.4
Pellet, J.-P.5
Spirtes, P.6
Statnikov, A.7
-
34
-
-
40649109726
-
Analysis of the IJCNN 2007 agnostic learning vs. prior knowledge challenge
-
Orlando, Florida, March
-
I. Guyon, A. Saffari, G. Dror, and G. Cawley. Analysis of the IJCNN 2007 agnostic learning vs. prior knowledge challenge. In Neural Networks, volume 21, pages 544-550, Orlando, Florida, March 2008b.
-
(2008)
Neural Networks
, vol.21
, pp. 544-550
-
-
Guyon, I.1
Saffari, A.2
Dror, G.3
Cawley, G.4
-
35
-
-
76749127862
-
Causality: Objectives and assessment
-
JMLR W&CP, in press, 2009a
-
I. Guyon, D. Janzing, and B. Schölkopf. Causality: objectives and assessment. In NIPS 2008 workshop on causality, volume 7. JMLR W&CP, in press, 2009a.
-
NIPS 2008 Workshop on Causality
, vol.7
-
-
Guyon, I.1
Janzing, D.2
Schölkopf, B.3
-
36
-
-
79959453209
-
Analysis of the KDD cup 2009: Fast scoring on a large orange customer database
-
in press. JMLR W&CP
-
I. Guyon, V. Lemaire, M. Boullé, Gideon Dror, and David Vogel. Analysis of the KDD cup 2009: Fast scoring on a large orange customer database. In KDD cup 2009, in press, volume 8. JMLR W&CP, 2009b.
-
(2009)
KDD Cup 2009
, vol.8
-
-
Guyon, I.1
Lemaire, V.2
Boullé, M.3
Dror, G.4
Vogel, D.5
-
37
-
-
61749103238
-
Particle swarm model selection
-
I. Guyon and A. Saffari, editors, Feb
-
L. E. Sucar H. J. Escalante, M. Montes. Particle swarm model selection. In I. Guyon and A. Saffari, editors, JMLR, Special Topic on Model Selection, volume 10, pages 405-440, Feb 2009. URL http://www.jmlr.org/papers/volume10/ escalante09a/escalante09a.pdf.
-
(2009)
JMLR, Special Topic on Model Selection
, vol.10
, pp. 405-440
-
-
Sucar, L.E.1
Escalante, H.J.2
Montes, M.3
-
38
-
-
0003684449
-
-
Springer Verlag
-
T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning, Data Mining, Inference and Prediction. Springer Verlag, 2000.
-
(2000)
The Elements of Statistical Learning, Data Mining, Inference and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
39
-
-
84925605946
-
The entire regularization path for the support vector machine
-
T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu. The entire regularization path for the support vector machine. JMLR, 5:1391-1415, 2004. URL http://jmlr.csail.mit.edu/papers/volume5/hastie04a/hastie04a.pdf.
-
(2004)
JMLR
, vol.5
, pp. 1391-1415
-
-
Hastie, T.1
Rosset, S.2
Tibshirani, R.3
Zhu, J.4
-
40
-
-
0028132501
-
Bounds on the sample complexity of Bayesian learning using information theory and the vc dimension
-
ISSN 0885-6125
-
D. Haussler, M. Kearns, and R. Schapire. Bounds on the sample complexity of Bayesian learning using information theory and the vc dimension. Machine Learning, 14(1):83-113, 1994. ISSN 0885-6125.
-
(1994)
Machine Learning
, vol.14
, Issue.1
, pp. 83-113
-
-
Haussler, D.1
Kearns, M.2
Schapire, R.3
-
41
-
-
0002161961
-
Application of ridge analysis to regression problems
-
A. E. Hoerl. Application of ridge analysis to regression problems. Chemical Engineering Progress, 58:54-59, 1962.
-
(1962)
Chemical Engineering Progress
, vol.58
, pp. 54-59
-
-
Hoerl, A.E.1
-
42
-
-
37749003643
-
A new probabilistic approach in rank regression with optimal Bayesian partitioning
-
I. Guyon and A. Saffari, editors, Dec
-
C. Hue and M. Boullé. A new probabilistic approach in rank regression with optimal Bayesian partitioning. In I. Guyon and A. Saffari, editors, JMLR, Special Topic on Model Selection, volume 8, pages 2727-2754, Dec 2007. URL http://www.jmlr.org/papers/volume8/hue07a/hue07a.pdf.
-
(2007)
JMLR, Special Topic on Model Selection
, vol.8
, pp. 2727-2754
-
-
Hue, C.1
Boullé, M.2
-
43
-
-
76749138783
-
Winning the KDD cup orange challenge with ensemble selection
-
IBM team, in press. JMLR W&CP
-
IBM team. Winning the KDD cup orange challenge with ensemble selection. In KDD cup 2009, in press, volume 8. JMLR W&CP, 2009.
-
KDD Cup 2009
, vol.8
, pp. 2009
-
-
-
44
-
-
0031381525
-
Wrappers for feature selection
-
December
-
R. Kohavi and G. John. Wrappers for feature selection. Artificial Intelligence, 97(1-2):273-324, December 1997.
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1-2
, pp. 273-324
-
-
Kohavi, R.1
John, G.2
-
45
-
-
57249114552
-
Model selection for regression with continuous kernel functions using the modulus of continuity
-
I. Guyon and A. Saffari, editors, Nov
-
I. Koo and R. M. Kil. Model selection for regression with continuous kernel functions using the modulus of continuity. In I. Guyon and A. Saffari, editors, JMLR, Special Topic on Model Selection, volume 9, pages 2607-2633, Nov 2008. URL http://www.jmlr.org/papers/volume9/koo08b/koo08b.pdf.
-
(2008)
JMLR, Special Topic on Model Selection
, vol.9
, pp. 2607-2633
-
-
Koo, I.1
Kil, R.M.2
-
46
-
-
76749092993
-
Bilevel cross-validation-based model selection
-
I. Guyon, et al., editor. Microtome
-
G. Kunapuli, J.-S. Pang, and K. Bennett. Bilevel cross-validation-based model selection.In I. Guyon, et al., editor, Hands on Pattern Recognition. Microtome, 2009.
-
(2009)
Hands on Pattern Recognition
-
-
Kunapuli, G.1
Pang, J.-S.2
Bennett, K.3
-
47
-
-
21844462365
-
Tutorial on practical prediction theory for classification
-
Mar
-
J. Langford. Tutorial on practical prediction theory for classification. JMLR, 6:273-306, Mar 2005. URL http://jmlr.csail.mit.edu/papers/volume6/ langford05a/langford05a.pdf.
-
(2005)
JMLR
, vol.6
, pp. 273-306
-
-
Langford, J.1
-
48
-
-
0000359337
-
Backpropagation applied to handwritten zip code recognition
-
Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. J. Jackel. Backpropagation applied to handwritten zip code recognition. Neural Computation, 1:541-551, 1989.
-
(1989)
Neural Computation
, vol.1
, pp. 541-551
-
-
Lecun, Y.1
Boser, B.2
Denker, J.S.3
Henderson, D.4
Howard, R.E.5
Hubbard, W.6
Jackel, L.J.7
-
49
-
-
47349132736
-
Logitboost with trees applied to the WCCI 2006 performance prediction challenge datasets
-
Vancouver, Canada, July 2006. INNS/IEEE
-
R. W. Lutz. Logitboost with trees applied to the WCCI 2006 performance prediction challenge datasets. In Proc. IJCNN06, pages 2966-2969, Vancouver, Canada, July 2006. INNS/IEEE.
-
Proc. IJCNN06
, pp. 2966-2969
-
-
Lutz, R.W.1
-
50
-
-
0002704818
-
A practical Bayesian framework for backpropagation networks
-
D. MacKay. A practical Bayesian framework for backpropagation networks. Neural Computation, 4:448-472, 1992.
-
(1992)
Neural Computation
, vol.4
, pp. 448-472
-
-
MacKay, D.1
-
51
-
-
84898982358
-
Co-validation: Using model disagreement to validate classification algorithms
-
O. Madani, D. M. Pennock, and G. W. Flake. Co-validation: Using model disagreement to validate classification algorithms. In NIPS, 2005.
-
(2005)
NIPS
-
-
Madani, O.1
Pennock, D.M.2
Flake, G.W.3
-
53
-
-
33745867970
-
High dimensional classification with Bayesian neural networks and dirichlet diffusion trees
-
I. Guyon, et al., editor
-
R. Neal and J. Zhang. High dimensional classification with Bayesian neural networks and dirichlet diffusion trees. In I. Guyon, et al., editor, Feature Extraction, Foundations and Applications, 2006.
-
(2006)
Feature Extraction, Foundations and Applications
-
-
Neal, R.1
Zhang, J.2
-
54
-
-
76749105067
-
Classification with random sets, boosting and distance-based clustering
-
I. Guyon, et al., editor. Microtome
-
V. Nikulin. Classification with random sets, boosting and distance-based clustering. In I. Guyon, et al., editor, Hands on Pattern Recognition. Microtome, 2009.
-
(2009)
Hands on Pattern Recognition
-
-
Nikulin, V.1
-
55
-
-
0025056697
-
Regularization algorithms for learning that are equivalent to multilayer networks
-
February
-
T. Poggio and F. Girosi. Regularization algorithms for learning that are equivalent to multilayer networks. Science, 247(4945):978-982, February 1990.
-
(1990)
Science
, vol.247
, Issue.4945
, pp. 978-982
-
-
Poggio, T.1
Girosi, F.2
-
56
-
-
33646473677
-
Invariances in kernel methods: From samples to objects
-
ISSN 0167-8655
-
A. Pozdnoukhov and S. Bengio. Invariances in kernel methods: From samples to objects. Pattern Recogn. Lett., 27(10):1087-1097, 2006. ISSN 0167-8655.
-
(2006)
Pattern Recogn. Lett.
, vol.27
, Issue.10
, pp. 1087-1097
-
-
Pozdnoukhov, A.1
Bengio, S.2
-
57
-
-
76749120817
-
Liknon feature selection: Behind the scenes
-
I. Guyon, et al., editor. Microtome
-
E. Pranckeviciene and R. Somorjai. Liknon feature selection: Behind the scenes. In I. Guyon, et al., editor, Hands on Pattern Recognition. Microtome, 2009.
-
(2009)
Hands on Pattern Recognition
-
-
Pranckeviciene, E.1
Somorjai, R.2
-
58
-
-
51749119228
-
Model selection and assessment using cross-indexing
-
Orlando, Florida, Aug. INNS/IEEE
-
J. Reunanen. Model selection and assessment using cross-indexing. In Proc. IJCNN07, Orlando, Florida, Aug 2007. INNS/IEEE.
-
(2007)
Proc. IJCNN07
-
-
Reunanen, J.1
-
59
-
-
76749089465
-
Sparse flexible and efficient modeling using L1 regularization
-
I. Guyon, et al., editor
-
S. Rosset and J. Zhu. Sparse, flexible and efficient modeling using L1 regularization. In I. Guyon, et al., editor, Feature Extraction, Foundations and Applications, 2006.
-
(2006)
Feature Extraction, Foundations and Applications
-
-
Rosset, S.1
Zhu, J.2
-
61
-
-
76749114653
-
Hybrid learning using mixture models and artificial neural networks
-
I. Guyon, et al., editor. Microtome
-
M. Saeed. Hybrid learning using mixture models and artificial neural networks. In I. Guyon, et al., editor, Hands on Pattern Recognition. Microtome, 2009.
-
(2009)
Hands on Pattern Recognition
-
-
Saeed, M.1
-
62
-
-
51749116036
-
-
Technical report Graz University of Technology and Clopinet May
-
A. Saffari and I. Guyon. Quick start guide for CLOP. Technical report, Graz University of Technology and Clopinet, May 2006. URL http://clopinet.com/ CLOP/.
-
(2006)
Quick Start Guide for CLOP
-
-
Saffari, A.1
Guyon, I.2
-
64
-
-
0000120766
-
Estimating the dimension of a model
-
G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):461-464, 1978.
-
(1978)
The Annals of Statistics
, vol.6
, Issue.2
, pp. 461-464
-
-
Schwarz, G.1
-
65
-
-
0041464774
-
PAC-Bayesian generalisation error bounds for Gaussian process classification
-
M. Seeger. PAC-Bayesian generalisation error bounds for Gaussian process classification. JMLR, 3:233-269, 2003. URL http://jmlr.csail.mit.edu/papers/ volume3/seeger02a/seeger02a.pdf.
-
(2003)
JMLR
, vol.3
, pp. 233-269
-
-
Seeger, M.1
-
66
-
-
44649181578
-
Bayesian inference and optimal design for the sparse linear model
-
ISSN 1533-7928
-
M. Seeger. Bayesian inference and optimal design for the sparse linear model. JMLR, 9:759-813, 2008. ISSN 1533-7928.
-
(2008)
JMLR
, vol.9
, pp. 759-813
-
-
Seeger, M.1
-
67
-
-
0003137923
-
Efficient pattern recognition using a new transformation distance
-
S. J. Hanson, J. D. Cowan, and C. L. Giles, editors, San Mateo, CA. Morgan Kaufmann
-
P. Simard, Y. LeCun, and J. Denker. Efficient pattern recognition using a new transformation distance. In S. J. Hanson, J. D. Cowan, and C. L. Giles, editors, Advances in Neural Information Processing Systems 5, pages 50-58, San Mateo, CA, 1993. Morgan Kaufmann.
-
(1993)
Advances in Neural Information Processing Systems 5
, pp. 50-58
-
-
Simard, P.1
Lecun, Y.2
Denker, J.3
-
68
-
-
84970983203
-
Unlabeled data: Now it helps, now it doesn't
-
A. Singh, R. Nowak, and X. Zhu. Unlabeled data: Now it helps, now it doesn't. In NIPS, 2008.
-
(2008)
NIPS
-
-
Singh, A.1
Nowak, R.2
Zhu, X.3
-
69
-
-
0037845137
-
Regularized principal manifolds
-
A. Smola, S. Mika, B. Schölkopf, and R. Williamson. Regularized principal manifolds. JMLR, 1:179-209, 2001. URL http://jmlr.csail.mit.edu/ papers/volume1/smola01a/smola01a.pdf.
-
(2001)
JMLR
, vol.1
, pp. 179-209
-
-
Smola, A.1
Mika, S.2
Schölkopf, B.3
Williamson, R.4
-
71
-
-
68949154557
-
Feature selection with ensembles, artificial variables, and redundancy elimination
-
I. Guyon and A. Saffari, editors, Jul
-
E. Tuv, A. Borisov, G. Runger, and K. Torkkola. Feature selection with ensembles, artificial variables, and redundancy elimination. In I. Guyon and A. Saffari, editors, JMLR, Special Topic on Model Selection, volume 10, pages 1341-1366, Jul 2009. URL http://www.jmlr.org/papers/volume10/tuv09a/tuv09a.pdf.
-
(2009)
JMLR, Special Topic on Model Selection
, vol.10
, pp. 1341-1366
-
-
Tuv, E.1
Borisov, A.2
Runger, G.3
Torkkola, K.4
-
72
-
-
0021518106
-
A theory of the learnable
-
L. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134-1142, 1984.
-
(1984)
Communications of the ACM
, vol.27
, Issue.11
, pp. 1134-1142
-
-
Valiant, L.1
-
75
-
-
0001024505
-
On the uniform convergence of relative frequencies of events to their probabilities
-
V. Vapnik and A. Chervonenkis. On the uniform convergence of relative frequencies of events to their probabilities. Theory Probab. Appl., 16:264-1180, 1971.
-
(1971)
Theory Probab. Appl.
, vol.16
, pp. 264-1180
-
-
Vapnik, V.1
Chervonenkis, A.2
-
76
-
-
84898962121
-
Fast kernels for string and tree matching
-
MIT Press
-
S. Vishwanathan and A. Smola. Fast kernels for string and tree matching. In Advances in Neural Information Processing Systems 15, pages 569-576. MIT Press, 2003. URL http://books.nips.cc/papers/files/nips15/AA11.pdf.
-
(2003)
Advances in Neural Information Processing Systems
, vol.15
, pp. 569-576
-
-
Vishwanathan, S.1
Smola, A.2
-
78
-
-
0003216062
-
Consonant recognition by modular construction of large phonemic time-delay neural networks
-
A. Waibel. Consonant recognition by modular construction of large phonemic time-delay neural networks. In NIPS, pages 215-223, 1988.
-
(1988)
NIPS
, pp. 215-223
-
-
Waibel, A.1
-
79
-
-
0002531715
-
Dynamic alignment kernels
-
A.J. Smola, P.L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Cambridge, MA. MIT Press
-
C. Watkins. Dynamic alignment kernels. In A.J. Smola, P.L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 39-50, Cambridge, MA, 2000. MIT Press. URL http://www.cs.rhul.ac.uk/home/chrisw/dynk.ps.gz.
-
(2000)
Advances in Large Margin Classifiers
, pp. 39-50
-
-
Watkins, C.1
-
81
-
-
84890520049
-
Use of the zero norm with linear models and kernel methods
-
J.Weston, A. Elisseff, B. Schoelkopf, and M. Tipping. Use of the zero norm with linear models and kernel methods. JMLR, 3:1439-1461, 2003.
-
(2003)
JMLR
, vol.3
, pp. 1439-1461
-
-
Weston, J.1
Elisseff, A.2
Schoelkopf, B.3
Tipping, M.4
-
82
-
-
51749118482
-
Agnostic learning with ensembles of classifiers
-
Orlando, Florida, Aug. INNS/IEEE
-
J. Wichard. Agnostic learning with ensembles of classifiers. In Proc. IJCNN07, Orlando, Florida, Aug 2007. INNS/IEEE.
-
(2007)
Proc. IJCNN07
-
-
Wichard, J.1
-
83
-
-
44649123652
-
Multi-class discriminant kernel learning via convex programming
-
I. Guyon and A. Saffari, editors, JMLR, Apr
-
J. Ye, S. Ji, and J. Chen. Multi-class discriminant kernel learning via convex programming. In I. Guyon and A. Saffari, editors, JMLR, Special Topic on Model Selection, volume 9, pages 719- 758, Apr 2008. URL http://www.jmlr.org/ papers/volume9/ye08b/ye08b.pdf.
-
(2008)
Special Topic on Model Selection
, vol.9
, pp. 719-758
-
-
Ye, J.1
Ji, S.2
Chen, J.3
|