메뉴 건너뛰기




Volumn 51, Issue 1, 2003, Pages 5-21

PAC-Bayesian stochastic model selection

Author keywords

Gibbs distribution; Model averaging; PAC learning; PAC Bayesian learning; Posterior distribution

Indexed keywords

LEARNING ALGORITHMS; MATHEMATICAL MODELS; PROBABILITY DISTRIBUTIONS; RANDOM PROCESSES;

EID: 0037399538     PISSN: 08856125     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1021840411064     Document Type: Article
Times cited : (240)

References (23)
  • 1
    • 0001347323 scopus 로고
    • Complexity regularization with application to artificial neural networks
    • In G. Roussas (Ed.); Dordrecht: Kluwer Academic Publishers
    • Barron, A. R. (1991). Complexity regularization with application to artificial neural networks. In G. Roussas (Ed.), Nonparametric functional estimation and related topics (pp. 561-576). Dordrecht: Kluwer Academic Publishers.
    • (1991) Nonparametric Functional Estimation and Related Topics , pp. 561-576
    • Barron, A.R.1
  • 3
    • 0002980086 scopus 로고
    • Learning classification trees
    • Buntine, W. (1992). Learning classification trees. Statistics and Computing, 2, 63-73.
    • (1992) Statistics and Computing , vol.2 , pp. 63-73
    • Buntine, W.1
  • 5
    • 0009039191 scopus 로고    scopus 로고
    • Universal aggregation rules with sharp oracle inequalities
    • (To appear b)
    • Catoni, O. (To appear b) Universal aggregation rules with sharp oracle inequalities. Annals of Statistics.
    • Annals of Statistics
    • Catoni, O.1
  • 7
    • 0002267135 scopus 로고    scopus 로고
    • Adaptive game playing using multiplicative weights
    • Freund, Y., & Schapire, R. E. (1999). Adaptive game playing using multiplicative weights. Games and Economic Behavior, 79-103.
    • (1999) Games and Economic Behavior , pp. 79-103
    • Freund, Y.1    Schapire, R.E.2
  • 9
    • 0031122905 scopus 로고    scopus 로고
    • Predicting nearly as well as the best pruning of a decision tree
    • Helmbold, D. P., & Schapire, R. E. (1997). Predicting nearly as well as the best pruning of a decision tree. Machine Learning, 27:1, 51-68.
    • (1997) Machine Learning , vol.27 , Issue.1 , pp. 51-68
    • Helmbold, D.P.1    Schapire, R.E.2
  • 12
    • 0025742422 scopus 로고
    • Results on learnability and the Vapnik-Chervonenski dimension
    • Linial, N., Mansour, Y., & Rivest, R. (1991). Results on learnability and the Vapnik-Chervonenski dimension. Information and Computation, 90, 33-49.
    • (1991) Information and Computation , vol.90 , pp. 33-49
    • Linial, N.1    Mansour, Y.2    Rivest, R.3
  • 13
    • 35148838877 scopus 로고
    • The weighted majority algorithm
    • An extended abstract appeared in COLT-89
    • Littlestone, N., & Warmuth, M. (1994). The weighted majority algorithm. Information and Computation, 108:2, 212-261. An extended abstract appeared in COLT-89.
    • (1994) Information and Computation , vol.108 , Issue.2 , pp. 212-261
    • Littlestone, N.1    Warmuth, M.2
  • 16
    • 0033280443 scopus 로고    scopus 로고
    • Pac-bayesian model averaging
    • McAllester, D. (1999). Pac-bayesian model averaging. In COLT-99.
    • (1999) COLT-99
    • Mcallester, D.1
  • 18
    • 0030703798 scopus 로고    scopus 로고
    • An efficient extension to mixture techniques for prediction and decision trees
    • Long version to appear in Machine Learning
    • Pereira, F. C., & Singer, Y. (1997). An efficient extension to mixture techniques for prediction and decision trees. In Proceedings of the Tenth Annual Conference on Computational Learning Theory (pp. 114-121). Long version to appear in Machine Learning.
    • (1997) Proceedings of the Tenth Annual Conference on Computational Learning Theory , pp. 114-121
    • Pereira, F.C.1    Singer, Y.2
  • 21
    • 0013419175 scopus 로고
    • Learning non-parametric densities in terms of finite-dimensional parametric hypotheses
    • Yamanishi, K. (1992). Learning non-parametric densities in terms of finite-dimensional parametric hypotheses. IEICE Trans. Inf. and Syst., E75-D(4).
    • (1992) IEICE Trans. Inf. and Syst. , vol.E75-D , Issue.4
    • Yamanishi, K.1
  • 22
    • 0347607206 scopus 로고    scopus 로고
    • Adaptive estimation in pattern recognition by combining different procedures
    • Yang, Y. (2000a). Adaptive estimation in pattern recognition by combining different procedures. Statistica Sinica, 10, 1069-1089.
    • (2000) Statistica Sinica , vol.10 , pp. 1069-1089
    • Yang, Y.1
  • 23
    • 0034410225 scopus 로고    scopus 로고
    • Mixing strategies for density estimation
    • Yang, Y. (2000b). Mixing strategies for density estimation. Annals of Statistics, 28, 75-87.
    • (2000) Annals of Statistics , vol.28 , pp. 75-87
    • Yang, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.