-
1
-
-
84925605946
-
The entire regularization path for the support vector machine
-
Oct.
-
T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu, "The entire regularization path for the support vector machine," J. Mach. Learn. Res., vol. 5, pp. 1391-1415, Oct. 2004.
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 1391-1415
-
-
Hastie, T.1
Rosset, S.2
Tibshirani, R.3
Zhu, J.4
-
2
-
-
84971957489
-
Continuation and path following
-
E. L. Allgower and K. Georg, "Continuation and path following," Acta Numer., vol. 2, pp. 1-64, 1993.
-
(1993)
Acta Numer.
, vol.2
, pp. 1-64
-
-
Allgower, E.L.1
Georg, K.2
-
4
-
-
33747350759
-
Considering cost asymmetry in learning classifiers
-
Aug.
-
F. Bach, D. Heckerman, and E. Horvitz, "Considering cost asymmetry in learning classifiers," J. Mach. Learn. Res., vol. 7, pp. 1713-1741, Aug. 2006.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1713-1741
-
-
Bach, F.1
Heckerman, D.2
Horvitz, E.3
-
5
-
-
80052866161
-
Incremental and decremental support vector machine learning
-
T. K. Leen, T. G. Dietterich, and V. Tresp, Eds. Cambridge, MA: MIT Press
-
G. Cauwenberghs and T. Poggio, "Incremental and decremental support vector machine learning," in Advances in Neural Information Processing Systems, vol. 13, T. K. Leen, T. G. Dietterich, and V. Tresp, Eds. Cambridge, MA: MIT Press, 2001, pp. 409-415.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
, pp. 409-415
-
-
Cauwenberghs, G.1
Poggio, T.2
-
6
-
-
34249726632
-
Efficient computation and model selection for the support vector regression
-
Jun.
-
L. Gunter and J. Zhu, "Efficient computation and model selection for the support vector regression," Neural Comput., vol. 19, no. 6, pp. 1633-1655, Jun. 2007.
-
(2007)
Neural Comput.
, vol.19
, Issue.6
, pp. 1633-1655
-
-
Gunter, L.1
Zhu, J.2
-
7
-
-
80053620586
-
Multiple incremental decremental learning of support vector machines
-
Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, Eds. Cambridge, MA: MIT Press
-
M. Karasuyama and I. Takeuchi, "Multiple incremental decremental learning of support vector machines," in Advances in Neural Information Processing Systems 22, Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, Eds. Cambridge, MA: MIT Press, 2009, pp. 907-915.
-
(2009)
Advances in Neural Information Processing Systems
, vol.22
, pp. 907-915
-
-
Karasuyama, M.1
Takeuchi, I.2
-
8
-
-
33745777639
-
Incremental support vector learning: Analysis, implementation and applications
-
P. Laskov, C. Gehl, S. Kruger, and K.-R. Muller, "Incremental support vector learning: Analysis, implementation and applications," J. Mach. Learn. Res., vol. 7, pp. 1909-1936, Sep. 2006. (Pubitemid 44477117)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1909-1936
-
-
Laskov, P.1
Gehl, C.2
Kruger, S.3
Muller, K.-R.4
-
9
-
-
0141765796
-
Accurate On-line Support Vector Regression
-
DOI 10.1162/089976603322385117
-
J. Ma and J. Theiler, "Accurate on-line support vector regression," Neural Comput., vol. 15, no. 11, pp. 2683-2703, Nov. 2003. (Pubitemid 37206931)
-
(2003)
Neural Computation
, vol.15
, Issue.11
, pp. 2683-2703
-
-
Ma, J.1
Theiler, J.2
Perkins, S.3
-
10
-
-
0141556297
-
-
Softw. Dept., Univ. Politecnica de Catalunya, Barcelona, Spain, Tech. Rep. LSI-02-11-R
-
M. Martin, "On-line support vector machines for function approximation," Softw. Dept., Univ. Politecnica de Catalunya, Barcelona, Spain, Tech. Rep. LSI-02-11-R, 2002.
-
(2002)
On-line Support Vector Machines for Function Approximation
-
-
Martin, M.1
-
11
-
-
77649273984
-
An improved algorithm for the solution of the regularization path of support vector machine
-
Mar.
-
C.-J. Ong, S. Shao, and J. Yang, "An improved algorithm for the solution of the regularization path of support vector machine," IEEE Trans. Neural Netw., vol. 21, no. 3, pp. 451-462, Mar. 2010.
-
(2010)
IEEE Trans. Neural Netw.
, vol.21
, Issue.3
, pp. 451-462
-
-
Ong, C.-J.1
Shao, S.2
Yang, J.3
-
12
-
-
67650329813
-
Nonparametric conditional density estimation using piecewise-linear solution path of kernel quantile regression
-
Feb.
-
I. Takeuchi, K. Nomura, and T. Kanamori, "Nonparametric conditional density estimation using piecewise-linear solution path of kernel quantile regression," Neural Comput., vol. 21, no. 2, pp. 533-559, Feb. 2009.
-
(2009)
Neural Comput.
, vol.21
, Issue.2
, pp. 533-559
-
-
Takeuchi, I.1
Nomura, K.2
Kanamori, T.3
-
13
-
-
54349106864
-
A new solution path algorithm in support vector regression
-
Oct.
-
G. Wang, D.-Y. Yeung, F. H. Lochovsky, "A new solution path algorithm in support vector regression," IEEE Trans. Neural Netw., vol. 19, no. 10, pp. 1753-1767, Oct. 2008.
-
(2008)
IEEE Trans. Neural Netw.
, vol.19
, Issue.10
, pp. 1753-1767
-
-
Wang, G.1
Yeung, D.-Y.2
Lochovsky, F.H.3
-
15
-
-
34548452938
-
Piecewise linear regularized solution paths
-
S. Rosset and J. Zhu, "Piecewise linear regularized solution paths," Ann. Stat., vol. 35, no. 3, pp. 1012-1030, 2007.
-
(2007)
Ann. Stat.
, vol.35
, Issue.3
, pp. 1012-1030
-
-
Rosset, S.1
Zhu, J.2
-
16
-
-
0001287271
-
Regression shrinkage and selection via the lasso
-
R. Tibshirani, "Regression shrinkage and selection via the lasso," J. Royal Stat. Soc. Ser. B: Methodol., vol. 58, no. 1, pp. 267-288, 1996.
-
(1996)
J. Royal Stat. Soc. Ser. B: Methodol.
, vol.58
, Issue.1
, pp. 267-288
-
-
Tibshirani, R.1
-
17
-
-
0343441845
-
On parametric linear and quadratic programming problems
-
K. Ritter, "On parametric linear and quadratic programming problems," in Proc. Int. Congr. Math. Program., 1984, pp. 307-335.
-
(1984)
Proc. Int. Congr. Math. Program.
, pp. 307-335
-
-
Ritter, K.1
-
18
-
-
84898952043
-
Computing regularization paths for learning multiple kernels
-
L. K. Saul, Y. Weiss, and L. Bottou, Eds. Cambridge, MA: MIT Press
-
F. R. Bach, R. Thibaux, and M. I. Jordan, "Computing regularization paths for learning multiple kernels," in Advances in Neural Information Processing Systems 17, L. K. Saul, Y. Weiss, and L. Bottou, Eds. Cambridge, MA: MIT Press, 2005, pp. 73-80.
-
(2005)
Advances in Neural Information Processing Systems
, vol.17
, pp. 73-80
-
-
Bach, F.R.1
Thibaux, R.2
Jordan, M.I.3
-
19
-
-
80053628589
-
A pathwise algorithm for covariance selection
-
V. Krishnamurthy, S. D. Ahipasaoglu, and A. d'Aspremont, "A pathwise algorithm for covariance selection," in Proc. Neural Inf. Process. Syst. Workshop Optim. Mach. Learn., 2009, pp. 1-12.
-
(2009)
Proc. Neural Inf. Process. Syst. Workshop Optim. Mach. Learn.
, pp. 1-12
-
-
Krishnamurthy, V.1
Ahipasaoglu, S.D.2
D'aspremont, A.3
-
20
-
-
34547849507
-
L1-regularization path algorithm for generalized linear models
-
M. Park and T. Hastie, "L1-regularization path algorithm for generalized linear models," J. Royal Stat. Soc.: Ser. B: Stat. Methodol., vol. 69, no. 4, pp. 659-677, 2007.
-
(2007)
J. Royal Stat. Soc.: Ser. B: Stat. Methodol.
, vol.69
, Issue.4
, pp. 659-677
-
-
Park, M.1
Hastie, T.2
-
21
-
-
84898950954
-
Following curved regularized optimization solution paths
-
L. K. Saul, Y. Weiss, and L. Bottou, Eds. Cambridge, MA: MIT Press
-
S. Rosset, "Following curved regularized optimization solution paths," in Advances in Neural Information Processing Systems 17, L. K. Saul, Y. Weiss, and L. Bottou, Eds. Cambridge, MA: MIT Press, 2005, pp. 1153-1160.
-
(2005)
Advances in Neural Information Processing Systems
, vol.17
, pp. 1153-1160
-
-
Rosset, S.1
-
22
-
-
34547980120
-
A kernel path algorithm for support vector machines
-
G. Wang, D.-Y. Yeung, and F. H. Lochovsky, "A kernel path algorithm for support vector machines," in Proc. 24th Int. Conf. Mach. Learn., 2007, pp. 951-958.
-
(2007)
Proc. 24th Int. Conf. Mach. Learn.
, pp. 951-958
-
-
Wang, G.1
Yeung, D.-Y.2
Lochovsky, F.H.3
-
23
-
-
4644257995
-
Statistical behavior and consistency of classification methods based on convex risk minimization
-
DOI 10.1214/aos/1079120130
-
T. Zhang, "Statistical behavior and consistency of classification methods based on convex risk minimization," Ann. Stat., vol. 32, no. 1, pp. 56-134, 2004. (Pubitemid 41449305)
-
(2004)
Annals of Statistics
, vol.32
, Issue.1
, pp. 56-134
-
-
Zhang, T.1
-
24
-
-
34247849152
-
Training a support vector machine in the primal
-
May
-
O. Chapelle, "Training a support vector machine in the primal," Neural Comput., vol. 19, no. 5, pp. 1155-1178, May 2007.
-
(2007)
Neural Comput.
, vol.19
, Issue.5
, pp. 1155-1178
-
-
Chapelle, O.1
-
25
-
-
34247596518
-
Sparseness vs estimating conditional probabilities: Some asymptotic results
-
P. L. Bartlett and A. Tewari, "Sparseness versus estimating conditional probabilities: Some asymptotic results," J. Mach. Learn. Res., vol. 8, pp. 775-790, Apr. 2007. (Pubitemid 46677047)
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 775-790
-
-
Bartlett, P.L.1
Tewari, A.2
-
26
-
-
34247216124
-
Recursive finite newton algorithm for support vector regression in the primal
-
Apr.
-
L. Bo, L. Wang, and L. Jiao, "Recursive finite newton algorithm for support vector regression in the primal," Neural Comput., vol. 19, no. 4, pp. 1082-1096, Apr. 2007.
-
(2007)
Neural Comput.
, vol.19
, Issue.4
, pp. 1082-1096
-
-
Bo, L.1
Wang, L.2
Jiao, L.3
-
27
-
-
21844461582
-
A modified finite Newton method for fast solution of large scale linear SVMs
-
Mar.
-
S. S. Keerthi and D. DeCoste, "A modified finite Newton method for fast solution of large scale linear SVMs," J. Mach. Learn. Res., vol. 6, pp. 341-361, Mar. 2005.
-
(2005)
J. Mach. Learn. Res.
, vol.6
, pp. 341-361
-
-
Keerthi, S.S.1
Decoste, D.2
-
28
-
-
0002316189
-
Rank-one modification of the symmetric eigenproblem
-
J. Bunch, C. Nielsen, and D. Sorensen, "Rank-one modification of the symmetric eigenproblem," Numer. Math., vol. 31, no. 1, pp. 31-48, 1979.
-
(1979)
Numer. Math.
, vol.31
, Issue.1
, pp. 31-48
-
-
Bunch, J.1
Nielsen, C.2
Sorensen, D.3
-
29
-
-
1242331293
-
Bayesian support vector regression using a unified loss function
-
Jan.
-
W. Chu, S. S. Keerthi, and C. J. Ong, "Bayesian support vector regression using a unified loss function," IEEE Trans. Neural Netw., vol. 15, no. 1, pp. 29-44, Jan. 2004.
-
(2004)
IEEE Trans. Neural Netw.
, vol.15
, Issue.1
, pp. 29-44
-
-
Chu, W.1
Keerthi, S.S.2
Ong, C.J.3
-
30
-
-
56749090853
-
-
Dept. Comput. Sci., Stanford Univ., Stanford, CA, Tech. Rep. SU326 P30-11, Aug.
-
G. H. Golub, "Some modified eigenvalue problems," Dept. Comput. Sci., Stanford Univ., Stanford, CA, Tech. Rep. SU326 P30-11, Aug. 1971.
-
(1971)
Some Modified Eigenvalue Problems
-
-
Golub, G.H.1
-
32
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
B. Schölkopf, C. J. C. Burges, and A. J. Smola, Eds. Cambridge, MA: MIT Press
-
J. C. Platt, "Fast training of support vector machines using sequential minimal optimization," in Advances in Kernel Methods: Support Vector Learning, B. Schölkopf, C. J. C. Burges, and A. J. Smola, Eds. Cambridge, MA: MIT Press, 1999, pp. 185-208.
-
(1999)
Advances in Kernel Methods: Support Vector Learning
, pp. 185-208
-
-
Platt, J.C.1
-
33
-
-
3543134928
-
-
Inst. Automatic Control, Technische Universität Darmstadt, Darmstadt, Germany, Tech. Rep.
-
M. Vogt, "SMO algorithms for support vector machines without bias term," Inst. Automatic Control, Technische Universität Darmstadt, Darmstadt, Germany, Tech. Rep., 2002.
-
(2002)
SMO Algorithms for Support Vector Machines Without Bias Term
-
-
Vogt, M.1
-
36
-
-
0003706460
-
-
3rd ed. Philadelphia, PA: SIAM
-
E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. J. Dongarra, J. Du Croz, S. Hammarling, A. Greenbaum, A. McKenney, and D. Sorensen, LAPACK Users' Guide, 3rd ed. Philadelphia, PA: SIAM, 1999.
-
(1999)
LAPACK Users' Guide
-
-
Anderson, E.1
Bai, Z.2
Bischof, C.3
Blackford, L.S.4
Demmel, J.5
Dongarra, J.J.6
Du Croz, J.7
Hammarling, S.8
Greenbaum, A.9
McKenney, A.10
Sorensen, D.11
-
37
-
-
42249094907
-
Support vector machine solvers
-
L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, Eds. Cambridge, MA: MIT Press
-
L. Bottou and C.-J. Lin, "Support vector machine solvers," in Large Scale Kernel Machines, L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, Eds. Cambridge, MA: MIT Press, 2007, pp. 301-320.
-
(2007)
Large Scale Kernel Machines
, pp. 301-320
-
-
Bottou, L.1
Lin, C.-J.2
-
38
-
-
33646023117
-
An introduction to ROC analysis
-
Jun.
-
T. Fawcett, "An introduction to ROC analysis," Pattern Recognit. Lett., vol. 27, no. 8, pp. 861-874, Jun. 2006.
-
(2006)
Pattern Recognit. Lett.
, vol.27
, Issue.8
, pp. 861-874
-
-
Fawcett, T.1
-
39
-
-
0037382208
-
Evaluation of simple performance measures for tuning SVM hyperparameters
-
DOI 10.1016/S0925-2312(02)00601-X, PII S092523120200601X
-
K. Duan, S. S. Keerthi, and A. N. Poo, "Evaluation of simple performance measures for tuning SVM hyperparameters," Neurocomputing, vol. 51, pp. 41-59, Apr. 2003. (Pubitemid 36367224)
-
(2003)
Neurocomputing
, vol.51
, pp. 41-59
-
-
Duan, K.1
Keerthi, S.S.2
Poo, A.N.3
-
40
-
-
0034264380
-
Bounds on error expectation for support vector machines
-
Sep.
-
V. N. Vapnik and O. Chapelle, "Bounds on error expectation for support vector machines," Neural Comput., vol. 12, no. 9, pp. 2013-2036, Sep. 2000.
-
(2000)
Neural Comput.
, vol.12
, Issue.9
, pp. 2013-2036
-
-
Vapnik, V.N.1
Chapelle, O.2
-
41
-
-
79951675527
-
Logistic regression by means of evolutionary radial basis function neural networks
-
Feb.
-
P. Gutiérrez, C. Hervás-Martines, and F. Martinez-Estudillo, "Logistic regression by means of evolutionary radial basis function neural networks," IEEE Trans. Neural Netw., vol. 22, no. 2, pp. 246-263, Feb. 2011.
-
(2011)
IEEE Trans. Neural Netw.
, vol.22
, Issue.2
, pp. 246-263
-
-
Gutiérrez, P.1
Hervás-Martines, C.2
Martinez-Estudillo, F.3
-
42
-
-
79955824877
-
Reduced hyperBF networks: Regularization by explicit complexity reduction and scaled rprop-based training
-
May
-
R. Mahdi and E. Rouchka, "Reduced hyperBF networks: Regularization by explicit complexity reduction and scaled rprop-based training," IEEE Trans. Neural Netw., vol. 22, no. 5, pp. 673-686, May 2011.
-
(2011)
IEEE Trans. Neural Netw.
, vol.22
, Issue.5
, pp. 673-686
-
-
Mahdi, R.1
Rouchka, E.2
-
43
-
-
76749105659
-
Feature extraction using constrained approximation and suppression
-
Feb.
-
Y. Washizawa, "Feature extraction using constrained approximation and suppression," IEEE Trans. Neural Netw., vol. 21, no. 2, pp. 201-210, Feb. 2010.
-
(2010)
IEEE Trans. Neural Netw.
, vol.21
, Issue.2
, pp. 201-210
-
-
Washizawa, Y.1
|