메뉴 건너뛰기




Volumn 36, Issue 8, 2015, Pages 832-840

Initiation of the ATM-Chk2 DNA damage response through the base excision repair pathway

Author keywords

[No Author keywords available]

Indexed keywords

8 HYDROXYGUANINE; ATM PROTEIN; CHECKPOINT KINASE 2; DEOXYRIBONUCLEASE I; DNA GLYCOSYLTRANSFERASE; URACIL DNA GLYCOSIDASE; AFIMOXIFENE; APEX1 PROTEIN, HUMAN; ATM PROTEIN, HUMAN; CCNO PROTEIN, HUMAN; CHEK2 PROTEIN, HUMAN; DNA (APURINIC OR APYRIMIDINIC SITE) LYASE; MESYLIC ACID METHYL ESTER; NICOTINAMIDE ADENINE DINUCLEOTIDE ADENOSINE DIPHOSPHATE RIBOSYLTRANSFERASE; OXOGUANINE GLYCOSYLASE 1, HUMAN; PARP1 PROTEIN, HUMAN; TAMOXIFEN;

EID: 84938686739     PISSN: 01433334     EISSN: 14602180     Source Type: Journal    
DOI: 10.1093/carcin/bgv079     Document Type: Article
Times cited : (35)

References (50)
  • 1
    • 77649175453 scopus 로고    scopus 로고
    • Genomic instability-an evolving hallmark of cancer
    • Negrini, S. et al. (2010) Genomic instability-an evolving hallmark of cancer. Nat. Rev. Mol. Cell Biol., 11, 220-228.
    • (2010) Nat. Rev. Mol. Cell Biol , vol.11 , pp. 220-228
    • Negrini, S.1
  • 2
    • 41149094512 scopus 로고    scopus 로고
    • Regulation of DNA repair throughout the cell cycle
    • Branzei, D. et al. (2008) Regulation of DNA repair throughout the cell cycle. Nat. Rev. Mol. Cell Biol., 9, 297-308.
    • (2008) Nat. Rev. Mol. Cell Biol , vol.9 , pp. 297-308
    • Branzei, D.1
  • 3
    • 84875423827 scopus 로고    scopus 로고
    • The ATM protein kinase: regulating the cellular response to genotoxic stress, and more
    • Shiloh, Y. et al. (2013) The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat. Rev. Mol. Cell Biol., 14, 197-210.
    • (2013) Nat. Rev. Mol. Cell Biol , vol.14 , pp. 197-210
    • Shiloh, Y.1
  • 4
    • 79957690359 scopus 로고    scopus 로고
    • ATR signalling: more than meeting at the fork
    • Nam, E.A. et al. (2011) ATR signalling: more than meeting at the fork. Biochem. J., 436, 527-536.
    • (2011) Biochem. J , vol.436 , pp. 527-536
    • Nam, E.A.1
  • 5
    • 2942523593 scopus 로고    scopus 로고
    • Endogenous DNA damage in humans: a review of quantitative data
    • De Bont, R. et al. (2004) Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis, 19, 169-185.
    • (2004) Mutagenesis , vol.19 , pp. 169-185
    • De Bont, R.1
  • 6
    • 84856233300 scopus 로고    scopus 로고
    • Balancing repair and tolerance of DNA damage caused by alkylating agents
    • Fu, D. et al. (2012) Balancing repair and tolerance of DNA damage caused by alkylating agents. Nat. Rev. Cancer, 12, 104-120.
    • (2012) Nat. Rev. Cancer , vol.12 , pp. 104-120
    • Fu, D.1
  • 7
    • 71549121011 scopus 로고    scopus 로고
    • Mutagenicity of N3-methyladenine: a multi-translesion polymerase affair
    • Monti, P. et al. (2010) Mutagenicity of N3-methyladenine: a multi-translesion polymerase affair. Mutat. Res., 683, 50-56.
    • (2010) Mutat. Res , vol.683 , pp. 50-56
    • Monti, P.1
  • 8
    • 0036628726 scopus 로고    scopus 로고
    • Biological consequences of free radical-damaged DNA bases
    • Wallace, S.S. (2002) Biological consequences of free radical-damaged DNA bases. Free Radic. Biol. Med., 33, 1-14.
    • (2002) Free Radic. Biol. Med , vol.33 , pp. 1-14
    • Wallace, S.S.1
  • 9
    • 44149126949 scopus 로고    scopus 로고
    • The methyl methanesulfonate induced S-phase delay in XRCC1-deficient cells requires ATM and ATR
    • Brem, R. et al. (2008) The methyl methanesulfonate induced S-phase delay in XRCC1-deficient cells requires ATM and ATR. DNA Repair (Amst)., 7, 849-857.
    • (2008) DNA Repair (Amst) , vol.7 , pp. 849-857
    • Brem, R.1
  • 10
    • 84865093016 scopus 로고    scopus 로고
    • Base excision repair and cancer
    • Wallace, S.S. et al. (2012) Base excision repair and cancer. Cancer Lett., 327, 73-89.
    • (2012) Cancer Lett , vol.327 , pp. 73-89
    • Wallace, S.S.1
  • 11
    • 62349120246 scopus 로고    scopus 로고
    • DNA repair in mammalian cells: Base excision repair: the long and short of it
    • Robertson, A.B. et al. (2009) DNA repair in mammalian cells: Base excision repair: the long and short of it. Cell. Mol. Life Sci., 66, 981-993.
    • (2009) Cell. Mol. Life Sci , vol.66 , pp. 981-993
    • Robertson, A.B.1
  • 12
    • 78649444388 scopus 로고    scopus 로고
    • Accumulation of true single strand breaks and AP sites in base excision repair deficient cells
    • Luke, A.M. et al. (2010) Accumulation of true single strand breaks and AP sites in base excision repair deficient cells. Mutat. Res., 694, 65-71.
    • (2010) Mutat. Res , vol.694 , pp. 65-71
    • Luke, A.M.1
  • 13
    • 70350340573 scopus 로고    scopus 로고
    • Cells deficient in PARP-1 show an accelerated accumulation of DNA single strand breaks, but not AP sites, over the PARP-1-proficient cells exposed to MMS
    • Pachkowski, B.F. et al. (2009) Cells deficient in PARP-1 show an accelerated accumulation of DNA single strand breaks, but not AP sites, over the PARP-1-proficient cells exposed to MMS. Mutat. Res., 671, 93-99.
    • (2009) Mutat. Res , vol.671 , pp. 93-99
    • Pachkowski, B.F.1
  • 14
    • 74049108712 scopus 로고    scopus 로고
    • Chemical biology of mutagenesis and DNA repair: cellular responses to DNA alkylation
    • Shrivastav, N. et al. (2010) Chemical biology of mutagenesis and DNA repair: cellular responses to DNA alkylation. Carcinogenesis, 31, 59-70.
    • (2010) Carcinogenesis , vol.31 , pp. 59-70
    • Shrivastav, N.1
  • 15
    • 84926033805 scopus 로고    scopus 로고
    • ATM prevents DSB formation by coordinating SSB repair and cell cycle progression
    • Khoronenkova, S.V. et al. (2015) ATM prevents DSB formation by coordinating SSB repair and cell cycle progression. Proc. Natl. Acad. Sci. U. S. A., 112, 3997-4002.
    • (2015) Proc. Natl. Acad. Sci. U. S. A , vol.112 , pp. 3997-4002
    • Khoronenkova, S.V.1
  • 16
    • 57149112500 scopus 로고    scopus 로고
    • Chk2-dependent phosphorylation of XRCC1 in the DNA damage response promotes base excision repair
    • Chou, W.C. et al. (2008) Chk2-dependent phosphorylation of XRCC1 in the DNA damage response promotes base excision repair. EMBO J., 27, 3140-3150.
    • (2008) EMBO J , vol.27 , pp. 3140-3150
    • Chou, W.C.1
  • 17
    • 58149328408 scopus 로고    scopus 로고
    • Activation of ATM depends on chromatin interactions occurring before induction of DNA damage
    • Kim, Y.C. et al. (2009) Activation of ATM depends on chromatin interactions occurring before induction of DNA damage. Nat. Cell Biol., 11, 92-96.
    • (2009) Nat. Cell Biol , vol.11 , pp. 92-96
    • Kim, Y.C.1
  • 18
    • 84860903681 scopus 로고    scopus 로고
    • Implementing an online tool for genome-wide validation of survival-associated biomarkers in ovarian-cancer using microarray data from 1287 patients
    • Gyorffy, B. et al. (2012) Implementing an online tool for genome-wide validation of survival-associated biomarkers in ovarian-cancer using microarray data from 1287 patients. Endocr. Relat. Cancer, 19, 197-208.
    • (2012) Endocr. Relat. Cancer , vol.19 , pp. 197-208
    • Gyorffy, B.1
  • 19
    • 0242363151 scopus 로고    scopus 로고
    • Methylated DNA-binding domain 1 and methylpurine-DNA glycosylase link transcriptional repression and DNA repair in chromatin
    • Watanabe, S. et al. (2003) Methylated DNA-binding domain 1 and methylpurine-DNA glycosylase link transcriptional repression and DNA repair in chromatin. Proc. Natl. Acad. Sci. U. S. A., 100, 12859-12864.
    • (2003) Proc. Natl. Acad. Sci. U. S. A , vol.100 , pp. 12859-12864
    • Watanabe, S.1
  • 20
    • 84871692987 scopus 로고    scopus 로고
    • Competition between NBS1 and ATMIN controls ATM signaling pathway choice
    • Zhang, T. et al. (2012) Competition between NBS1 and ATMIN controls ATM signaling pathway choice. Cell Rep., 2, 1498-1504.
    • (2012) Cell Rep , vol.2 , pp. 1498-1504
    • Zhang, T.1
  • 21
    • 0036753352 scopus 로고    scopus 로고
    • Active-site clashes prevent the human 3-methyladenine DNA glycosylase from improperly removing bases
    • Connor, E.E. et al. (2002) Active-site clashes prevent the human 3-methyladenine DNA glycosylase from improperly removing bases. Chem. Biol., 9, 1033-1041.
    • (2002) Chem. Biol , vol.9 , pp. 1033-1041
    • Connor, E.E.1
  • 22
    • 0032538337 scopus 로고    scopus 로고
    • Crystal structure of a human alkylbase-DNA repair enzyme complexed to DNA: mechanisms for nucleotide flipping and base excision
    • Lau, A.Y. et al. (1998) Crystal structure of a human alkylbase-DNA repair enzyme complexed to DNA: mechanisms for nucleotide flipping and base excision. Cell, 95, 249-258.
    • (1998) Cell , vol.95 , pp. 249-258
    • Lau, A.Y.1
  • 23
    • 0034635534 scopus 로고    scopus 로고
    • Mutation of a unique aspartate residue abolishes the catalytic activity but not substrate binding of the mouse N-methylpurine-DNA glycosylase (MPG)
    • Roy, R. et al. (2000) Mutation of a unique aspartate residue abolishes the catalytic activity but not substrate binding of the mouse N-methylpurine-DNA glycosylase (MPG). J. Biol. Chem., 275, 4278-4282.
    • (2000) J. Biol. Chem , vol.275 , pp. 4278-4282
    • Roy, R.1
  • 24
    • 1942425955 scopus 로고    scopus 로고
    • Interaction of estrogen receptor alpha with 3-methyladenine DNA glycosylase modulates transcription and DNA repair
    • Likhite, V.S. et al. (2004) Interaction of estrogen receptor alpha with 3-methyladenine DNA glycosylase modulates transcription and DNA repair. J. Biol. Chem., 279, 16875-16882.
    • (2004) J. Biol. Chem , vol.279 , pp. 16875-16882
    • Likhite, V.S.1
  • 25
    • 84904697759 scopus 로고    scopus 로고
    • DNA breaks and chromosomal aberrations arise when replication meets base excision repair
    • Ensminger, M. et al. (2014) DNA breaks and chromosomal aberrations arise when replication meets base excision repair. J. Cell Biol., 206, 29-43.
    • (2014) J. Cell Biol , vol.206 , pp. 29-43
    • Ensminger, M.1
  • 26
    • 17644409069 scopus 로고    scopus 로고
    • ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex
    • Lee, J.H. et al. (2005) ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science, 308, 551-554.
    • (2005) Science , vol.308 , pp. 551-554
    • Lee, J.H.1
  • 27
    • 79955530503 scopus 로고    scopus 로고
    • APOBEC3A can activate the DNA damage response and cause cell-cycle arrest
    • Landry, S. et al. (2011) APOBEC3A can activate the DNA damage response and cause cell-cycle arrest. EMBO Rep., 12, 444-450.
    • (2011) EMBO Rep , vol.12 , pp. 444-450
    • Landry, S.1
  • 28
    • 62449089909 scopus 로고    scopus 로고
    • The C-terminal region of activation-induced cytidine deaminase is responsible for a recombination function other than DNA cleavage in class switch recombination
    • Doi, T. et al. (2009) The C-terminal region of activation-induced cytidine deaminase is responsible for a recombination function other than DNA cleavage in class switch recombination. Proc. Natl. Acad. Sci. U. S. A., 106, 2758-2763.
    • (2009) Proc. Natl. Acad. Sci. U. S. A , vol.106 , pp. 2758-2763
    • Doi, T.1
  • 29
    • 0031589555 scopus 로고    scopus 로고
    • Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains
    • Feil, R. et al. (1997) Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem. Biophys. Res. Commun., 237, 752-757.
    • (1997) Biochem. Biophys. Res. Commun , vol.237 , pp. 752-757
    • Feil, R.1
  • 30
    • 53149103171 scopus 로고    scopus 로고
    • The rate of base excision repair of uracil is controlled by the initiating glycosylase
    • Visnes, T. et al. (2008) The rate of base excision repair of uracil is controlled by the initiating glycosylase. DNA Repair (Amst)., 7, 1869-1881.
    • (2008) DNA Repair (Amst) , vol.7 , pp. 1869-1881
    • Visnes, T.1
  • 31
    • 0028934537 scopus 로고
    • Crystal structure and mutational analysis of human uracil-DNA glycosylase: structural basis for specificity and catalysis
    • Mol, C.D. et al. (1995) Crystal structure and mutational analysis of human uracil-DNA glycosylase: structural basis for specificity and catalysis. Cell, 80, 869-878.
    • (1995) Cell , vol.80 , pp. 869-878
    • Mol, C.D.1
  • 32
    • 33847621554 scopus 로고    scopus 로고
    • Uracil in DNA-general mutagen, but normal intermediate in acquired immunity
    • Kavli, B. et al. (2007) Uracil in DNA-general mutagen, but normal intermediate in acquired immunity. DNA Repair (Amst)., 6, 505-516.
    • (2007) DNA Repair (Amst) , vol.6 , pp. 505-516
    • Kavli, B.1
  • 33
    • 77958191599 scopus 로고    scopus 로고
    • ATM activation by oxidative stress
    • Guo, Z. et al. (2010) ATM activation by oxidative stress. Science, 330, 517-521.
    • (2010) Science , vol.330 , pp. 517-521
    • Guo, Z.1
  • 34
    • 68249091647 scopus 로고    scopus 로고
    • Checkpoint mechanisms at the intersection between DNA damage and repair
    • Lazzaro, F. et al. (2009) Checkpoint mechanisms at the intersection between DNA damage and repair. DNA Repair (Amst)., 8, 1055-1067.
    • (2009) DNA Repair (Amst) , vol.8 , pp. 1055-1067
    • Lazzaro, F.1
  • 35
    • 77951974344 scopus 로고    scopus 로고
    • Dealing with DNA damage: relationships between checkpoint and repair pathways
    • Warmerdam, D.O. et al. (2010) Dealing with DNA damage: relationships between checkpoint and repair pathways. Mutat. Res., 704, 2-11.
    • (2010) Mutat. Res , vol.704 , pp. 2-11
    • Warmerdam, D.O.1
  • 36
    • 84874962364 scopus 로고    scopus 로고
    • NER initiation factors, DDB2 and XPC, regulate UV radiation response by recruiting ATR and ATM kinases to DNA damage sites
    • Ray, A. et al. (2013) NER initiation factors, DDB2 and XPC, regulate UV radiation response by recruiting ATR and ATM kinases to DNA damage sites. DNA Repair (Amst)., 12, 273-283.
    • (2013) DNA Repair (Amst) , vol.12 , pp. 273-283
    • Ray, A.1
  • 37
    • 33646503204 scopus 로고    scopus 로고
    • ATR kinase activation mediated by MutSalpha and MutLalpha in response to cytotoxic O6-methylguanine adducts
    • Yoshioka, K. et al. (2006) ATR kinase activation mediated by MutSalpha and MutLalpha in response to cytotoxic O6-methylguanine adducts. Mol. Cell, 22, 501-510.
    • (2006) Mol. Cell , vol.22 , pp. 501-510
    • Yoshioka, K.1
  • 38
    • 84905406303 scopus 로고    scopus 로고
    • Repair of endogenous DNA base lesions modulate lifespan in mice
    • Meira, L.B. et al. (2014) Repair of endogenous DNA base lesions modulate lifespan in mice. DNA Repair (Amst)., 21, 78-86.
    • (2014) DNA Repair (Amst) , vol.21 , pp. 78-86
    • Meira, L.B.1
  • 39
    • 84907549680 scopus 로고    scopus 로고
    • ATM regulates 3-methylpurine-DNA glycosylase and promotes therapeutic resistance to alkylating agents
    • Agnihotri, S. et al. (2014) ATM regulates 3-methylpurine-DNA glycosylase and promotes therapeutic resistance to alkylating agents. Cancer Discov., 4, 1198-1213.
    • (2014) Cancer Discov , vol.4 , pp. 1198-1213
    • Agnihotri, S.1
  • 40
    • 0037064053 scopus 로고    scopus 로고
    • ATM is activated in response to N-methyl-N'-nitro-N-nitrosoguanidine-induced DNA alkylation
    • Adamson, A.W. et al. (2002) ATM is activated in response to N-methyl-N'-nitro-N-nitrosoguanidine-induced DNA alkylation. J. Biol. Chem., 277, 38222-38229.
    • (2002) J. Biol. Chem , vol.277 , pp. 38222-38229
    • Adamson, A.W.1
  • 41
    • 36549060102 scopus 로고    scopus 로고
    • Human CtIP promotes DNA end resection
    • Sartori, A.A. et al. (2007) Human CtIP promotes DNA end resection. Nature, 450, 509-514.
    • (2007) Nature , vol.450 , pp. 509-514
    • Sartori, A.A.1
  • 42
    • 84863387146 scopus 로고    scopus 로고
    • The ATM substrate KAP1 controls DNA repair in heterochromatin: regulation by HP1 proteins and serine 473/824 phosphorylation
    • White, D. et al. (2012) The ATM substrate KAP1 controls DNA repair in heterochromatin: regulation by HP1 proteins and serine 473/824 phosphorylation. Mol. Cancer Res., 10, 401-414.
    • (2012) Mol. Cancer Res , vol.10 , pp. 401-414
    • White, D.1
  • 43
    • 0031660080 scopus 로고    scopus 로고
    • Alkylpurine-DNA-N-glycosylase knockout mice show increased susceptibility to induction of mutations by methyl methanesulfonate
    • Elder, R.H. et al. (1998) Alkylpurine-DNA-N-glycosylase knockout mice show increased susceptibility to induction of mutations by methyl methanesulfonate. Mol. Cell. Biol., 18, 5828-5837.
    • (1998) Mol. Cell. Biol , vol.18 , pp. 5828-5837
    • Elder, R.H.1
  • 44
    • 47949120006 scopus 로고    scopus 로고
    • Human methyl purine DNA glycosylase and DNA polymerase beta expression collectively predict sensitivity to temozolomide
    • Trivedi, R.N. et al. (2008) Human methyl purine DNA glycosylase and DNA polymerase beta expression collectively predict sensitivity to temozolomide. Mol. Pharmacol., 74, 505-516.
    • (2008) Mol. Pharmacol , vol.74 , pp. 505-516
    • Trivedi, R.N.1
  • 45
    • 79959992212 scopus 로고    scopus 로고
    • N-methylpurine DNA glycosylase and DNA polymerase beta modulate BER inhibitor potentiation of glioma cells to temozolomide
    • Tang, J.B. et al. (2011) N-methylpurine DNA glycosylase and DNA polymerase beta modulate BER inhibitor potentiation of glioma cells to temozolomide. Neuro. Oncol., 13, 471-486.
    • (2011) Neuro. Oncol , vol.13 , pp. 471-486
    • Tang, J.B.1
  • 46
    • 20144386176 scopus 로고    scopus 로고
    • N-methylpurine DNA glycosylase overexpression increases alkylation sensitivity by rapidly removing nontoxic 7-methylguanine adducts
    • Rinne, M.L. et al. (2005) N-methylpurine DNA glycosylase overexpression increases alkylation sensitivity by rapidly removing nontoxic 7-methylguanine adducts. Nucleic Acids Res., 33, 2859-2867.
    • (2005) Nucleic Acids Res , vol.33 , pp. 2859-2867
    • Rinne, M.L.1
  • 47
    • 84920421631 scopus 로고    scopus 로고
    • Targeting BRCA1-BER deficient breast cancer by ATM or DNA-PKcs blockade either alone or in combination with cisplatin for personalized therapy
    • Albarakati, N. et al. (2015) Targeting BRCA1-BER deficient breast cancer by ATM or DNA-PKcs blockade either alone or in combination with cisplatin for personalized therapy. Mol. Oncol., 9, 204-217.
    • (2015) Mol. Oncol , vol.9 , pp. 204-217
    • Albarakati, N.1
  • 48
    • 84874818045 scopus 로고    scopus 로고
    • Targeting XRCC1 deficiency in breast cancer for personalized therapy
    • Sultana, R. et al. (2013) Targeting XRCC1 deficiency in breast cancer for personalized therapy. Cancer Res., 73, 1621-1634.
    • (2013) Cancer Res , vol.73 , pp. 1621-1634
    • Sultana, R.1
  • 49
    • 84870218588 scopus 로고    scopus 로고
    • DNA repair dysregulation from cancer driver to therapeutic target
    • Curtin, N.J. (2012) DNA repair dysregulation from cancer driver to therapeutic target. Nat. Rev. Cancer, 12, 801-817.
    • (2012) Nat. Rev. Cancer , vol.12 , pp. 801-817
    • Curtin, N.J.1
  • 50
    • 84873054943 scopus 로고    scopus 로고
    • Predicting enhanced cell killing through PARP inhibition
    • Horton, J.K. et al. (2013) Predicting enhanced cell killing through PARP inhibition. Mol. Cancer Res., 11, 13-18.
    • (2013) Mol. Cancer Res , vol.11 , pp. 13-18
    • Horton, J.K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.