-
1
-
-
2042437650
-
Initial sequencing and analysis of the human genome
-
1:CAS:528:DC%2BD3MXhsFCjtLc%3D 11237011
-
Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860-921.
-
(2001)
Nature
, vol.409
, pp. 860-921
-
-
Lander, E.S.1
Linton, L.M.2
Birren, B.3
Nusbaum, C.4
Zody, M.C.5
Baldwin, J.6
-
2
-
-
84855281420
-
Repetitive elements may comprise over two-thirds of the human genome
-
3228813 22144907
-
de Koning APJ, Gu W, Castoe TA, Batzer MA, Pollock DD. Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet. 2011;7, e1002384.
-
(2011)
PLoS Genet
, vol.7
-
-
De Koning, A.P.J.1
Gu, W.2
Castoe, T.A.3
Batzer, M.A.4
Pollock, D.D.5
-
3
-
-
84876581034
-
Dfam: A database of repetitive DNA based on profile hidden Markov models
-
(Database issue) 1:CAS:528:DC%2BC38XhvV2ktrrL 3531169 23203985
-
Wheeler TJ, Clements J, Eddy SR, Hubley R, Jones TA, Jurka J, et al. Dfam: a database of repetitive DNA based on profile hidden Markov models. Nucleic Acids Res. 2013;41(Database issue):D70-82.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. D70-D82
-
-
Wheeler, T.J.1
Clements, J.2
Eddy, S.R.3
Hubley, R.4
Jones, T.A.5
Jurka, J.6
-
4
-
-
70450202132
-
The B73 maize genome: Complexity, diversity, and dynamics
-
1:CAS:528:DC%2BD1MXhsVentLvL 19965430
-
Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, et al. The B73 maize genome: complexity, diversity, and dynamics. Science. 2009;326:1112-1115.
-
(2009)
Science
, vol.326
, pp. 1112-1115
-
-
Schnable, P.S.1
Ware, D.2
Fulton, R.S.3
Stein, J.C.4
Wei, F.5
Pasternak, S.6
-
5
-
-
84857196312
-
Mobile elements in the human genome: Implications for disease
-
1:CAS:528:DC%2BC38XktVOlu78%3D 3392758 22364178
-
Solyom S, Kazazian HH. Mobile elements in the human genome: implications for disease. Genome Med. 2012;4:12.
-
(2012)
Genome Med
, vol.4
, pp. 12
-
-
Solyom, S.1
Kazazian, H.H.2
-
6
-
-
1542513556
-
Mobile elements: Drivers of genome evolution
-
1:CAS:528:DC%2BD2cXhvFCntrk%3D 15016989
-
Kazazian HH. Mobile elements: drivers of genome evolution. Science. 2004;303:1626-32.
-
(2004)
Science
, vol.303
, pp. 1626-1632
-
-
Kazazian, H.H.1
-
7
-
-
70349318211
-
The impact of retrotransposons on human genome evolution
-
1:CAS:528:DC%2BD1MXhtFCqurjM 2884099 19763152
-
Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution. Nat Rev Genet. 2009;10:691-703.
-
(2009)
Nat Rev Genet
, vol.10
, pp. 691-703
-
-
Cordaux, R.1
Batzer, M.A.2
-
8
-
-
84899436957
-
Deep investigation of Arabidopsis thaliana junk DNA reveals a continuum between repetitive elements and genomic dark matter
-
3978025 24709859
-
Maumus F, Quesneville H. Deep investigation of Arabidopsis thaliana junk DNA reveals a continuum between repetitive elements and genomic dark matter. PLoS One. 2014;9, e94101.
-
(2014)
PLoS One
, vol.9
-
-
Maumus, F.1
Quesneville, H.2
-
9
-
-
84876799419
-
Transposable elements as genetic regulatory substrates in early development
-
Gifford WD, Pfaff SL, Macfarlan TS. Transposable elements as genetic regulatory substrates in early development. Trends Cell Biol. 2013; doi: 10.1016/j.tcb.2013.01.001
-
(2013)
Trends Cell Biol
-
-
Gifford, W.D.1
Pfaff, S.L.2
Macfarlan, T.S.3
-
10
-
-
79955082486
-
Transposable element origins of epigenetic gene regulation
-
1:CAS:528:DC%2BC3MXltFyrsb0%3D 21444239
-
Lisch DR, Bennetzen JL. Transposable element origins of epigenetic gene regulation. Curr Opin Plant Biol. 2011;14:156-61.
-
(2011)
Curr Opin Plant Biol
, vol.14
, pp. 156-161
-
-
Lisch, D.R.1
Bennetzen, J.L.2
-
12
-
-
33748936552
-
Turning junk into gold: Domestication of transposable elements and the creation of new genes in eukaryotes
-
1:CAS:528:DC%2BD28XhtVKqsrjM 16937363
-
Volff J-N. Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes. Bioessays. 2006;28:913-22.
-
(2006)
Bioessays
, vol.28
, pp. 913-922
-
-
Volff, J.-N.1
-
13
-
-
84930731121
-
Discovery of novel genes derived from transposable elements using integrative genomic analysis
-
Hoen DR, Bureau TE. Discovery of novel genes derived from transposable elements using integrative genomic analysis. Mol Biol Evol. 2015;32:1487-1506.
-
(2015)
Mol Biol Evol
, vol.32
, pp. 1487-1506
-
-
Hoen, D.R.1
Bureau, T.E.2
-
14
-
-
79955780739
-
Domestication of transposable elements into MicroRNA genes in plants
-
1:CAS:528:DC%2BC3MXlvFOqsrw%3D 3086885 21559273
-
Li Y, Li C, Xia J, Jin Y. Domestication of transposable elements into MicroRNA genes in plants. PLoS One. 2011;6, e19212.
-
(2011)
PLoS One
, vol.6
-
-
Li, Y.1
Li, C.2
Xia, J.3
Jin, Y.4
-
15
-
-
84869881863
-
Transposable elements reveal a stem cell-specific class of long noncoding RNAs
-
3580499 23181609
-
Kelley D, Rinn J. Transposable elements reveal a stem cell-specific class of long noncoding RNAs. Genome Biol. 2012;13:R107.
-
(2012)
Genome Biol
, vol.13
, pp. R107
-
-
Kelley, D.1
Rinn, J.2
-
16
-
-
84876864345
-
Transposable elements Are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs
-
1:CAS:528:DC%2BC3sXnt1aqs7o%3D 3636048 23637635
-
Kapusta A, Kronenberg Z, Lynch VJ, Zhuo X, Ramsay L, Bourque G, et al. Transposable elements Are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs. PLoS Genet. 2013;9:e1003470.
-
(2013)
PLoS Genet
, vol.9
-
-
Kapusta, A.1
Kronenberg, Z.2
Lynch, V.J.3
Zhuo, X.4
Ramsay, L.5
Bourque, G.6
-
17
-
-
84878522936
-
The majority of primate-specific regulatory sequences are derived from transposable elements
-
1:CAS:528:DC%2BC3sXpsFylsLw%3D 3649963 23675311
-
Jacques P-É, Jeyakani J, Bourque G. The majority of primate-specific regulatory sequences are derived from transposable elements. PLoS Genet. 2013;9, e1003504.
-
(2013)
PLoS Genet
, vol.9
-
-
Jacques, P.-É.1
Jeyakani, J.2
Bourque, G.3
-
18
-
-
84911936991
-
Widespread contribution of transposable elements to the innovation of gene regulatory networks
-
1:CAS:528:DC%2BC2cXitVOls77L 4248313 25319995
-
Sundaram V, Cheng Y, Ma Z, Li D, Xing X, Edge P, et al. Widespread contribution of transposable elements to the innovation of gene regulatory networks. Genome Res. 2014;24:1963-76.
-
(2014)
Genome Res
, vol.24
, pp. 1963-1976
-
-
Sundaram, V.1
Cheng, Y.2
Ma, Z.3
Li, D.4
Xing, X.5
Edge, P.6
-
19
-
-
36249023071
-
A unified classification system for eukaryotic transposable elements
-
1:CAS:528:DC%2BD2sXhtlajtrnF 17984973
-
Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, et al. A unified classification system for eukaryotic transposable elements. Nat Rev Genet. 2007;8:973-82.
-
(2007)
Nat Rev Genet
, vol.8
, pp. 973-982
-
-
Wicker, T.1
Sabot, F.2
Hua-Van, A.3
Bennetzen, J.L.4
Capy, P.5
Chalhoub, B.6
-
20
-
-
42349111552
-
A universal classification of eukaryotic transposable elements implemented in Repbase
-
author reply 414 18421312
-
Kapitonov VV, Jurka J. A universal classification of eukaryotic transposable elements implemented in Repbase. Nat Rev Genet. 2008;9:411-2. author reply 414.
-
(2008)
Nat Rev Genet
, vol.9
, pp. 411-412
-
-
Kapitonov, V.V.1
Jurka, J.2
-
21
-
-
28844444029
-
Combined evidence annotation of transposable elements in genome sequences
-
1:CAS:528:DC%2BD2MXosVehsrs%3D 16110336
-
Quesneville H, Bergman CM, Andrieu O, Autard D, Nouaud D, Ashburner M, et al. Combined evidence annotation of transposable elements in genome sequences. PLoS Comput Biol. 2005;1:166-75.
-
(2005)
PLoS Comput Biol
, vol.1
, pp. 166-175
-
-
Quesneville, H.1
Bergman, C.M.2
Andrieu, O.3
Autard, D.4
Nouaud, D.5
Ashburner, M.6
-
22
-
-
79955468851
-
The Arabidopsis lyrata genome sequence and the basis of rapid genome size change
-
3083492 21478890
-
Hu TT, Pattyn P, Bakker EG, Cao J, Cheng J-F, Clark RM, et al. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet. 2011;43:476-81.
-
(2011)
Nat Genet
, vol.43
, pp. 476-481
-
-
Hu, T.T.1
Pattyn, P.2
Bakker, E.G.3
Cao, J.4
Cheng, J.-F.5
Clark, R.M.6
-
23
-
-
36549035839
-
Discovering and detecting transposable elements in genome sequences
-
1:CAS:528:DC%2BD1cXnvFShug%3D%3D 17932080
-
Bergman CM, Quesneville H. Discovering and detecting transposable elements in genome sequences. Brief Bioinformatics. 2007;8:382-92.
-
(2007)
Brief Bioinformatics
, vol.8
, pp. 382-392
-
-
Bergman, C.M.1
Quesneville, H.2
-
24
-
-
77952670452
-
Identifying repeats and transposable elements in sequenced genomes: How to find your way through the dense forest of programs
-
1:CAS:528:DC%2BC3cXmt1Kqur8%3D 19935826
-
Lerat E. Identifying repeats and transposable elements in sequenced genomes: how to find your way through the dense forest of programs. Heredity. 2010;104:520-33.
-
(2010)
Heredity
, vol.104
, pp. 520-533
-
-
Lerat, E.1
-
26
-
-
42449112779
-
Computational approaches and tools used in identification of dispersed repetitive DNA sequences
-
1:CAS:528:DC%2BD1cXhtVWmsbzP
-
Saha S, Bridges S, Magbanua ZV, Peterson DG. Computational approaches and tools used in identification of dispersed repetitive DNA sequences. Tropical Plant Biol. 2008;1:85-96.
-
(2008)
Tropical Plant Biol
, vol.1
, pp. 85-96
-
-
Saha, S.1
Bridges, S.2
Magbanua, Z.V.3
Peterson, D.G.4
-
27
-
-
32044447172
-
Identification of transposable elements using multiple alignments of related genomes
-
1:CAS:528:DC%2BD28XhsFahtr4%3D 1361722 16354754
-
Caspi A, Pachter L. Identification of transposable elements using multiple alignments of related genomes. Genome Res. 2006;16:260-70.
-
(2006)
Genome Res
, vol.16
, pp. 260-270
-
-
Caspi, A.1
Pachter, L.2
-
28
-
-
84938657257
-
A new approach for annotation of transposable elements using small RNA mapping
-
El-Baidouri M, Kim KD, Abernathy B, Arikit S, Maumus F, Panaud O, et al. A new approach for annotation of transposable elements using small RNA mapping. Nucleic Acids Res. 2015;gkv257.
-
(2015)
Nucleic Acids Res
-
-
El-Baidouri, M.1
Kim, K.D.2
Abernathy, B.3
Arikit, S.4
Maumus, F.5
Panaud, O.6
-
29
-
-
0033555906
-
Tandem repeats finder: A program to analyze DNA sequences
-
1:CAS:528:DyaK1MXhtVKmtrg%3D 148217 9862982
-
Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999;27:573-80.
-
(1999)
Nucleic Acids Res
, vol.27
, pp. 573-580
-
-
Benson, G.1
-
31
-
-
0036673472
-
Automated de novo identification of repeat sequence families in sequenced genomes
-
1:CAS:528:DC%2BD38Xmtl2rur0%3D 186642 12176934
-
Bao Z, Eddy SR. Automated de novo identification of repeat sequence families in sequenced genomes. Genome Res. 2002;12:1269-76.
-
(2002)
Genome Res
, vol.12
, pp. 1269-1276
-
-
Bao, Z.1
Eddy, S.R.2
-
32
-
-
29144455282
-
De novo identification of repeat families in large genomes
-
1:CAS:528:DC%2BD2MXlslyrsrg%3D 15961478
-
Price AL, Jones NC, Pevzner PA. De novo identification of repeat families in large genomes. Bioinformatics. 2005;21 Suppl 1:i351-8.
-
(2005)
Bioinformatics
, vol.21
, pp. i351-i358
-
-
Price, A.L.1
Jones, N.C.2
Pevzner, P.A.3
-
33
-
-
34547592867
-
LTR-FINDER: An efficient tool for the prediction of full-length LTR retrotransposons
-
1933203 17485477
-
Xu Z, Wang H. LTR-FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 2007;35:W265-8.
-
(2007)
Nucleic Acids Res
, vol.35
, pp. W265-W268
-
-
Xu, Z.1
Wang, H.2
-
34
-
-
0037433054
-
LTR-STRUC: A novel search and identification program for LTR retrotransposons
-
1:CAS:528:DC%2BD3sXit1ygt7k%3D 12584121
-
McCarthy EM, McDonald JF. LTR-STRUC: a novel search and identification program for LTR retrotransposons. Bioinformatics. 2003;19:362-7.
-
(2003)
Bioinformatics
, vol.19
, pp. 362-367
-
-
McCarthy, E.M.1
McDonald, J.F.2
-
35
-
-
78650432054
-
MITE-Hunter: A program for discovering miniature inverted-repeat transposable elements from genomic sequences
-
3001096 20880995
-
Han Y, Wessler SR. MITE-Hunter: a program for discovering miniature inverted-repeat transposable elements from genomic sequences. Nucleic Acids Res. 2010;38:e199-9.
-
(2010)
Nucleic Acids Res
, vol.38
, pp. e199-e209
-
-
Han, Y.1
Wessler, S.R.2
-
36
-
-
71749089142
-
Exploring repetitive DNA landscapes using REPCLASS, a tool that automates the classification of transposable elements in eukaryotic genomes
-
2817418 20333191
-
Feschotte C, Keswani U, Ranganathan N, Guibotsy ML, Levine D. Exploring repetitive DNA landscapes using REPCLASS, a tool that automates the classification of transposable elements in eukaryotic genomes. Genome Biol Evol. 2009;1:205-20.
-
(2009)
Genome Biol Evol
, vol.1
, pp. 205-220
-
-
Feschotte, C.1
Keswani, U.2
Ranganathan, N.3
Guibotsy, M.L.4
Levine, D.5
-
37
-
-
23844525077
-
Repbase update, a database of eukaryotic repetitive elements
-
1:STN:280:DC%2BD2Mvislertw%3D%3D 16093699
-
Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J. Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res. 2005;110:462-7.
-
(2005)
Cytogenet Genome Res
, vol.110
, pp. 462-467
-
-
Jurka, J.1
Kapitonov, V.V.2
Pavlicek, A.3
Klonowski, P.4
Kohany, O.5
Walichiewicz, J.6
-
39
-
-
33750831582
-
Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor
-
1634758 17064419
-
Kohany O, Gentles AJ, Hankus L, Jurka J. Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bioinformatics. 2006;7:474.
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 474
-
-
Kohany, O.1
Gentles, A.J.2
Hankus, L.3
Jurka, J.4
-
40
-
-
84871926999
-
-
Green P. Cross-match. at 〈http://www.phrap.org/phredphrapconsed.html〉.
-
Cross-match
-
-
Green, P.1
-
41
-
-
0025183708
-
Basic local alignment search tool
-
1:CAS:528:DyaK3MXitVGmsA%3D%3D 2231712
-
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403-10.
-
(1990)
J Mol Biol
, vol.215
, pp. 403-410
-
-
Altschul, S.F.1
Gish, W.2
Miller, W.3
Myers, E.W.4
Lipman, D.J.5
-
42
-
-
74049108922
-
BLAST+: Architecture and applications
-
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10(1):421. http://doi.org/10.1186/1471-2105-10-421.
-
(2009)
BMC Bioinformatics
, vol.10
, Issue.1
, pp. 421
-
-
Camacho, C.1
Coulouris, G.2
Avagyan, V.3
Ma, N.4
Papadopoulos, J.5
Bealer, K.6
-
43
-
-
84892432106
-
Nhmmer: DNA homology search with profile HMMs
-
1:CAS:528:DC%2BC3sXhsV2nsrzE 3777106 23842809
-
Wheeler TJ, Eddy SR. nhmmer: DNA homology search with profile HMMs. Bioinformatics. 2013;29:2487-9.
-
(2013)
Bioinformatics
, vol.29
, pp. 2487-2489
-
-
Wheeler, T.J.1
Eddy, S.R.2
-
44
-
-
79551624472
-
Considering transposable element diversification in de novo annotation approaches
-
1:CAS:528:DC%2BC3MXhvFaht7w%3D 3031573 21304975
-
Flutre T, Duprat E, Feuillet C, Quesneville H. Considering transposable element diversification in de novo annotation approaches. PLoS One. 2011;6, e16526.
-
(2011)
PLoS One
, vol.6
-
-
Flutre, T.1
Duprat, E.2
Feuillet, C.3
Quesneville, H.4
-
45
-
-
55449118548
-
ReAS: Recovery of ancestral sequences for transposable elements from the unassembled reads of a whole genome shotgun
-
1:CAS:528:DC%2BD2MXhtVOqtL3I
-
Li R, Ye J, Li S, Wang J, Han Y, Ye C, et al. ReAS: recovery of ancestral sequences for transposable elements from the unassembled reads of a whole genome shotgun. PLoS Comput Biol. 2005;1:313-21.
-
(2005)
PLoS Comput Biol
, vol.1
, pp. 313-321
-
-
Li, R.1
Ye, J.2
Li, S.3
Wang, J.4
Han, Y.5
Ye, C.6
-
46
-
-
44849114374
-
Discovery and assembly of repeat family pseudomolecules from sparse genomic sequence data using the assisted automated assembler of repeat families (AAARF) algorithm
-
2412881 18474116
-
DeBarry JD, Liu R, Bennetzen JL. Discovery and assembly of repeat family pseudomolecules from sparse genomic sequence data using the assisted automated assembler of repeat families (AAARF) algorithm. BMC Bioinformatics. 2008;9:235.
-
(2008)
BMC Bioinformatics
, vol.9
, pp. 235
-
-
DeBarry, J.D.1
Liu, R.2
Bennetzen, J.L.3
-
47
-
-
84873311500
-
RetroSeq: Transposable element discovery from next-generation sequencing data
-
1:CAS:528:DC%2BC3sXhvFSjsr4%3D 3562067 23233656
-
Keane TM, Wong K, Adams DJ. RetroSeq: transposable element discovery from next-generation sequencing data. Bioinformatics. 2013;29:389-90.
-
(2013)
Bioinformatics
, vol.29
, pp. 389-390
-
-
Keane, T.M.1
Wong, K.2
Adams, D.J.3
-
48
-
-
84907546045
-
Tedna: A transposable element de novo assembler
-
1:CAS:528:DC%2BC2cXhslehs77F 24894500
-
Zytnicki M, Akhunov E, Quesneville H. Tedna: a transposable element de novo assembler. Bioinformatics. 2014;30:2656-8.
-
(2014)
Bioinformatics
, vol.30
, pp. 2656-2658
-
-
Zytnicki, M.1
Akhunov, E.2
Quesneville, H.3
-
49
-
-
84901367719
-
RepARK - De novo creation of repeat libraries from whole-genome NGS reads
-
Koch P, Platzer M, Downie BR. RepARK - de novo creation of repeat libraries from whole-genome NGS reads. Nucleic Acids Res. 2014;42:gku210-e80.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. gku210-e80
-
-
Koch, P.1
Platzer, M.2
Downie, B.R.3
-
50
-
-
84941057227
-
T-lex2: Genotyping, frequency estimation and re-annotation of transposable elements using single or pooled next-generation sequencing data
-
4344482 25510498
-
Fiston-Lavier A-S, Barrón MG, Petrov DA, González J. T-lex2: genotyping, frequency estimation and re-annotation of transposable elements using single or pooled next-generation sequencing data. Nucleic Acids Res. 2015;43:e22-2.
-
(2015)
Nucleic Acids Res
, vol.43
, pp. e22-e32
-
-
Fiston-Lavier, A.-S.1
Barrón, M.G.2
Petrov, D.A.3
González, J.4
-
51
-
-
0346494835
-
The TIGR plant repeat databases: A collective resource for the identification of repetitive sequences in plants
-
1:CAS:528:DC%2BD3sXhtVSrurbF 308833 14681434
-
Ouyang S, Buell C. The TIGR plant repeat databases: a collective resource for the identification of repetitive sequences in plants. Nucleic Acids Res. 2004;32:D360-3.
-
(2004)
Nucleic Acids Res
, vol.32
, pp. D360-D363
-
-
Ouyang, S.1
Buell, C.2
-
52
-
-
42449106154
-
Empirical comparison of ab initio repeat finding programs
-
1:CAS:528:DC%2BD1cXkvFGgsbk%3D 2367713 18287116
-
Saha S, Bridges S, Magbanua ZV, Peterson DG. Empirical comparison of ab initio repeat finding programs. Nucleic Acids Res. 2008;36:2284-94.
-
(2008)
Nucleic Acids Res
, vol.36
, pp. 2284-2294
-
-
Saha, S.1
Bridges, S.2
Magbanua, Z.V.3
Peterson, D.G.4
-
53
-
-
84880787525
-
Arguments for standardizing transposable element annotation in plant genomes
-
Ragupathy R, You FM, Cloutier S. Arguments for standardizing transposable element annotation in plant genomes. Trends Plant Sci. 2013; doi: 10.1016/j.tplants.2013.03.005.
-
(2013)
Trends Plant Sci
-
-
Ragupathy, R.1
You, F.M.2
Cloutier, S.3
-
54
-
-
84991528460
-
Assemblathon 2: Evaluating de novo methods of genome assembly in three vertebrate species
-
3844414 23870653
-
Bradnam KR, Fass JN, Alexandrov A, Baranay P, Bechner M, Birol I, et al. Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species. Gigascience. 2013;2:10.
-
(2013)
Gigascience
, vol.2
, pp. 10
-
-
Bradnam, K.R.1
Fass, J.N.2
Alexandrov, A.3
Baranay, P.4
Bechner, M.5
Birol, I.6
-
55
-
-
0035175268
-
PALI - A database of Phylogeny and ALIgnment of homologous protein structures
-
1:CAS:528:DC%2BD3MXjtlWntro%3D 29825 11125050
-
Balaji S, Sujatha S, Kumar SS, Srinivasan N. PALI - a database of Phylogeny and ALIgnment of homologous protein structures. Nucleic Acids Res. 2001;29:61-5.
-
(2001)
Nucleic Acids Res
, vol.29
, pp. 61-65
-
-
Balaji, S.1
Sujatha, S.2
Kumar, S.S.3
Srinivasan, N.4
-
56
-
-
16344394781
-
SABmark - A benchmark for sequence alignment that covers the entire known fold space
-
15333456
-
Van Walle I, Lasters I, Wyns L. SABmark - a benchmark for sequence alignment that covers the entire known fold space. Bioinformatics. 2005;21:1267-8.
-
(2005)
Bioinformatics
, vol.21
, pp. 1267-1268
-
-
Van Walle, I.1
Lasters, I.2
Wyns, L.3
-
57
-
-
24644457706
-
BAliBASE 3.0: Latest developments of the multiple sequence alignment benchmark
-
1:CAS:528:DC%2BD2MXhtVSjsL7O 16044462
-
Thompson JD, Koehl P, Ripp R, Poch O. BAliBASE 3.0: latest developments of the multiple sequence alignment benchmark. Proteins. 2005;61:127-36.
-
(2005)
Proteins
, vol.61
, pp. 127-136
-
-
Thompson, J.D.1
Koehl, P.2
Ripp, R.3
Poch, O.4
-
58
-
-
84907707802
-
SMaSH: A benchmarking toolkit for human genome variant calling
-
Talwalkar A, Liptrap J, Newcomb J, Hartl C, Terhorst J, Curtis K, et al. SMaSH: a benchmarking toolkit for human genome variant calling. Bioinformatics. 2014;30:2787-2795.
-
(2014)
Bioinformatics
, vol.30
, pp. 2787-2795
-
-
Talwalkar, A.1
Liptrap, J.2
Newcomb, J.3
Hartl, C.4
Terhorst, J.5
Curtis, K.6
-
59
-
-
84878722729
-
Comparing somatic mutation-callers: Beyond Venn diagrams
-
3702398 23758877
-
Kim SY, Speed TP. Comparing somatic mutation-callers: beyond Venn diagrams. BMC Bioinformatics. 2013;14:189.
-
(2013)
BMC Bioinformatics
, vol.14
, pp. 189
-
-
Kim, S.Y.1
Speed, T.P.2
-
60
-
-
85003049798
-
Toward better benchmarking: Challenge-based methods assessment in cancer genomics
-
4318527 25314947
-
Boutros PC, Margolin AA, Stuart JM, Califano A, Stolovitzky G. Toward better benchmarking: challenge-based methods assessment in cancer genomics. Genome Biol. 2014;15:462.
-
(2014)
Genome Biol
, vol.15
, pp. 462
-
-
Boutros, P.C.1
Margolin, A.A.2
Stuart, J.M.3
Califano, A.4
Stolovitzky, G.5
-
61
-
-
20444484434
-
A decade of CASP: Progress, bottlenecks and prognosis in protein structure prediction
-
1:CAS:528:DC%2BD2MXlt1SrsLw%3D 15939584
-
Moult J. A decade of CASP: progress, bottlenecks and prognosis in protein structure prediction. Curr Opin Struct Biol. 2005;15:285-9.
-
(2005)
Curr Opin Struct Biol
, vol.15
, pp. 285-289
-
-
Moult, J.1
-
62
-
-
0018894384
-
Selfish genes, the phenotype paradigm and genome evolution
-
1:CAS:528:DyaL3cXktl2mur0%3D 6245369
-
Doolittle WF, Sapienza C. Selfish genes, the phenotype paradigm and genome evolution. Nature. 1980;284:601-3.
-
(1980)
Nature
, vol.284
, pp. 601-603
-
-
Doolittle, W.F.1
Sapienza, C.2
-
63
-
-
0030479536
-
The origin of interspersed repeats in the human genome
-
1:CAS:528:DyaK2sXhsVWmtA%3D%3D 8994846
-
Smit AF. The origin of interspersed repeats in the human genome. Curr Opin Genet Dev. 1996;6:743-8.
-
(1996)
Curr Opin Genet Dev
, vol.6
, pp. 743-748
-
-
Smit, A.F.1
-
64
-
-
0035902449
-
Rolling-circle transposons in eukaryotes
-
1:CAS:528:DC%2BD3MXls1WitLo%3D 37501 11447285
-
Kapitonov VV, Jurka J. Rolling-circle transposons in eukaryotes. Proc Natl Acad Sci U S A. 2001;98:8714-9.
-
(2001)
Proc Natl Acad Sci U S A
, vol.98
, pp. 8714-8719
-
-
Kapitonov, V.V.1
Jurka, J.2
-
65
-
-
4944239027
-
Pack-MULE transposable elements mediate gene evolution in plants
-
1:CAS:528:DC%2BD2cXnvFCnurY%3D 15457261
-
Jiang N, Bao Z, Zhang X, Eddy SR, Wessler SR. Pack-MULE transposable elements mediate gene evolution in plants. Nature. 2004;431:569-73.
-
(2004)
Nature
, vol.431
, pp. 569-573
-
-
Jiang, N.1
Bao, Z.2
Zhang, X.3
Eddy, S.R.4
Wessler, S.R.5
-
66
-
-
24344459435
-
The evolutionary fate of MULE-mediated duplications of host gene fragments in rice
-
1:CAS:528:DC%2BD2MXpvF2lsLs%3D 1199544 16140995
-
Juretic N, Hoen DR, Huynh ML, Harrison PM, Bureau TE. The evolutionary fate of MULE-mediated duplications of host gene fragments in rice. Genome Res. 2005;15:1292-7.
-
(2005)
Genome Res
, vol.15
, pp. 1292-1297
-
-
Juretic, N.1
Hoen, D.R.2
Huynh, M.L.3
Harrison, P.M.4
Bureau, T.E.5
-
67
-
-
25144488228
-
Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize
-
1:CAS:528:DC%2BD2MXpsFWisLo%3D 16056225
-
Morgante M, Brunner S, Pea G, Fengler K, Zuccolo A, Rafalski A. Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet. 2005;37:997-1002.
-
(2005)
Nat Genet
, vol.37
, pp. 997-1002
-
-
Morgante, M.1
Brunner, S.2
Pea, G.3
Fengler, K.4
Zuccolo, A.5
Rafalski, A.6
-
68
-
-
33846931279
-
Massive amplification of rolling-circle transposons in the lineage of the bat Myotis lucifugus
-
1:CAS:528:DC%2BD2sXitVejs7w%3D 1794268 17261799
-
Pritham EJ, Feschotte C. Massive amplification of rolling-circle transposons in the lineage of the bat Myotis lucifugus. Proc Natl Acad Sci U S A. 2007;104:1895-900.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 1895-1900
-
-
Pritham, E.J.1
Feschotte, C.2
-
69
-
-
72849134447
-
Distribution, diversity, evolution, and survival of Helitrons in the maize genome
-
1:CAS:528:DC%2BD1MXhsFGjtL3J 2785268 19926865
-
Yang L, Bennetzen JL. Distribution, diversity, evolution, and survival of Helitrons in the maize genome. Proc Natl Acad Sci U S A. 2009;106:19922-7.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 19922-19927
-
-
Yang, L.1
Bennetzen, J.L.2
-
70
-
-
84903540675
-
DINE-1, the highest copy number repeats in Drosophila melanogaster are non-autonomous endonuclease-encoding rolling-circle transposable elements (helentrons)
-
4067079 24959209
-
Thomas J, Vadnagara K, Pritham. DINE-1, the highest copy number repeats in Drosophila melanogaster are non-autonomous endonuclease-encoding rolling-circle transposable elements (helentrons). Mob DNA. 2014;5:18.
-
(2014)
Mob DNA
, vol.5
, pp. 18
-
-
Thomas, J.1
Vadnagara, K.2
Pritham3
-
72
-
-
0037267806
-
Human-mouse alignments with BLASTZ
-
1:CAS:528:DC%2BD3sXnvFGlsg%3D%3D 430961 12529312
-
Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, et al. Human-mouse alignments with BLASTZ. Genome Res. 2003;13(1):103-7. http://doi.org/10.1101/gr.809403.
-
(2003)
Genome Res
, vol.13
, Issue.1
, pp. 103-107
-
-
Schwartz, S.1
Kent, W.J.2
Smit, A.3
Zhang, Z.4
Baertsch, R.5
Hardison, R.C.6
-
73
-
-
54549109145
-
The whole alignment and nothing but the alignment: The problem of spurious alignment flanks
-
1:CAS:528:DC%2BD1cXht1Kgu7bM 2566872 18796526
-
Frith MC, Park Y, Sheetlin SL, Spouge JL. The whole alignment and nothing but the alignment: the problem of spurious alignment flanks. Nucleic Acids Res. 2008;36:5863-71.
-
(2008)
Nucleic Acids Res
, vol.36
, pp. 5863-5871
-
-
Frith, M.C.1
Park, Y.2
Sheetlin, S.L.3
Spouge, J.L.4
-
74
-
-
84903960896
-
Realistic artificial DNA sequences as negative controls for computational genomics
-
1:CAS:528:DC%2BC2cXhtFCqsrbO 4081056 24803667
-
Caballero J, Smit AFA, Hood L, Glusman G. Realistic artificial DNA sequences as negative controls for computational genomics. Nucleic Acids Res. 2014;42:e99-9.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. e99-e109
-
-
Caballero, J.1
Smit, A.F.A.2
Hood, L.3
Glusman, G.4
-
75
-
-
80051997952
-
Dynamic interactions between transposable elements and their hosts
-
1:CAS:528:DC%2BC3MXhtVeiurrE 3192332 21850042
-
Levin HL, Moran JV. Dynamic interactions between transposable elements and their hosts. Nat Rev Genet. 2011;12:615-27.
-
(2011)
Nat Rev Genet
, vol.12
, pp. 615-627
-
-
Levin, H.L.1
Moran, J.V.2
-
76
-
-
0036079158
-
The human genome browser at UCSC
-
1:CAS:528:DC%2BD38Xks12hs7s%3D 186604 12045153 Article published online before print in May 2002
-
Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The human genome browser at UCSC. Genome Res. 2002;12(6):996-1006. http://doi.org/10.1101/gr.229102
-
(2002)
Genome Res
, vol.12
, Issue.6
, pp. 996-1006
-
-
Kent, W.J.1
Sugnet, C.W.2
Furey, T.S.3
Roskin, K.M.4
Pringle, T.H.5
Zahler, A.M.6
-
77
-
-
84881028642
-
An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions
-
1:CAS:528:DC%2BC3sXhtVakurfI 23817568
-
Haudry A, Platts AE, Vello E, Hoen DR, Leclercq M, Williamson RJ, et al. An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions. Nat Genet. 2013;45:891-8.
-
(2013)
Nat Genet
, vol.45
, pp. 891-898
-
-
Haudry, A.1
Platts, A.E.2
Vello, E.3
Hoen, D.R.4
Leclercq, M.5
Williamson, R.J.6
-
78
-
-
84860640144
-
The predominantly selfing plant Arabidopsis thaliana experienced a recent reduction in transposable element abundance compared to its outcrossing relative Arabidopsis lyrata
-
1:CAS:528:DC%2BC38XktlSktL4%3D 3292453 22313744
-
de-la-Chaux N, Tsuchimatsu T, Shimizu KK, Wagner A. The predominantly selfing plant Arabidopsis thaliana experienced a recent reduction in transposable element abundance compared to its outcrossing relative Arabidopsis lyrata. Mob DNA. 2012;3:2.
-
(2012)
Mob DNA
, vol.3
, pp. 2
-
-
De-La-Chaux, N.1
Tsuchimatsu, T.2
Shimizu, K.K.3
Wagner, A.4
-
79
-
-
39749179047
-
LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons
-
2253517 18194517
-
Ellinghaus D, Kurtz S, Willhoeft U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinformatics. 2008;9:18.
-
(2008)
BMC Bioinformatics
, vol.9
, pp. 18
-
-
Ellinghaus, D.1
Kurtz, S.2
Willhoeft, U.3
-
80
-
-
0034065724
-
Ab initio gene finding in Drosophila genomic DNA
-
1:CAS:528:DC%2BD3cXjtVKrs7Y%3D 310882 10779491
-
Salamov AA, Solovyev VV. Ab initio gene finding in Drosophila genomic DNA. Genome Res. 2000;10:516-22.
-
(2000)
Genome Res
, vol.10
, pp. 516-522
-
-
Salamov, A.A.1
Solovyev, V.V.2
-
81
-
-
85027923022
-
The genome sequence of the orchid Phalaenopsis equestris
-
1:CAS:528:DC%2BC2cXhvFKlsr%2FP 25420146
-
Cai J, Liu X, Vanneste K, Proost S, Tsai W-C, Liu K-W, et al. The genome sequence of the orchid Phalaenopsis equestris. Nat Genet. 2015;47(1):65-72. http://doi.org/10.1038/ng.3149.
-
(2015)
Nat Genet
, vol.47
, Issue.1
, pp. 65-72
-
-
Cai, J.1
Liu, X.2
Vanneste, K.3
Proost, S.4
Tsai, W.-C.5
Liu, K.-W.6
-
82
-
-
84908887044
-
Genome sequence and genetic diversity of the common carp, Cyprinus carpio
-
1:CAS:528:DC%2BC2cXhsFyhsrbL 25240282
-
Xu P, Zhang X, Wang X, Li J, Liu G, Kuang Y, et al. Genome sequence and genetic diversity of the common carp, Cyprinus carpio. Nat Genet. 2014;46:1212-9. http://doi.org/10.1038/ng.3098.
-
(2014)
Nat Genet
, vol.46
, pp. 1212-1219
-
-
Xu, P.1
Zhang, X.2
Wang, X.3
Li, J.4
Liu, G.5
Kuang, Y.6
-
83
-
-
84904891701
-
The genome and linkage map of the northern pike (Esox lucius): Conserved synteny revealed between the salmonid sister group and the Neoteleostei
-
4113312 25069045
-
Rondeau EB, Minkley DR, Leong JS, Messmer AM, Jantzen JR, Schalburg von KR, et al. The genome and linkage map of the northern pike (Esox lucius): conserved synteny revealed between the salmonid sister group and the Neoteleostei. PLoS One. 2014;9(7), e102089. http://doi.org/10.1371/journal.pone.01020.
-
(2014)
PLoS One
, vol.9
, Issue.7
-
-
Rondeau, E.B.1
Minkley, D.R.2
Leong, J.S.3
Messmer, A.M.4
Jantzen, J.R.5
Von Schalburg, K.R.6
-
84
-
-
84922395367
-
The genome sequence of African rice (Oryza glaberrima) and evidence for independent domestication
-
1:CAS:528:DC%2BC2cXht1ait7%2FO 25064006
-
Wang M, Yu Y, Haberer G, Marri PR, Fan C, Goicoechea JL, et al. The genome sequence of African rice (Oryza glaberrima) and evidence for independent domestication. Nat Genet. 2014;46(9):982-8. http://doi.org/10.1038/ng.3044.
-
(2014)
Nat Genet
, vol.46
, Issue.9
, pp. 982-988
-
-
Wang, M.1
Yu, Y.2
Haberer, G.3
Marri, P.R.4
Fan, C.5
Goicoechea, J.L.6
-
85
-
-
84905588751
-
The common marmoset genome provides insight into primate biology and evolution
-
Marmoset Genome Sequencing and Analysis Consortium. The common marmoset genome provides insight into primate biology and evolution. Nat Genet. 2014;46:850-7.
-
(2014)
Nat Genet
, vol.46
, pp. 850-857
-
-
-
86
-
-
84901653166
-
Genome sequence of the cultivated cotton Gossypium arboreum
-
1:CAS:528:DC%2BC2cXotFeru7g%3D 24836287
-
Li F, Fan G, Wang K, Sun F, Yuan Y, Song G, et al. Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet. 2014;46(6):567-72. http://doi.org/10.1038/ng.2987.
-
(2014)
Nat Genet
, vol.46
, Issue.6
, pp. 567-572
-
-
Li, F.1
Fan, G.2
Wang, K.3
Sun, F.4
Yuan, Y.5
Song, G.6
-
87
-
-
84900022736
-
The tobacco genome sequence and its comparison with those of tomato and potato
-
1:CAS:528:DC%2BC2cXitVShsLjN 4024737 24807620
-
Sierro N, Battey JND, Ouadi S, Bakaher N, Bovet L, Willig A, et al. The tobacco genome sequence and its comparison with those of tomato and potato. Nat Commun. 2014;5:3833. http://doi.org/10.1038/ncomms4833.
-
(2014)
Nat Commun
, vol.5
, pp. 3833
-
-
Sierro, N.1
Battey, J.N.D.2
Ouadi, S.3
Bakaher, N.4
Bovet, L.5
Willig, A.6
-
88
-
-
84899560044
-
Genome sequence of the tsetse fly (Glossina morsitans): Vector of African trypanosomiasis
-
International Glossina Genome Initiative. Genome sequence of the tsetse fly (Glossina morsitans): vector of African trypano somiasis. Science. 2014;344:380-386.
-
(2014)
Science
, vol.344
, pp. 380-386
-
-
-
89
-
-
84899099281
-
The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates
-
4071752 24755649
-
Berthelot C, Brunet F, Chalopin D, Juanchich A, Bernard M, Noel B, et al. The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nat Commun. 2014;5:3657. http://doi.org/10.1038/ncomms4657.
-
(2014)
Nat Commun
, vol.5
, pp. 3657
-
-
Berthelot, C.1
Brunet, F.2
Chalopin, D.3
Juanchich, A.4
Bernard, M.5
Noel, B.6
-
90
-
-
84899476884
-
Whole genome sequencing of the black grouse (Tetrao tetrix): Reference guided assembly suggests faster-Z and MHC evolution
-
4022176 24602261
-
Wang B, Ekblom R, Bunikis I, Siitari H, Höglund J. Whole genome sequencing of the black grouse (Tetrao tetrix): reference guided assembly suggests faster-Z and MHC evolution. BMC Genomics. 2014;15:180.
-
(2014)
BMC Genomics
, vol.15
, pp. 180
-
-
Wang, B.1
Ekblom, R.2
Bunikis, I.3
Siitari, H.4
Höglund, J.5
-
91
-
-
84899126607
-
Unique features of the loblolly pine (Pinus taeda L.) megagenome revealed through sequence annotation
-
1:CAS:528:DC%2BC2cXhtl2rs7jF 3948814 24653211
-
Wegrzyn JL, Liechty JD, Stevens KA, Wu L-S, Loopstra CA, Vasquez-Gross HA, et al. Unique features of the loblolly pine (Pinus taeda L.) megagenome revealed through sequence annotation. Genetics. 2014;196(3):891-909. http://doi.org/10.1534/genetics.113.159996.
-
(2014)
Genetics
, vol.196
, Issue.3
, pp. 891-909
-
-
Wegrzyn, J.L.1
Liechty, J.D.2
Stevens, K.A.3
Wu, L.-S.4
Loopstra, C.A.5
Vasquez-Gross, H.A.6
-
92
-
-
84894377865
-
The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle
-
Wang W, Haberer G, Gundlach H, Gläßer C, Nussbaumer T, Luo MC, et al. The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle. Nat Commun. 2014;5. http://doi.org/10.1038/ncomms4311.
-
(2014)
Nat Commun
, vol.5
-
-
Wang, W.1
Haberer, G.2
Gundlach, H.3
Gläßer, C.4
Nussbaumer, T.5
Luo, M.C.6
-
93
-
-
84895867400
-
Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle
-
1:CAS:528:DC%2BC2cXhs1Snu7k%3D 24487278
-
Chen S, Zhang G, Shao C, Huang Q, Liu G, Zhang P, et al. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nat Genet. 2014;46(3):253-60. http://doi.org/10.1038/ng.2890.
-
(2014)
Nat Genet
, vol.46
, Issue.3
, pp. 253-260
-
-
Chen, S.1
Zhang, G.2
Shao, C.3
Huang, Q.4
Liu, G.5
Zhang, P.6
-
94
-
-
84898022114
-
Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization
-
1:CAS:528:DC%2BC2cXjtl2gsLY%3D 3986200 24591624
-
Qin C, Yu C, Shen Y, Fang X, Chen L, Min J, et al. Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Pnas. 2014;111(14):5135-40. http://doi.org/10.1073/pnas.1400975111.
-
(2014)
Pnas
, vol.111
, Issue.14
, pp. 5135-5140
-
-
Qin, C.1
Yu, C.2
Shen, Y.3
Fang, X.4
Chen, L.5
Min, J.6
-
95
-
-
84895880054
-
Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species
-
1:CAS:528:DC%2BC2cXps1aktw%3D%3D 24441736
-
Kim S, Park M, Yeom S-I, Kim Y-M, Lee JM, Lee H-A, et al. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet. 2014;46(3):270-8. http://doi.org/10.1038/ng.2877.
-
(2014)
Nat Genet
, vol.46
, Issue.3
, pp. 270-278
-
-
Kim, S.1
Park, M.2
Yeom, S.-I.3
Kim, Y.-M.4
Lee, J.M.5
Lee, H.-A.6
-
96
-
-
84892453041
-
Genome sequence of Anopheles sinensis provides insight into genetics basis of mosquito competence for malaria parasites
-
3901762 24438588
-
Zhou D, Zhang D, Ding G, Shi L, Hou Q, Ye Y, et al. Genome sequence of Anopheles sinensis provides insight into genetics basis of mosquito competence for malaria parasites. BMC Genomics. 2014;15(1):42. http://doi.org/10.1186/1471-2164-15-42.
-
(2014)
BMC Genomics
, vol.15
, Issue.1
, pp. 42
-
-
Zhou, D.1
Zhang, D.2
Ding, G.3
Shi, L.4
Hou, Q.5
Ye, Y.6
|