메뉴 건너뛰기




Volumn 18, Issue 7, 2013, Pages 367-376

Arguments for standardizing transposable element annotation in plant genomes

Author keywords

Annotation; Epigenetics; Non Mendelian inheritance; Plant genome; Retroelement; Transposable element

Indexed keywords

BREEDING; GENE EXPRESSION REGULATION; GENETIC EPIGENESIS; GENETICS; MOLECULAR GENETICS; PLANT GENOME; REVIEW; TRANSPOSON;

EID: 84880787525     PISSN: 13601385     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tplants.2013.03.005     Document Type: Review
Times cited : (24)

References (110)
  • 1
    • 72749127435 scopus 로고
    • The origin and behavior of mutable loci in maize
    • McClintock B. The origin and behavior of mutable loci in maize. Proc. Natl. Acad. Sci. U.S.A. 1950, 36:344-355.
    • (1950) Proc. Natl. Acad. Sci. U.S.A. , vol.36 , pp. 344-355
    • McClintock, B.1
  • 2
    • 84871329875 scopus 로고    scopus 로고
    • How important are transposons for plant evolution?
    • Lisch D. How important are transposons for plant evolution?. Nat. Rev. Genet. 2013, 14:49-61.
    • (2013) Nat. Rev. Genet. , vol.14 , pp. 49-61
    • Lisch, D.1
  • 3
    • 0034649566 scopus 로고    scopus 로고
    • Analysis of the genome sequence of the flowering plant Arabidopsis thaliana
    • Arabidopsis Genome Sequencing Consortium
    • Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 2000, 408:796-815. Arabidopsis Genome Sequencing Consortium.
    • (2000) Nature , vol.408 , pp. 796-815
  • 4
    • 72849144434 scopus 로고    scopus 로고
    • Sequencing technologies: the next generation
    • Metzker M.L. Sequencing technologies: the next generation. Nat. Rev. Genet. 2010, 11:31-46.
    • (2010) Nat. Rev. Genet. , vol.11 , pp. 31-46
    • Metzker, M.L.1
  • 5
    • 83855165105 scopus 로고    scopus 로고
    • Repetitive DNA and next-generation sequencing: computational challenges and solutions
    • Treangen T.J., Salzberg S.L. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat. Rev. Genet. 2012, 13:36-46.
    • (2012) Nat. Rev. Genet. , vol.13 , pp. 36-46
    • Treangen, T.J.1    Salzberg, S.L.2
  • 6
    • 78650909427 scopus 로고    scopus 로고
    • Limitations of next generation genome sequence assembly
    • Alkan C., et al. Limitations of next generation genome sequence assembly. Nat. Methods 2011, 8:61-65.
    • (2011) Nat. Methods , vol.8 , pp. 61-65
    • Alkan, C.1
  • 7
    • 27444444339 scopus 로고    scopus 로고
    • Transposable elements, gene creation and genome rearrangement in flowering plants
    • Bennetzen J. Transposable elements, gene creation and genome rearrangement in flowering plants. Curr. Opin. Genet. Dev. 2005, 15:621-627.
    • (2005) Curr. Opin. Genet. Dev. , vol.15 , pp. 621-627
    • Bennetzen, J.1
  • 8
    • 23844543047 scopus 로고    scopus 로고
    • LTR retrotransposons and flowering plant genome size: emergence of the increase or decrease model
    • Vitte C., Panaud O. LTR retrotransposons and flowering plant genome size: emergence of the increase or decrease model. Cytogenet. Genome Res. 2005, 110:91-107.
    • (2005) Cytogenet. Genome Res. , vol.110 , pp. 91-107
    • Vitte, C.1    Panaud, O.2
  • 9
    • 70349318211 scopus 로고    scopus 로고
    • The impact of retrotransposons on human genome evolution
    • Cordaux R., Batzer M.A. The impact of retrotransposons on human genome evolution. Nat. Rev. Genet. 2009, 10:691-703.
    • (2009) Nat. Rev. Genet. , vol.10 , pp. 691-703
    • Cordaux, R.1    Batzer, M.A.2
  • 10
    • 70450202132 scopus 로고    scopus 로고
    • The B73 maize genome: complexity, diversity, and dynamics
    • Schnable P.S., et al. The B73 maize genome: complexity, diversity, and dynamics. Science 2009, 326:1112-1115.
    • (2009) Science , vol.326 , pp. 1112-1115
    • Schnable, P.S.1
  • 11
    • 77955908237 scopus 로고    scopus 로고
    • Megabase level sequencing reveals contrasted organization and evolution patterns of the wheat gene and transposable element spaces
    • Choulet F., et al. Megabase level sequencing reveals contrasted organization and evolution patterns of the wheat gene and transposable element spaces. Plant Cell 2010, 22:1686-1701.
    • (2010) Plant Cell , vol.22 , pp. 1686-1701
    • Choulet, F.1
  • 12
    • 84869490320 scopus 로고    scopus 로고
    • Epigenetic control of transposon transcription and mobility in Arabidopsis
    • Bucher E., et al. Epigenetic control of transposon transcription and mobility in Arabidopsis. Curr. Opin. Plant Biol. 2012, 15:1-8.
    • (2012) Curr. Opin. Plant Biol. , vol.15 , pp. 1-8
    • Bucher, E.1
  • 13
    • 77249170184 scopus 로고    scopus 로고
    • Establishing, maintaining and modifying DNA methylation patterns in plants and animals
    • Law J.A., Jacobsen S.E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 2010, 11:204-220.
    • (2010) Nat. Rev. Genet. , vol.11 , pp. 204-220
    • Law, J.A.1    Jacobsen, S.E.2
  • 14
    • 33646473818 scopus 로고    scopus 로고
    • DEMETER and REPRESSOR OF SILENCING 1 encode 5-methylcytosine DNA glycosylases
    • Morales-Ruiz T., et al. DEMETER and REPRESSOR OF SILENCING 1 encode 5-methylcytosine DNA glycosylases. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:6853-6858.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 6853-6858
    • Morales-Ruiz, T.1
  • 15
    • 0038670503 scopus 로고    scopus 로고
    • Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis
    • Saze H., et al. Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis. Nat. Genet. 2003, 34:65-69.
    • (2003) Nat. Genet. , vol.34 , pp. 65-69
    • Saze, H.1
  • 16
    • 59349118366 scopus 로고    scopus 로고
    • Epigenetic reprogramming and small RNA silencing of transposable elements in pollen
    • Slotkin R.K., et al. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 2009, 136:461-472.
    • (2009) Cell , vol.136 , pp. 461-472
    • Slotkin, R.K.1
  • 17
    • 84867053720 scopus 로고    scopus 로고
    • Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA
    • Calarco J.P., et al. Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell 2012, 151:194-205.
    • (2012) Cell , vol.151 , pp. 194-205
    • Calarco, J.P.1
  • 18
    • 84866140080 scopus 로고    scopus 로고
    • Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes
    • Ibarra C.A., et al. Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes. Science 2012, 337:1360-1364.
    • (2012) Science , vol.337 , pp. 1360-1364
    • Ibarra, C.A.1
  • 19
    • 0021715393 scopus 로고
    • The significance of responses of the genome to challenge
    • McClintock B. The significance of responses of the genome to challenge. Science 1984, 226:792-801.
    • (1984) Science , vol.226 , pp. 792-801
    • McClintock, B.1
  • 20
    • 0032080772 scopus 로고    scopus 로고
    • Activation of plant retrotransposons under stress conditions
    • Grandbastien M-A. Activation of plant retrotransposons under stress conditions. Trends Plant Sci. 1998, 3:181-187.
    • (1998) Trends Plant Sci. , vol.3 , pp. 181-187
    • Grandbastien, M.-A.1
  • 21
    • 0030207150 scopus 로고    scopus 로고
    • Plant retrotransposons: turned on by stress
    • Wessler S.R. Plant retrotransposons: turned on by stress. Curr. Biol. 1996, 6:959-961.
    • (1996) Curr. Biol. , vol.6 , pp. 959-961
    • Wessler, S.R.1
  • 22
    • 0034612315 scopus 로고    scopus 로고
    • Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimate divergence
    • Kalendar R., et al. Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimate divergence. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:6603-6607.
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.97 , pp. 6603-6607
    • Kalendar, R.1
  • 23
    • 79953746026 scopus 로고    scopus 로고
    • An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress
    • Ito H., et al. An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature 2011, 472:115-119.
    • (2011) Nature , vol.472 , pp. 115-119
    • Ito, H.1
  • 24
    • 84865790047 scopus 로고    scopus 로고
    • An integrated encyclopedia of DNA elements in the human genome
    • The ENCODE Project Consortium
    • An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489:57-74. The ENCODE Project Consortium.
    • (2012) Nature , vol.489 , pp. 57-74
  • 25
    • 34248340993 scopus 로고    scopus 로고
    • Role of RNA polymerase IV in plant small RNA metabolism
    • Zhang X., et al. Role of RNA polymerase IV in plant small RNA metabolism. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:4536-4541.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 4536-4541
    • Zhang, X.1
  • 26
    • 84855566591 scopus 로고    scopus 로고
    • Long noncoding RNA: unveiling hidden layer of gene regulatory networks
    • Kim E-D., Sung S. Long noncoding RNA: unveiling hidden layer of gene regulatory networks. Trends Plant Sci. 2011, 17:16-21.
    • (2011) Trends Plant Sci. , vol.17 , pp. 16-21
    • Kim, E.-D.1    Sung, S.2
  • 27
    • 84869497465 scopus 로고    scopus 로고
    • Epigenetic responses to stress: triple defense
    • Gutzat R., Scheid O.M. Epigenetic responses to stress: triple defense. Curr. Opin. Plant Biol. 2012, 15:1-6.
    • (2012) Curr. Opin. Plant Biol. , vol.15 , pp. 1-6
    • Gutzat, R.1    Scheid, O.M.2
  • 28
    • 33947303168 scopus 로고    scopus 로고
    • Transposable elements and the epigenetic regulation of the genome
    • Slotkin R.K., Martienssen R. Transposable elements and the epigenetic regulation of the genome. Nat. Rev. Genet. 2007, 8:272-285.
    • (2007) Nat. Rev. Genet. , vol.8 , pp. 272-285
    • Slotkin, R.K.1    Martienssen, R.2
  • 29
    • 37249012285 scopus 로고    scopus 로고
    • Large-scale survey of cytosine methylation of retrotransposons and the impact of readout transcription from long terminal repeats on expression of adjacent rice genes
    • Kashkush K., Khasdan V. Large-scale survey of cytosine methylation of retrotransposons and the impact of readout transcription from long terminal repeats on expression of adjacent rice genes. Genetics 2007, 177:1975-1985.
    • (2007) Genetics , vol.177 , pp. 1975-1985
    • Kashkush, K.1    Khasdan, V.2
  • 30
    • 33644665000 scopus 로고    scopus 로고
    • Involvement of ethylene in stress-induced expression of the TLC1.1 retrotransposon from Lycopersicon chilense Dun
    • Tapia G., et al. Involvement of ethylene in stress-induced expression of the TLC1.1 retrotransposon from Lycopersicon chilense Dun. Plant Physiol. 2005, 138:2075-2086.
    • (2005) Plant Physiol. , vol.138 , pp. 2075-2086
    • Tapia, G.1
  • 31
    • 0033136093 scopus 로고    scopus 로고
    • A 13-bp cis-regulatory element in the LTR promoter of the tobacco retrotransposon Tto1 is involved in responsiveness to tissue culture, wounding, methyl jasmonate and fungal elicitors
    • Takeda S., et al. A 13-bp cis-regulatory element in the LTR promoter of the tobacco retrotransposon Tto1 is involved in responsiveness to tissue culture, wounding, methyl jasmonate and fungal elicitors. Plant J. 1999, 18:383-393.
    • (1999) Plant J. , vol.18 , pp. 383-393
    • Takeda, S.1
  • 32
    • 79955082486 scopus 로고    scopus 로고
    • Transposable element origins of epigenetic gene regulation
    • Lisch D., Bennetzen J.L. Transposable element origins of epigenetic gene regulation. Curr. Opin. Plant Biol. 2011, 14:156-161.
    • (2011) Curr. Opin. Plant Biol. , vol.14 , pp. 156-161
    • Lisch, D.1    Bennetzen, J.L.2
  • 33
    • 84869092886 scopus 로고    scopus 로고
    • Transposable element small RNAs as regulators of gene expression
    • McCue A.D., Slotkin R.K. Transposable element small RNAs as regulators of gene expression. Trends Genet. 2012, 28:616-623.
    • (2012) Trends Genet. , vol.28 , pp. 616-623
    • McCue, A.D.1    Slotkin, R.K.2
  • 34
    • 42449099982 scopus 로고    scopus 로고
    • Dual coding of siRNAs and miRNAs by plant transposable elements
    • Piriyapongsa J., Jordan I.K. Dual coding of siRNAs and miRNAs by plant transposable elements. RNA 2008, 14:814-821.
    • (2008) RNA , vol.14 , pp. 814-821
    • Piriyapongsa, J.1    Jordan, I.K.2
  • 35
    • 79955780739 scopus 로고    scopus 로고
    • Domestication of transposable elements into microRNA genes in plants
    • Li Y., et al. Domestication of transposable elements into microRNA genes in plants. PLoS ONE 2011, 6:e19212.
    • (2011) PLoS ONE , vol.6
    • Li, Y.1
  • 36
    • 79953163301 scopus 로고    scopus 로고
    • Genome reprogramming and small interfering RNA in the Arabidopsis germline
    • Calarco J.P., Martienssen R.A. Genome reprogramming and small interfering RNA in the Arabidopsis germline. Curr. Opin. Genet. Dev. 2011, 21:134-139.
    • (2011) Curr. Opin. Genet. Dev. , vol.21 , pp. 134-139
    • Calarco, J.P.1    Martienssen, R.A.2
  • 37
    • 83455168092 scopus 로고    scopus 로고
    • Comprehensive analysis of microRNA genomic loci identifies pervasive repetitive element origins
    • Borchert G.M., et al. Comprehensive analysis of microRNA genomic loci identifies pervasive repetitive element origins. Mob. Genet. Elements 2011, 1:8-17.
    • (2011) Mob. Genet. Elements , vol.1 , pp. 8-17
    • Borchert, G.M.1
  • 38
    • 42349096534 scopus 로고    scopus 로고
    • Transposable elements and the evolution of regulatory networks
    • Feschotte C. Transposable elements and the evolution of regulatory networks. Nat. Rev. Genet. 2008, 9:397-405.
    • (2008) Nat. Rev. Genet. , vol.9 , pp. 397-405
    • Feschotte, C.1
  • 39
    • 84863792071 scopus 로고    scopus 로고
    • RNA polymerase V-dependent small RNAs in Arabidopsis originate from small, intergenic loci including most SINE repeats
    • Lee T., et al. RNA polymerase V-dependent small RNAs in Arabidopsis originate from small, intergenic loci including most SINE repeats. Epigenetics 2012, 7:781-795.
    • (2012) Epigenetics , vol.7 , pp. 781-795
    • Lee, T.1
  • 40
    • 0033637356 scopus 로고    scopus 로고
    • The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene
    • Soppe W.J.J., et al. The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol. Cell 2000, 6:791-802.
    • (2000) Mol. Cell , vol.6 , pp. 791-802
    • Soppe, W.J.J.1
  • 41
    • 80055004691 scopus 로고    scopus 로고
    • Genome wide association studies in plants: the missing heritability is in the field
    • Brachi B., et al. Genome wide association studies in plants: the missing heritability is in the field. Genome Biol. 2011, 12:232.
    • (2011) Genome Biol. , vol.12 , pp. 232
    • Brachi, B.1
  • 42
    • 79955112442 scopus 로고    scopus 로고
    • Histone variants and modifications in plant gene regulation
    • Deal R.B., Henikoff S. Histone variants and modifications in plant gene regulation. Curr. Opin. Plant Biol. 2011, 14:116-122.
    • (2011) Curr. Opin. Plant Biol. , vol.14 , pp. 116-122
    • Deal, R.B.1    Henikoff, S.2
  • 43
    • 79955086529 scopus 로고    scopus 로고
    • Selected aspects of transgenerational epigenetic inheritance and resetting in plants
    • Paszkowski J., Grossniklaus U. Selected aspects of transgenerational epigenetic inheritance and resetting in plants. Curr. Opin. Plant Biol. 2011, 14:1-9.
    • (2011) Curr. Opin. Plant Biol. , vol.14 , pp. 1-9
    • Paszkowski, J.1    Grossniklaus, U.2
  • 44
    • 79957679448 scopus 로고    scopus 로고
    • Epigenetic contribution to stress adaptation in plants
    • Mirouze M., Paszkowski J. Epigenetic contribution to stress adaptation in plants. Curr. Opin. Plant Biol. 2011, 14:267-274.
    • (2011) Curr. Opin. Plant Biol. , vol.14 , pp. 267-274
    • Mirouze, M.1    Paszkowski, J.2
  • 45
    • 79955122393 scopus 로고    scopus 로고
    • Natural epigenetic variation in plant species: a view from the field
    • Richards E.J. Natural epigenetic variation in plant species: a view from the field. Curr. Opin. Plant Biol. 2011, 14:204-209.
    • (2011) Curr. Opin. Plant Biol. , vol.14 , pp. 204-209
    • Richards, E.J.1
  • 46
    • 80054837794 scopus 로고    scopus 로고
    • Transgenerational epigenetic instability is a source of novel methylation variants
    • Schmitz R.J., et al. Transgenerational epigenetic instability is a source of novel methylation variants. Science 2011, 334:369-373.
    • (2011) Science , vol.334 , pp. 369-373
    • Schmitz, R.J.1
  • 47
    • 38449084519 scopus 로고    scopus 로고
    • Repetitive sequences in complex genomes: structure and evolution
    • Jurka J., et al. Repetitive sequences in complex genomes: structure and evolution. Annu. Rev. Genomics Hum. Genet. 2007, 8:241-259.
    • (2007) Annu. Rev. Genomics Hum. Genet. , vol.8 , pp. 241-259
    • Jurka, J.1
  • 48
    • 36249023071 scopus 로고    scopus 로고
    • A unified classification system for eukaryotic transposable elements
    • Wicker T., et al. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 2007, 8:973-982.
    • (2007) Nat. Rev. Genet. , vol.8 , pp. 973-982
    • Wicker, T.1
  • 50
    • 0036673472 scopus 로고    scopus 로고
    • Automated de novo identification of repeat sequence families in sequenced genomes
    • Bao Z., Eddy S.R. Automated de novo identification of repeat sequence families in sequenced genomes. Genome Res. 2002, 12:1269-1276.
    • (2002) Genome Res. , vol.12 , pp. 1269-1276
    • Bao, Z.1    Eddy, S.R.2
  • 51
    • 55449118548 scopus 로고    scopus 로고
    • ReAS: recovery of ancestral sequences for transposable elements from the unassembled reads of a whole genome shotgun
    • Li R., et al. ReAS: recovery of ancestral sequences for transposable elements from the unassembled reads of a whole genome shotgun. PLoS Comput. Biol. 2005, 1:e43.
    • (2005) PLoS Comput. Biol. , vol.1
    • Li, R.1
  • 52
    • 56549086632 scopus 로고    scopus 로고
    • A new method to compute K-mer frequencies and its application to annotate large repetitive plant genomes
    • Kurtz S., et al. A new method to compute K-mer frequencies and its application to annotate large repetitive plant genomes. BMC Genomics 2008, 9:517.
    • (2008) BMC Genomics , vol.9 , pp. 517
    • Kurtz, S.1
  • 53
    • 77954854627 scopus 로고    scopus 로고
    • Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data
    • Novák P., et al. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics 2010, 11:378.
    • (2010) BMC Bioinformatics , vol.11 , pp. 378
    • Novák, P.1
  • 54
    • 77952670452 scopus 로고    scopus 로고
    • Identifying repeats and transposable elements in sequenced genomes: how to find your way through the dense forest of programs
    • Lerat E. Identifying repeats and transposable elements in sequenced genomes: how to find your way through the dense forest of programs. Heredity 2010, 104:520-533.
    • (2010) Heredity , vol.104 , pp. 520-533
    • Lerat, E.1
  • 55
    • 77955801615 scopus 로고    scopus 로고
    • Galaxy: a comprehensive approach for supporting accessible, reproducible and transparent computational research in the life sciences
    • Goecks J., et al. Galaxy: a comprehensive approach for supporting accessible, reproducible and transparent computational research in the life sciences. Genome Biol. 2010, 11:R86.
    • (2010) Genome Biol. , vol.11
    • Goecks, J.1
  • 56
    • 84858593012 scopus 로고    scopus 로고
    • The iPlant Collaborative: cyberinfrastructure for plant biology
    • Article 34
    • Goff S.A., et al. The iPlant Collaborative: cyberinfrastructure for plant biology. Front. Plant Sci. 2011, 2. Article 34.
    • (2011) Front. Plant Sci. , vol.2
    • Goff, S.A.1
  • 57
    • 36549035839 scopus 로고    scopus 로고
    • Discovering and detecting transposable elements in genome sequences
    • Bergman C.M., Quesneville H. Discovering and detecting transposable elements in genome sequences. Brief. Bioinform. 2007, 8:382-392.
    • (2007) Brief. Bioinform. , vol.8 , pp. 382-392
    • Bergman, C.M.1    Quesneville, H.2
  • 58
    • 79551624472 scopus 로고    scopus 로고
    • Considering transposable element diversification in de novo annotation approaches
    • Flutre T., et al. Considering transposable element diversification in de novo annotation approaches. PLoS ONE 2011, 6:e16526.
    • (2011) PLoS ONE , vol.6
    • Flutre, T.1
  • 59
    • 84880850873 scopus 로고    scopus 로고
    • In search of lost trajectories: recovering the diversification of transposable elements
    • Flutre T., et al. In search of lost trajectories: recovering the diversification of transposable elements. Mob. Genet. Elements 2011, 1:151-154.
    • (2011) Mob. Genet. Elements , vol.1 , pp. 151-154
    • Flutre, T.1
  • 60
    • 84880814175 scopus 로고    scopus 로고
    • Roadmap for annotating transposable elements in eukaryote genomes
    • Humana Press, W.J. Miller, P. Capy (Eds.)
    • Permal E., et al. Roadmap for annotating transposable elements in eukaryote genomes. Mobile Genetic Elements: Protocols and Genomic Applications 2012, 53-67. Humana Press. W.J. Miller, P. Capy (Eds.).
    • (2012) Mobile Genetic Elements: Protocols and Genomic Applications , pp. 53-67
    • Permal, E.1
  • 61
    • 84865415008 scopus 로고    scopus 로고
    • 29 mammalian genomes reveal novel exaptations of mobile elements for likely regulatory functions in the human genome
    • Lowe C., Haussler D. 29 mammalian genomes reveal novel exaptations of mobile elements for likely regulatory functions in the human genome. PLoS ONE 2012, 7:e43128.
    • (2012) PLoS ONE , vol.7
    • Lowe, C.1    Haussler, D.2
  • 62
    • 70350515004 scopus 로고    scopus 로고
    • Unexpected consequences of a sudden and massive transposon amplification on rice gene expression
    • Naito K., et al. Unexpected consequences of a sudden and massive transposon amplification on rice gene expression. Nature 2009, 461:1130-1134.
    • (2009) Nature , vol.461 , pp. 1130-1134
    • Naito, K.1
  • 63
    • 84863183645 scopus 로고    scopus 로고
    • A highly conserved small LTR retrotransposon that preferentially targets genes in grass genomes
    • Gao D., et al. A highly conserved small LTR retrotransposon that preferentially targets genes in grass genomes. PLoS ONE 2012, 7:e32010.
    • (2012) PLoS ONE , vol.7
    • Gao, D.1
  • 64
    • 0041419305 scopus 로고    scopus 로고
    • Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon rich regions of the genome
    • Miyao A., et al. Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon rich regions of the genome. Plant Cell 2003, 15:1771-1780.
    • (2003) Plant Cell , vol.15 , pp. 1771-1780
    • Miyao, A.1
  • 65
    • 80054968887 scopus 로고    scopus 로고
    • Identification of a functional transposon insertion in the maize domestication gene tb1
    • Studer A., et al. Identification of a functional transposon insertion in the maize domestication gene tb1. Nat. Genet. 2011, 43:1160-1163.
    • (2011) Nat. Genet. , vol.43 , pp. 1160-1163
    • Studer, A.1
  • 66
    • 33748760611 scopus 로고    scopus 로고
    • The genome of black cottonwood, Populus trichocarpa (Torr. & Gray)
    • Tuskan G.A., et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 2006, 313:1596-1604.
    • (2006) Science , vol.313 , pp. 1596-1604
    • Tuskan, G.A.1
  • 67
    • 34848886909 scopus 로고    scopus 로고
    • The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla
    • French-Italian Public Consortium for Grapevine Genome Characterization
    • The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 2007, 449:463-467. French-Italian Public Consortium for Grapevine Genome Characterization.
    • (2007) Nature , vol.449 , pp. 463-467
  • 68
    • 42949157236 scopus 로고    scopus 로고
    • The draft genome of the transgenic tropical fruit tree papaya (Carica papaya L.)
    • Ming R., et al. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya L.). Nature 2008, 452:991-996.
    • (2008) Nature , vol.452 , pp. 991-996
    • Ming, R.1
  • 69
    • 70649085835 scopus 로고    scopus 로고
    • The genome of the cucumber, Cucumis sativus L
    • Huang S., et al. The genome of the cucumber, Cucumis sativus L. Nat. Genet. 2009, 41:1275-1281.
    • (2009) Nat. Genet. , vol.41 , pp. 1275-1281
    • Huang, S.1
  • 70
    • 77956656511 scopus 로고    scopus 로고
    • Draft genome sequence of the oilseed species Ricinus communis
    • Chan A.P., et al. Draft genome sequence of the oilseed species Ricinus communis. Nat. Biotechnol. 2010, 28:951-956.
    • (2010) Nat. Biotechnol. , vol.28 , pp. 951-956
    • Chan, A.P.1
  • 71
    • 74549221016 scopus 로고    scopus 로고
    • Genome sequence of the palaeopolyploid soybean
    • Schmutz J., et al. Genome sequence of the palaeopolyploid soybean. Nature 2010, 463:178-183.
    • (2010) Nature , vol.463 , pp. 178-183
    • Schmutz, J.1
  • 72
    • 84355166513 scopus 로고    scopus 로고
    • The Medicago genome provides insight into the evolution of rhizobial symbioses
    • Young N.D., et al. The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 2011, 480:520-524.
    • (2011) Nature , vol.480 , pp. 520-524
    • Young, N.D.1
  • 73
    • 77957560949 scopus 로고    scopus 로고
    • The genome of the domesticated apple (Malus domestica Borkh.)
    • Velasco R., et al. The genome of the domesticated apple (Malus domestica Borkh.). Nat. Genet. 2010, 42:833-839.
    • (2010) Nat. Genet. , vol.42 , pp. 833-839
    • Velasco, R.1
  • 74
    • 79955468851 scopus 로고    scopus 로고
    • The Arabidopsis lyrata genome sequence and the basis of rapid genome size change
    • Hu T.T., et al. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat. Genet. 2011, 43:476-481.
    • (2011) Nat. Genet. , vol.43 , pp. 476-481
    • Hu, T.T.1
  • 75
    • 80053386792 scopus 로고    scopus 로고
    • The genome of the mesopolyploid crop species Brassica rapa
    • Wang X., et al. The genome of the mesopolyploid crop species Brassica rapa. Nat. Genet. 2011, 43:1035-1039.
    • (2011) Nat. Genet. , vol.43 , pp. 1035-1039
    • Wang, X.1
  • 76
    • 79251636555 scopus 로고    scopus 로고
    • The genome of woodland strawberry (Fragaria vesca)
    • Shulaev V., et al. The genome of woodland strawberry (Fragaria vesca). Nat. Genet. 2011, 43:109-116.
    • (2011) Nat. Genet. , vol.43 , pp. 109-116
    • Shulaev, V.1
  • 77
    • 79251632958 scopus 로고    scopus 로고
    • The genome of Theobroma cacao
    • Argout X., et al. The genome of Theobroma cacao. Nat. Genet. 2011, 43:101-108.
    • (2011) Nat. Genet. , vol.43 , pp. 101-108
    • Argout, X.1
  • 78
    • 79960422847 scopus 로고    scopus 로고
    • Genome sequence and analysis of the tuber crop potato
    • The Potato Genome Sequencing Consortium
    • Genome sequence and analysis of the tuber crop potato. Nature 2011, 475:189-195. The Potato Genome Sequencing Consortium.
    • (2011) Nature , vol.475 , pp. 189-195
  • 79
    • 84862956715 scopus 로고    scopus 로고
    • Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers
    • Varshney R.K., et al. Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat. Biotechnol. 2012, 30:83-89.
    • (2012) Nat. Biotechnol. , vol.30 , pp. 83-89
    • Varshney, R.K.1
  • 80
    • 84863693752 scopus 로고    scopus 로고
    • The tomato genome sequence provides insights into fleshy fruit evolution
    • The Tomato Genome Consortium
    • The tomato genome sequence provides insights into fleshy fruit evolution. Nature 2012, 485:635-641. The Tomato Genome Consortium.
    • (2012) Nature , vol.485 , pp. 635-641
  • 81
    • 84868204845 scopus 로고    scopus 로고
    • The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads
    • Wang Z., et al. The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. Plant J. 2012, 72:461-473.
    • (2012) Plant J. , vol.72 , pp. 461-473
    • Wang, Z.1
  • 82
    • 84866941666 scopus 로고    scopus 로고
    • The draft genome of a diploid cotton Gossypium raimondii
    • Wang K., et al. The draft genome of a diploid cotton Gossypium raimondii. Nat. Genet. 2012, 44:1098-1103.
    • (2012) Nat. Genet. , vol.44 , pp. 1098-1103
    • Wang, K.1
  • 83
    • 84871428041 scopus 로고    scopus 로고
    • Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres
    • Paterson A.H., et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 2012, 492:423-427.
    • (2012) Nature , vol.492 , pp. 423-427
    • Paterson, A.H.1
  • 84
    • 84871962223 scopus 로고    scopus 로고
    • The draft genome of sweet orange (Citrus sinensis)
    • Xu Q., et al. The draft genome of sweet orange (Citrus sinensis). Nat. Genet. 2013, 45:59-66.
    • (2013) Nat. Genet. , vol.45 , pp. 59-66
    • Xu, Q.1
  • 85
    • 84863888434 scopus 로고    scopus 로고
    • The genome of melon (Cucumis melo L.)
    • Garcia-Mas J., et al. The genome of melon (Cucumis melo L.). Proc. Nat. Acad. Sci. U.S.A. 2012, 109:11872-11877.
    • (2012) Proc. Nat. Acad. Sci. U.S.A. , vol.109 , pp. 11872-11877
    • Garcia-Mas, J.1
  • 86
    • 84873386377 scopus 로고    scopus 로고
    • The genome of the pear (Pyrus bretschneideri Rehd.)
    • Wu J., et al. The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res. 2013, 23:396-408.
    • (2013) Genome Res. , vol.23 , pp. 396-408
    • Wu, J.1
  • 87
    • 84875176954 scopus 로고    scopus 로고
    • Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement
    • Varshney R.K., et al. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat. Biotechnol. 2013, 31:240-246.
    • (2013) Nat. Biotechnol. , vol.31 , pp. 240-246
    • Varshney, R.K.1
  • 88
    • 84907150192 scopus 로고    scopus 로고
    • The map-based sequence of the rice genome
    • International Rice Genome Sequencing Consortium
    • The map-based sequence of the rice genome. Nature 2005, 436:793-800. International Rice Genome Sequencing Consortium.
    • (2005) Nature , vol.436 , pp. 793-800
  • 89
    • 58449137410 scopus 로고    scopus 로고
    • The Sorghum bicolor genome and the diversification of grasses
    • Paterson A.H., et al. The Sorghum bicolor genome and the diversification of grasses. Nature 2009, 457:551-556.
    • (2009) Nature , vol.457 , pp. 551-556
    • Paterson, A.H.1
  • 90
    • 76749150030 scopus 로고    scopus 로고
    • Genome sequencing and analysis of the model grass Brachypodium distachyon
    • The International Brachypodium Initiative
    • Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 2010, 463:763-768. The International Brachypodium Initiative.
    • (2010) Nature , vol.463 , pp. 763-768
  • 91
    • 79958165589 scopus 로고    scopus 로고
    • De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera)
    • Al-Dous E.K., et al. De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera). Nat. Biotechnol. 2011, 29:521-527.
    • (2011) Nat. Biotechnol. , vol.29 , pp. 521-527
    • Al-Dous, E.K.1
  • 92
    • 84862018035 scopus 로고    scopus 로고
    • Reference genome sequence of the model plant Setaria
    • Bennetzen J.L., et al. Reference genome sequence of the model plant Setaria. Nat. Biotechnol. 2012, 30:555-561.
    • (2012) Nat. Biotechnol. , vol.30 , pp. 555-561
    • Bennetzen, J.L.1
  • 93
    • 84862023110 scopus 로고    scopus 로고
    • Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential
    • Zhang G., et al. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat. Biotechnol. 2012, 30:549-554.
    • (2012) Nat. Biotechnol. , vol.30 , pp. 549-554
    • Zhang, G.1
  • 94
    • 84864696893 scopus 로고    scopus 로고
    • The banana (Musa acuminata) genome and the evolution of monocotyledonous plants
    • D'Hont A., et al. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 2012, 488:213-217.
    • (2012) Nature , vol.488 , pp. 213-217
    • D'Hont, A.1
  • 95
    • 84870265846 scopus 로고    scopus 로고
    • A physical, genetic and functional sequence assembly of the barley genome
    • The International Barley Genome Sequencing Consortium
    • A physical, genetic and functional sequence assembly of the barley genome. Nature 2012, 491:711-716. The International Barley Genome Sequencing Consortium.
    • (2012) Nature , vol.491 , pp. 711-716
  • 96
    • 78049460068 scopus 로고    scopus 로고
    • Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in Arabidopsis
    • Pecinka A., et al. Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in Arabidopsis. Plant Cell 2010, 22:3118-3129.
    • (2010) Plant Cell , vol.22 , pp. 3118-3129
    • Pecinka, A.1
  • 97
    • 70349278339 scopus 로고    scopus 로고
    • Selective epigenetic control of retrotransposition in Arabidopsis
    • Mirouze M., et al. Selective epigenetic control of retrotransposition in Arabidopsis. Nature 2009, 461:427-430.
    • (2009) Nature , vol.461 , pp. 427-430
    • Mirouze, M.1
  • 98
    • 70349276670 scopus 로고    scopus 로고
    • Bursts of retrotransposition reproduced in Arabidopsis
    • Tsukahara S., et al. Bursts of retrotransposition reproduced in Arabidopsis. Nature 2009, 461:423-426.
    • (2009) Nature , vol.461 , pp. 423-426
    • Tsukahara, S.1
  • 99
    • 0035837378 scopus 로고    scopus 로고
    • Mobilization of transposons by a mutation abolishing full DNA methylation in Arabidopsis
    • Miura A., et al. Mobilization of transposons by a mutation abolishing full DNA methylation in Arabidopsis. Nature 2001, 411:212-214.
    • (2001) Nature , vol.411 , pp. 212-214
    • Miura, A.1
  • 100
    • 37449001326 scopus 로고    scopus 로고
    • Reme1, a copia retrotransposon in melon, is transcriptionally induced by UV light
    • Ramallo E., et al. Reme1, a copia retrotransposon in melon, is transcriptionally induced by UV light. Plant Mol. Biol. 2008, 66:137-150.
    • (2008) Plant Mol. Biol. , vol.66 , pp. 137-150
    • Ramallo, E.1
  • 101
    • 77950939119 scopus 로고    scopus 로고
    • Mobilization of retrotransposons in synthetic allotetraploid tobacco
    • Petit M., et al. Mobilization of retrotransposons in synthetic allotetraploid tobacco. New Phytol. 2010, 186:135-147.
    • (2010) New Phytol. , vol.186 , pp. 135-147
    • Petit, M.1
  • 102
    • 0034755086 scopus 로고    scopus 로고
    • The mobility of the tobacco Tnt1 retrotransposon correlates with its transcriptional activation by fungal factors
    • Melayah D., et al. The mobility of the tobacco Tnt1 retrotransposon correlates with its transcriptional activation by fungal factors. Plant J. 2001, 28:159-168.
    • (2001) Plant J. , vol.28 , pp. 159-168
    • Melayah, D.1
  • 103
    • 0024978849 scopus 로고
    • Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics
    • Grandbastien M-A., et al. Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature 1989, 337:376-380.
    • (1989) Nature , vol.337 , pp. 376-380
    • Grandbastien, M.-A.1
  • 104
    • 79952112706 scopus 로고    scopus 로고
    • Isolation and characterization of stress induced Ty-1-copia like retrotransposable elements in chickpea (Cicer arietinum L.)
    • Rajput M.K., Upadhyaya K.C. Isolation and characterization of stress induced Ty-1-copia like retrotransposable elements in chickpea (Cicer arietinum L.). Mol. Biol. 2010, 44:693-698.
    • (2010) Mol. Biol. , vol.44 , pp. 693-698
    • Rajput, M.K.1    Upadhyaya, K.C.2
  • 105
    • 77956854737 scopus 로고    scopus 로고
    • Polymorphism of a new Ty-1 copia retrotransposon in durum wheat under salt and light stresses
    • Woodrow P., et al. Polymorphism of a new Ty-1 copia retrotransposon in durum wheat under salt and light stresses. Theor. Appl. Genet. 2010, 121:311-322.
    • (2010) Theor. Appl. Genet. , vol.121 , pp. 311-322
    • Woodrow, P.1
  • 106
    • 80052508759 scopus 로고    scopus 로고
    • Ttd1a promoter is involved in DNA-protein binding by salt and light stress
    • Woodrow P., et al. Ttd1a promoter is involved in DNA-protein binding by salt and light stress. Mol. Biol. Rep. 2011, 38:3787-3794.
    • (2011) Mol. Biol. Rep. , vol.38 , pp. 3787-3794
    • Woodrow, P.1
  • 107
    • 66249131678 scopus 로고    scopus 로고
    • Identification of an active LTR retrotransposon in rice
    • Picault N., et al. Identification of an active LTR retrotransposon in rice. Plant J. 2009, 58:754-765.
    • (2009) Plant J. , vol.58 , pp. 754-765
    • Picault, N.1
  • 108
    • 0037426878 scopus 로고    scopus 로고
    • Mobilization of a transposon in the rice genome
    • Nakazaki T., et al. Mobilization of a transposon in the rice genome. Nature 2003, 421:170-172.
    • (2003) Nature , vol.421 , pp. 170-172
    • Nakazaki, T.1
  • 109
    • 0346003772 scopus 로고    scopus 로고
    • The plant MITE mPing is mobilized in anther culture
    • Kikuchi K., et al. The plant MITE mPing is mobilized in anther culture. Nature 2003, 421:167-169.
    • (2003) Nature , vol.421 , pp. 167-169
    • Kikuchi, K.1
  • 110
    • 0035544120 scopus 로고    scopus 로고
    • OARE-1, a Ty1-copia retrotransposon in oat activated by abiotic and biotic stresses
    • Kimura Y., et al. OARE-1, a Ty1-copia retrotransposon in oat activated by abiotic and biotic stresses. Plant Cell Physiol. 2001, 42:1345-1354.
    • (2001) Plant Cell Physiol. , vol.42 , pp. 1345-1354
    • Kimura, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.