메뉴 건너뛰기




Volumn 46, Issue 6, 2014, Pages 567-572

Genome sequence of the cultivated cotton gossypium arboreum

(31)  Li, Fuguang a   Fan, Guangyi b   Wang, Kunbo a   Sun, Fengming b   Yuan, Youlu a   Song, Guoli a   Li, Qin c   Ma, Zhiying d   Lu, Cairui a   Zou, Changsong a   Chen, Wenbin b   Liang, Xinming b   Shang, Haihong a   Liu, Weiqing b   Shi, Chengcheng b   Xiao, Guanghui c   Gou, Caiyun b   Ye, Wuwei a   Xu, Xun b   Zhang, Xueyan a   more..


Author keywords

[No Author keywords available]

Indexed keywords

ETHYLENE; TRANSCRIPTOME;

EID: 84901653166     PISSN: 10614036     EISSN: 15461718     Source Type: Journal    
DOI: 10.1038/ng.2987     Document Type: Article
Times cited : (751)

References (66)
  • 1
    • 0000224426 scopus 로고
    • Phylogenetics of the cotton genus (Gossypium): Characterstate weighted parsimony analysis of chloroplast-DNA restriction site data and its systematic and biogeographic implications
    • Wendel, J. & Albert, V.A. Phylogenetics of the cotton genus (Gossypium): characterstate weighted parsimony analysis of chloroplast-DNA restriction site data and its systematic and biogeographic implications. Syst. Bot. 17, 115-143 (1992).
    • (1992) Syst. Bot. , vol.17 , pp. 115-143
    • Wendel, J.1    Albert, V.A.2
  • 2
    • 77950933765 scopus 로고    scopus 로고
    • Gossypium ekmanianum (Malvaceae) algodon silvestre de la Republica Dominicana
    • Krapovickas, A. & Seijo, G. Gossypium ekmanianum (Malvaceae), algodon silvestre de la Republica Dominicana. Bonplandia 17, 55-63 (2008).
    • (2008) Bonplandia , vol.17 , pp. 55-63
    • Krapovickas, A.1    Seijo, G.2
  • 4
    • 23244455953 scopus 로고    scopus 로고
    • Estimation of the nuclear DNA content of Gossypium species
    • Hendrix, B. & Stewart, J.M. Estimation of the nuclear DNA content of Gossypium species. Ann. Bot. 95, 789-797 (2005).
    • (2005) Ann. Bot. , vol.95 , pp. 789-797
    • Hendrix, B.1    Stewart, J.M.2
  • 5
    • 84866941666 scopus 로고    scopus 로고
    • The draft genome of a diploid cotton Gossypium raimondii
    • Wang, K. et al. The draft genome of a diploid cotton Gossypium raimondii. Nat. Genet. 44, 1098-1103 (2012).
    • (2012) Nat. Genet. , vol.44 , pp. 1098-1103
    • Wang, K.1
  • 6
    • 84871428041 scopus 로고    scopus 로고
    • Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres
    • Paterson, A.H. et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492, 423-427 (2012).
    • (2012) Nature , vol.492 , pp. 423-427
    • Paterson, A.H.1
  • 7
    • 58449137410 scopus 로고    scopus 로고
    • The Sorghum bicolor genome and the diversification of grasses
    • Paterson, A.H. et al. The Sorghum bicolor genome and the diversification of grasses. Nature 457, 551-556 (2009).
    • (2009) Nature , vol.457 , pp. 551-556
    • Paterson, A.H.1
  • 8
    • 70450202132 scopus 로고    scopus 로고
    • The B73 maize genome: Complexity, diversity, and dynamics
    • Schnable, P.S. et al. The B73 maize genome: complexity, diversity, and dynamics. Science 326, 1112-1115 (2009).
    • (2009) Science , vol.326 , pp. 1112-1115
    • Schnable, P.S.1
  • 9
    • 79955468851 scopus 로고    scopus 로고
    • The Arabidopsis lyrata genome sequence and the basis of rapid genome size change
    • Hu, T.T. et al. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat. Genet. 43, 476-481 (2011).
    • (2011) Nat. Genet. , vol.43 , pp. 476-481
    • Hu, T.T.1
  • 10
    • 33745462176 scopus 로고    scopus 로고
    • Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation
    • Shi, Y.-H. et al. Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell 18, 651-664 (2006).
    • (2006) Plant Cell , vol.18 , pp. 651-664
    • Shi, Y.-H.1
  • 11
    • 37849028984 scopus 로고    scopus 로고
    • Saturated very-long-chain fatty acids promote cotton fiber and Arabidopsis cell elongation by activating ethylene biosynthesis
    • Qin, Y.-M. et al. Saturated very-long-chain fatty acids promote cotton fiber and Arabidopsis cell elongation by activating ethylene biosynthesis. Plant Cell 19, 3692-3704 (2007).
    • (2007) Plant Cell , vol.19 , pp. 3692-3704
    • Qin, Y.-M.1
  • 12
    • 77956554550 scopus 로고    scopus 로고
    • Comparative proteomics indicates that biosynthesis of pectic precursors is important for cotton fiber and Arabidopsis root hair elongation
    • Pang, C.-Y. et al. Comparative proteomics indicates that biosynthesis of pectic precursors is important for cotton fiber and Arabidopsis root hair elongation. Mol. Cell. Proteomics 9, 2019-2033 (2010).
    • (2010) Mol. Cell. Proteomics , vol.9 , pp. 2019-2033
    • Pang, C.-Y.1
  • 13
    • 78751591032 scopus 로고    scopus 로고
    • How cotton fibers elongate: A tale of linear cell-growth mode
    • Qin, Y.-M. & Zhu, Y.-X. How cotton fibers elongate: a tale of linear cell-growth mode. Curr. Opin. Plant Biol. 14, 106-111 (2011).
    • (2011) Curr. Opin. Plant Biol. , vol.14 , pp. 106-111
    • Qin, Y.-M.1    Zhu, Y.-X.2
  • 16
    • 75149155568 scopus 로고    scopus 로고
    • The sequence and de novo assembly of the giant panda genome
    • Li, R. et al. The sequence and de novo assembly of the giant panda genome. Nature 463, 311-317 (2010).
    • (2010) Nature , vol.463 , pp. 311-317
    • Li, R.1
  • 17
    • 75649124547 scopus 로고    scopus 로고
    • De novo assembly of human genomes with massively parallel short read sequencing
    • Li, R. et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 20, 265-272 (2010).
    • (2010) Genome Res. , vol.20 , pp. 265-272
    • Li, R.1
  • 18
    • 12144290265 scopus 로고    scopus 로고
    • A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium)
    • Rong, J. et al. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics 166, 389-417 (2004).
    • (2004) Genetics , vol.166 , pp. 389-417
    • Rong, J.1
  • 19
    • 79251632958 scopus 로고    scopus 로고
    • The genome of Theobroma cacao
    • Argout, X. et al. The genome of Theobroma cacao. Nat. Genet. 43, 101-108 (2011).
    • (2011) Nat. Genet. , vol.43 , pp. 101-108
    • Argout, X.1
  • 20
    • 74549221016 scopus 로고    scopus 로고
    • Genome sequence of the palaeopolyploid soybean
    • Schmutz, J. et al. Genome sequence of the palaeopolyploid soybean. Nature 463, 178-183 (2010).
    • (2010) Nature , vol.463 , pp. 178-183
    • Schmutz, J.1
  • 21
    • 79960422847 scopus 로고    scopus 로고
    • Genome sequence and analysis of the tuber crop potato
    • Potato Genome Sequencing Consortium
    • Potato Genome Sequencing Consortium. Genome sequence and analysis of the tuber crop potato. Nature 475, 189-195 (2011).
    • (2011) Nature , vol.475 , pp. 189-195
  • 22
    • 77957560949 scopus 로고    scopus 로고
    • The genome of the domesticated apple (Malus × domestica Borkh.)
    • Velasco, R. et al. The genome of the domesticated apple (Malus × domestica Borkh.). Nat. Genet. 42, 833-839 (2010).
    • (2010) Nat. Genet. , vol.42 , pp. 833-839
    • Velasco, R.1
  • 23
    • 84863693752 scopus 로고    scopus 로고
    • The tomato genome sequence provides insights into fleshy fruit evolution
    • Tomato Genome Consortium
    • Tomato Genome Consortium. The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485, 635-641 (2012).
    • (2012) Nature , vol.485 , pp. 635-641
  • 24
    • 84862956715 scopus 로고    scopus 로고
    • Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers
    • Varshney, R.K. et al. Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat. Biotechnol. 30, 83-89 (2012).
    • (2012) Nat. Biotechnol. , vol.30 , pp. 83-89
    • Varshney, R.K.1
  • 25
    • 33749389724 scopus 로고    scopus 로고
    • Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium
    • Hawkins, J.S., Kim, H., Nason, J.D., Wing, R.A. & Wendel, J.F. Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res. 16, 1252-1261 (2006).
    • (2006) Genome Res. , vol.16 , pp. 1252-1261
    • Hawkins, J.S.1    Kim, H.2    Nason, J.D.3    Wing, R.A.4    Wendel, J.F.5
  • 27
    • 0035823864 scopus 로고    scopus 로고
    • Evolution of the angiosperms: Calibrating the family tree
    • Wikström, N., Savolainen, V. & Chase, M.W. Evolution of the angiosperms: calibrating the family tree. Proc. Biol. Sci. 268, 2211-2220 (2001).
    • (2001) Proc. Biol. Sci. , vol.268 , pp. 2211-2220
    • Wikström, N.1    Savolainen, V.2    Chase, M.W.3
  • 28
    • 0034634395 scopus 로고    scopus 로고
    • The evolutionary fate and consequences of duplicate genes
    • Lynch, M. & Conery, J.S. The evolutionary fate and consequences of duplicate genes. Science 290, 1151-1155 (2000).
    • (2000) Science , vol.290 , pp. 1151-1155
    • Lynch, M.1    Conery, J.S.2
  • 29
    • 57149102681 scopus 로고    scopus 로고
    • Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps
    • Tang, H. et al. Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps. Genome Res. 18, 1944-1954 (2008).
    • (2008) Genome Res. , vol.18 , pp. 1944-1954
    • Tang, H.1
  • 31
    • 5144234363 scopus 로고    scopus 로고
    • Close split of sorghum and maize genome progenitors
    • Swigonová, Z. et al. Close split of sorghum and maize genome progenitors. Genome Res. 14, 1916-1923 (2004).
    • (2004) Genome Res. , vol.14 , pp. 1916-1923
    • Swigonová, Z.1
  • 32
    • 70349585670 scopus 로고    scopus 로고
    • NB-LRRs work a bait and switch on pathogens
    • Collier, S.M. & Moffett, P. NB-LRRs work a "bait and switch" on pathogens. Trends Plant Sci. 14, 521-529 (2009).
    • (2009) Trends Plant Sci. , vol.14 , pp. 521-529
    • Collier, S.M.1    Moffett, P.2
  • 33
    • 57749119425 scopus 로고    scopus 로고
    • A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis
    • Zhong, R., Lee, C., Zhou, J., McCarthy, R.L. & Ye, Z.-H. A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell 20, 2763-2782 (2008).
    • (2008) Plant Cell , vol.20 , pp. 2763-2782
    • Zhong, R.1    Lee, C.2    Zhou, J.3    McCarthy, R.L.4    Ye, Z.-H.5
  • 34
    • 67649496507 scopus 로고    scopus 로고
    • The MYB transcription factor GhMYB25 regulates early fibre and trichome development
    • Machado, A., Wu, Y., Yang, Y., Llewellyn, D.J. & Dennis, E.S. The MYB transcription factor GhMYB25 regulates early fibre and trichome development. Plant J. 59, 52-62 (2009).
    • (2009) Plant J. , vol.59 , pp. 52-62
    • MacHado, A.1    Wu, Y.2    Yang, Y.3    Llewellyn, D.J.4    Dennis, E.S.5
  • 35
    • 84870265846 scopus 로고    scopus 로고
    • A physical, genetic and functional sequence assembly of the barley genome
    • International Barley Genome Sequencing Consortium
    • International Barley Genome Sequencing Consortium. A physical, genetic and functional sequence assembly of the barley genome. Nature 491, 711-716 (2012).
    • (2012) Nature , vol.491 , pp. 711-716
  • 36
    • 84875886528 scopus 로고    scopus 로고
    • Draft genome of the wheat A-genome progenitor Triticum urartu
    • Ling, H.-Q. et al. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496, 87-90 (2013).
    • (2013) Nature , vol.496 , pp. 87-90
    • Ling, H.-Q.1
  • 37
    • 0034612315 scopus 로고    scopus 로고
    • Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence
    • Kalendar, R., Tanskanen, J., Immonen, S., Nevo, E. & Schulman, A.H. Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc. Natl. Acad. Sci. USA 97, 6603-6607 (2000).
    • (2000) Proc. Natl. Acad. Sci. USA , vol.97 , pp. 6603-6607
    • Kalendar, R.1    Tanskanen, J.2    Immonen, S.3    Nevo, E.4    Schulman, A.H.5
  • 38
    • 78650792488 scopus 로고    scopus 로고
    • Construction and application for QTL analysis of a Restriction Site Associated DNA (RAD) linkage map in barley
    • Chutimanitsakun, Y. et al. Construction and application for QTL analysis of a Restriction Site Associated DNA (RAD) linkage map in barley. BMC Genomics 12, 4 (2011).
    • (2011) BMC Genomics , vol.12 , pp. 4
    • Chutimanitsakun, Y.1
  • 39
    • 78649479141 scopus 로고    scopus 로고
    • Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection
    • Lam, H.M. et al. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat. Genet. 42, 1053-1059 (2010).
    • (2010) Nat. Genet. , vol.42 , pp. 1053-1059
    • Lam, H.M.1
  • 40
    • 7344254829 scopus 로고
    • Construction of integrated genetic linkage maps by means of a new computer package: JoinMap
    • Stam, P. Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J. 3, 739-744 (1993).
    • (1993) Plant J. , vol.3 , pp. 739-744
    • Stam, P.1
  • 41
    • 0033555906 scopus 로고    scopus 로고
    • Tandem repeats finder: A program to analyze DNA sequences
    • Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573-580 (1999).
    • (1999) Nucleic Acids Res. , vol.27 , pp. 573-580
    • Benson, G.1
  • 42
    • 63049126614 scopus 로고    scopus 로고
    • Using RepeatMasker to identify repetitive elements in genomic sequences
    • Chapter 4, Unit 4.10
    • Tarailo-Graovac, M. & Chen, N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinformatics Chapter 4, Unit 4.10 (2009).
    • (2009) Curr. Protoc. Bioinformatics
    • Tarailo-Graovac, M.1    Chen, N.2
  • 43
    • 23844525077 scopus 로고    scopus 로고
    • Repbase update, a database of eukaryotic repetitive elements
    • Jurka, J. et al. Repbase update, a database of eukaryotic repetitive elements. Cytogenet. Genome Res. 110, 462-467 (2005).
    • (2005) Cytogenet. Genome Res. , vol.110 , pp. 462-467
    • Jurka, J.1
  • 44
    • 34547592867 scopus 로고    scopus 로고
    • LTR-FINDER: An efficient tool for the prediction of full-length LTR retrotransposons
    • Xu, Z. & Wang, H. LTR-FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 35, W265-W268 (2007).
    • (2007) Nucleic Acids Res. , vol.35
    • Xu, Z.1    Wang, H.2
  • 45
    • 84860513986 scopus 로고    scopus 로고
    • PILER: Identification and classification of genomic repeats
    • Edgar, R.C. & Myers, E.W. PILER: identification and classification of genomic repeats. Bioinformatics 21 (suppl. 1), i152-i158 (2005).
    • (2005) Bioinformatics , vol.21 , Issue.SUPPL. 1
    • Edgar, R.C.1    Myers, E.W.2
  • 46
    • 29144455282 scopus 로고    scopus 로고
    • De novo identification of repeat families in large genomes
    • Price, A.L., Jones, N.C. & Pevzner, P.A. De novo identification of repeat families in large genomes. Bioinformatics 21 (suppl. 1), i351-i358 (2005).
    • (2005) Bioinformatics , vol.21 , Issue.SUPPL. 1
    • Price, A.L.1    Jones, N.C.2    Pevzner, P.A.3
  • 47
    • 0037433054 scopus 로고    scopus 로고
    • LTR-STRUC: A novel search and identification program for LTR retrotransposons
    • McCarthy, E.M. & McDonald, J.F. LTR-STRUC: a novel search and identification program for LTR retrotransposons. Bioinformatics 19, 362-367 (2003).
    • (2003) Bioinformatics , vol.19 , pp. 362-367
    • McCarthy, E.M.1    McDonald, J.F.2
  • 48
    • 42549120705 scopus 로고    scopus 로고
    • Synteny and collinearity in plant genomes
    • Tang, H. et al. Synteny and collinearity in plant genomes. Science 320, 486-488 (2008).
    • (2008) Science , vol.320 , pp. 486-488
    • Tang, H.1
  • 50
    • 0141905891 scopus 로고    scopus 로고
    • Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies
    • Haas, B.J. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31, 5654-5666 (2003).
    • (2003) Nucleic Acids Res. , vol.31 , pp. 5654-5666
    • Haas, B.J.1
  • 51
    • 33747830848 scopus 로고    scopus 로고
    • AUGUSTUS: Ab initio prediction of alternative transcripts
    • Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435-W439 (2006).
    • (2006) Nucleic Acids Res. , vol.34
    • Stanke, M.1
  • 52
    • 2942544417 scopus 로고    scopus 로고
    • Gene finding in novel genomes
    • Korf, I. Gene finding in novel genomes. BMC Bioinformatics 5, 59 (2004).
    • (2004) BMC Bioinformatics , vol.5 , pp. 59
    • Korf, I.1
  • 53
    • 77952123055 scopus 로고    scopus 로고
    • Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation
    • Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511-515 (2010).
    • (2010) Nat. Biotechnol. , vol.28 , pp. 511-515
    • Trapnell, C.1
  • 54
    • 34147180390 scopus 로고    scopus 로고
    • Creating a honey bee consensus gene set
    • Elsik, C.G. et al. Creating a honey bee consensus gene set. Genome Biol. 8, R13 (2007).
    • (2007) Genome Biol. , vol.8
    • Elsik, C.G.1
  • 55
    • 0034069495 scopus 로고    scopus 로고
    • Gene ontology: Tool for the unification of biology. The gene ontology consortium
    • Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25-29 (2000).
    • (2000) Nat. Genet. , vol.25 , pp. 25-29
    • Ashburner, M.1
  • 56
    • 0141519279 scopus 로고    scopus 로고
    • OrthoMCL: Identification of ortholog groups for eukaryotic genomes
    • Li, L., Stoeckert, C.J. Jr. & Roos, D.S. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13, 2178-2189 (2003).
    • (2003) Genome Res. , vol.13 , pp. 2178-2189
    • Li, L.1    Stoeckert Jr., C.J.2    Roos, D.S.3
  • 57
    • 3042666256 scopus 로고    scopus 로고
    • MUSCLE: Multiple sequence alignment with high accuracy and high throughput
    • Edgar, R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792-1797 (2004).
    • (2004) Nucleic Acids Res. , vol.32 , pp. 1792-1797
    • Edgar, R.C.1
  • 58
    • 84860109324 scopus 로고    scopus 로고
    • MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space
    • Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539-542 (2012).
    • (2012) Syst. Biol. , vol.61 , pp. 539-542
    • Ronquist, F.1
  • 59
    • 0030683599 scopus 로고    scopus 로고
    • PAML: A program package for phylogenetic analysis by maximum likelihood
    • Yang, Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput. Appl. Biosci. 13, 555-556 (1997).
    • (1997) Comput. Appl. Biosci. , vol.13 , pp. 555-556
    • Yang, Z.1
  • 60
    • 79957613599 scopus 로고    scopus 로고
    • MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods
    • Tamura, K. et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731-2739 (2011).
    • (2011) Mol. Biol. Evol. , vol.28 , pp. 2731-2739
    • Tamura, K.1
  • 61
    • 0034201441 scopus 로고    scopus 로고
    • EMBOSS: The European molecular biology open software suite
    • Rice, P., Longden, I. & Bleasby, A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 16, 276-277 (2000).
    • (2000) Trends Genet. , vol.16 , pp. 276-277
    • Rice, P.1    Longden, I.2    Bleasby, A.3
  • 62
    • 36249023071 scopus 로고    scopus 로고
    • A unified classification system for eukaryotic transposable elements
    • Wicker, T. et al. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8, 973-982 (2007).
    • (2007) Nat. Rev. Genet. , vol.8 , pp. 973-982
    • Wicker, T.1
  • 64
    • 33846272114 scopus 로고    scopus 로고
    • Plant NBS-LRR proteins in pathogen sensing and host defense
    • DeYoung, B.J. & Innes, R.W. Plant NBS-LRR proteins in pathogen sensing and host defense. Nat. Immunol. 7, 1243-1249 (2006).
    • (2006) Nat. Immunol. , vol.7 , pp. 1243-1249
    • Deyoung, B.J.1    Innes, R.W.2
  • 65
    • 0031743421 scopus 로고    scopus 로고
    • Profile hidden Markov models
    • Eddy, S.R. Profile hidden Markov models. Bioinformatics 14, 755-763 (1998).
    • (1998) Bioinformatics , vol.14 , pp. 755-763
    • Eddy, S.R.1
  • 66
    • 33646856440 scopus 로고    scopus 로고
    • CAFE: A computational tool for the study of gene family evolution
    • De Bie, T., Cristianini, N., Demuth, J.P. & Hahn, M.W. CAFE: a computational tool for the study of gene family evolution. Bioinformatics 22, 1269-1271 (2006).
    • (2006) Bioinformatics , vol.22 , pp. 1269-1271
    • De Bie, T.1    Cristianini, N.2    Demuth, J.P.3    Hahn, M.W.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.