메뉴 건너뛰기




Volumn 119, Issue 30, 2015, Pages 9477-9495

Stacked and H-Bonded Cytosine Dimers. Analysis of the Intermolecular Interaction Energies by Parallel Quantum Chemistry and Polarizable Molecular Mechanics.

Author keywords

[No Author keywords available]

Indexed keywords

ANISOTROPY; BIOINFORMATICS; CHEMICAL ANALYSIS; MOLECULAR MECHANICS; NUCLEIC ACIDS; QUANTUM CHEMISTRY;

EID: 84938242083     PISSN: 15206106     EISSN: 15205207     Source Type: Journal    
DOI: 10.1021/acs.jpcb.5b01695     Document Type: Article
Times cited : (20)

References (89)
  • 1
    • 78650096290 scopus 로고    scopus 로고
    • Quantum Chemical Studies of Nucleic Acids Can We Construct a Bridge to the RNA Structural Biology and Bioinformatics Communities?
    • Sponer, J.; Sponer, J. E.; Petrov, A. I.; Leontis, N. B. Quantum Chemical Studies of Nucleic Acids Can We Construct a Bridge to the RNA Structural Biology and Bioinformatics Communities? J. Phys. Chem. B 2010, 114, 15723-15741 10.1021/jp104361m
    • (2010) J. Phys. Chem. B , vol.114 , pp. 15723-15741
    • Sponer, J.1    Sponer, J.E.2    Petrov, A.I.3    Leontis, N.B.4
  • 2
    • 84879084489 scopus 로고    scopus 로고
    • Theoretical Models of DNA Stability
    • Drsata, T.; Lankas, F. Theoretical Models of DNA Stability WIREs Comput. Mol. Sci. 2013, 3, 355-363 10.1002/wcms.1144
    • (2013) WIREs Comput. Mol. Sci. , vol.3 , pp. 355-363
    • Drsata, T.1    Lankas, F.2
  • 5
    • 6344260593 scopus 로고
    • An All-atom Empirical Energy Function for the Simulation of Nucleic Acids
    • Mackerell, A. D.; Wiorkiewiczkuczera, J.; Karplus, M. An All-atom Empirical Energy Function for the Simulation of Nucleic Acids J. Am. Chem. Soc. 1995, 117, 11946-11975 10.1021/ja00153a017
    • (1995) J. Am. Chem. Soc. , vol.117 , pp. 11946-11975
    • Mackerell, A.D.1    Wiorkiewiczkuczera, J.2    Karplus, M.3
  • 6
    • 0348244547 scopus 로고    scopus 로고
    • All-atom Empirical Force Field for Nucleic Acids: I. Parameter Optimization Based on Small Molecule and Condensed Phase Macromolecular Target Data
    • Foloppe, N.; McKerell, A. D. All-atom Empirical Force Field for Nucleic Acids: I. Parameter Optimization Based on Small Molecule and Condensed Phase Macromolecular Target Data J. Comput. Chem. 2000, 21, 86-104 10.1002/(SICI)1096-987X(20000130)21:2<86::AID-JCC2>3.0.CO;2-G
    • (2000) J. Comput. Chem. , vol.21 , pp. 86-104
    • Foloppe, N.1    McKerell, A.D.2
  • 7
    • 34250318638 scopus 로고    scopus 로고
    • Refinement of the AMBER Force Field for Nucleic Acids. Improving the Description of Alpha/Gamma Conformers
    • Perez, A.; Marchan, I.; Svozil, D.; Sponer, J.; Cheatham, T. A., III; Laughton, C. A.; Orozco, M. Refinement of the AMBER Force Field for Nucleic Acids. Improving the Description of Alpha/Gamma Conformers Biophys. J. 2007, 92, 3817-3829 10.1529/biophysj.106.097782
    • (2007) Biophys. J. , vol.92 , pp. 3817-3829
    • Perez, A.1    Marchan, I.2    Svozil, D.3    Sponer, J.4    Cheatham, T.A.5    Laughton, C.A.6    Orozco, M.7
  • 8
    • 80052820313 scopus 로고    scopus 로고
    • Refinement of the Cornell et al. Nucleic Acids Force Field Based on Reference Quantum Chemical Calculations of Glycosidic Torsion Profiles
    • Zgarbova, M.; Otyepka, M.; Sponer, J.; Mladek, A.; Banas, P.; Cheatham, T. A., III; Jurecka, P. Refinement of the Cornell et al. Nucleic Acids Force Field Based on Reference Quantum Chemical Calculations of Glycosidic Torsion Profiles J. Chem. Theory Comput. 2011, 7, 2886-2902 10.1021/ct200162x
    • (2011) J. Chem. Theory Comput. , vol.7 , pp. 2886-2902
    • Zgarbova, M.1    Otyepka, M.2    Sponer, J.3    Mladek, A.4    Banas, P.5    Cheatham, T.A.6    Jurecka, P.7
  • 9
    • 84877729731 scopus 로고    scopus 로고
    • Toward Improved Description of DNA Backbone: Revisiting Epsilon and Zeta Torsion Force Field Parameters
    • Zgarbova, M.; Javier Luque, F.; Sponer, J.; Cheatham, T. A., III; Otyepka, M.; Jurecka, P. Toward Improved Description of DNA Backbone: Revisiting Epsilon and Zeta Torsion Force Field Parameters J. Chem. Theory Comput. 2013, 9, 2339-2354 10.1021/ct400154j
    • (2013) J. Chem. Theory Comput. , vol.9 , pp. 2339-2354
    • Zgarbova, M.1    Javier Luque, F.2    Sponer, J.3    Cheatham, T.A.4    Otyepka, M.5    Jurecka, P.6
  • 10
    • 79955484353 scopus 로고    scopus 로고
    • Impact of 2 ′-Hydroxyl Sampling on the Conformational Properties of RNA: Update of the CHARMM All-Atom Additive Force Field for RNA
    • Denning, E. J.; Priyakumar, U. D.; Nilsson, L.; MacKerell, A. D., Jr. Impact of 2 ′-Hydroxyl Sampling on the Conformational Properties of RNA: Update of the CHARMM All-Atom Additive Force Field for RNA J. Comput. Chem. 2011, 32, 1929-1943 10.1002/jcc.21777
    • (2011) J. Comput. Chem. , vol.32 , pp. 1929-1943
    • Denning, E.J.1    Priyakumar, U.D.2    Nilsson, L.3    Mackerell, Jr.A.D.4
  • 11
    • 84855661433 scopus 로고    scopus 로고
    • Optimization of the CHARMM Additive Force Field for DNA: Improved Treatment of the BI/BII Conformational Equilibrium
    • Hart, K.; Foloppe, N.; Baker, C. M.; Denning, E. J.; Nilsson, L.; MacKerell, A. D., Jr. Optimization of the CHARMM Additive Force Field for DNA: Improved Treatment of the BI/BII Conformational Equilibrium J. Chem. Theory Comput. 2012, 8, 348-362 10.1021/ct200723y
    • (2012) J. Chem. Theory Comput. , vol.8 , pp. 348-362
    • Hart, K.1    Foloppe, N.2    Baker, C.M.3    Denning, E.J.4    Nilsson, L.5    Mackerell, Jr.A.D.6
  • 12
    • 84892616086 scopus 로고    scopus 로고
    • Energies and 2′-Hydroxyl Group Orientations of RNA Backbone Conformations. Benchmark CCSD(T)/CBS Database, Electronic Analysis, and Assessment of DFT Methods and MD Simulations
    • Mladek, A.; Banas, P.; Jurecka, P.; Otyepka, M.; Zgarbova, M.; Sponer, J. Energies and 2′-Hydroxyl Group Orientations of RNA Backbone Conformations. Benchmark CCSD(T)/CBS Database, Electronic Analysis, and Assessment of DFT Methods and MD Simulations J. Chem. Theory Comput. 2014, 10, 463-480 10.1021/ct400837p
    • (2014) J. Chem. Theory Comput. , vol.10 , pp. 463-480
    • Mladek, A.1    Banas, P.2    Jurecka, P.3    Otyepka, M.4    Zgarbova, M.5    Sponer, J.6
  • 13
    • 84879754496 scopus 로고    scopus 로고
    • Relative Stability of Different DNA Guanine Quadruplex Stem Topologies Derived Using Large-Scale Quantum-Chemical Computations
    • Sponer, J.; Mladek, A.; Spackova, N.; Cang, X.; Cheatham, T. E., III; Grimme, S. Relative Stability of Different DNA Guanine Quadruplex Stem Topologies Derived Using Large-Scale Quantum-Chemical Computations J. Am. Chem. Soc. 2013, 135, 9785-9796 10.1021/ja402525c
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 9785-9796
    • Sponer, J.1    Mladek, A.2    Spackova, N.3    Cang, X.4    Cheatham, T.E.5    Grimme, S.6
  • 14
    • 84900474707 scopus 로고    scopus 로고
    • An All- Atom Polarizable Force Field for DNA Based on the Classical Drude Oscillator Model
    • Savelyev, A.; Mackerell, A. D., Jr. An All- Atom Polarizable Force Field for DNA Based on the Classical Drude Oscillator Model J. Comput. Chem. 2014, 35, 1219-1239 10.1002/jcc.23611
    • (2014) J. Comput. Chem. , vol.35 , pp. 1219-1239
    • Savelyev, A.1    Mackerell, Jr.A.D.2
  • 16
    • 67649883207 scopus 로고    scopus 로고
    • Local and Global Effects of Strong DNA Bending Induced during Molecular Dynamics Simulations
    • Curuksu, J.; Zacharias, M.; Lavery, R.; Zakrzewska, K. Local and Global Effects of Strong DNA Bending Induced During Molecular Dynamics Simulations Nucleic Acids Res. 2009, 37, 3766-3773 10.1093/nar/gkp234
    • (2009) Nucleic Acids Res. , vol.37 , pp. 3766-3773
    • Curuksu, J.1    Zacharias, M.2    Lavery, R.3    Zakrzewska, K.4
  • 17
    • 0037442584 scopus 로고    scopus 로고
    • Molecular Dynamics Simulations and Thermodynamics Analysis of DNA-drug Complexes. Minor Groove Binding between 4′,6-Diamidino-2-phenylindole and DNA Duplexes in Solution
    • Spackova, N.; Cheatham, T. E.; Ryjacek, F. Molecular Dynamics Simulations and Thermodynamics Analysis of DNA-drug Complexes. Minor Groove Binding Between 4′,6-Diamidino-2-phenylindole and DNA Duplexes in Solution J. Am. Chem. Soc. 2003, 125, 1759-1769 10.1021/ja025660d
    • (2003) J. Am. Chem. Soc. , vol.125 , pp. 1759-1769
    • Spackova, N.1    Cheatham, T.E.2    Ryjacek, F.3
  • 18
    • 76649139475 scopus 로고    scopus 로고
    • Molecular Recognition of RNA: Challenges for Modeling Interactions and Plasticity
    • Fulle, S.; Gohlke, H. Molecular Recognition of RNA: Challenges for Modeling Interactions and Plasticity J. Mol. Recognit. 2010, S23, 220-231 10.1002/jmr.1000
    • (2010) J. Mol. Recognit. , vol.23 , pp. 220-231
    • Fulle, S.1    Gohlke, H.2
  • 19
    • 41949124146 scopus 로고    scopus 로고
    • Molecular Dynamics Simulations of Nucleic Acid-Protein Complexes
    • Mackerell, A. D., Jr.; Nilsson, L. Molecular Dynamics Simulations of Nucleic Acid-Protein Complexes Curr. Opin. Struct. Biol. 2008, 18, 194-199 10.1016/j.sbi.2007.12.012
    • (2008) Curr. Opin. Struct. Biol. , vol.18 , pp. 194-199
    • Mackerell, Jr.A.D.1    Nilsson, L.2
  • 20
    • 67651232308 scopus 로고    scopus 로고
    • A Free Energy Pathway for the Interaction of the SRY Protein with Its Binding Site on DNA from Atomistic Simulations
    • Bouvier, B.; Lavery, R. A Free Energy Pathway for the Interaction of the SRY Protein with Its Binding Site on DNA from Atomistic Simulations J. Am. Chem. Soc. 2009, 131, 9864-9865 10.1021/ja901761a
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 9864-9865
    • Bouvier, B.1    Lavery, R.2
  • 21
    • 84867973569 scopus 로고    scopus 로고
    • DNA and RNA Sugar-Phosphate Backbone Emerges as the Key Player. An Overview of Quantum-Chemical, Structural Biology and Simulation Studies
    • Sponer, J.; Mladek, A.; Sponer, J. E. DNA and RNA Sugar-Phosphate Backbone Emerges as the Key Player. An Overview of Quantum-Chemical, Structural Biology and Simulation Studies Phys. Chem. Chem. Phys. 2012, 14, 15257-15277 10.1039/c2cp41987d
    • (2012) Phys. Chem. Chem. Phys. , vol.14 , pp. 15257-15277
    • Sponer, J.1    Mladek, A.2    Sponer, J.E.3
  • 22
    • 78751676012 scopus 로고    scopus 로고
    • Development of CHARMM Polarizable Force Field for Nucleic Acid Bases Based on the Classical Drude Oscillator Model
    • Baker, C. M.; Anisimov, V. M.; mackerell, A. D., Jr. Development of CHARMM Polarizable Force Field for Nucleic Acid Bases Based on the Classical Drude Oscillator Model J. Phys. Chem. B 2011, 115, 580-596 10.1021/jp1092338
    • (2011) J. Phys. Chem. B , vol.115 , pp. 580-596
    • Baker, C.M.1    Anisimov, V.M.2    Mackerell, Jr.A.D.3
  • 23
    • 43449137856 scopus 로고    scopus 로고
    • Nature and Magnitude of Aromatic Stacking of Nucleic Acid Bases 2008
    • Sponer, J.; Riley, K. E.; Hobza, P. Nature and Magnitude of Aromatic Stacking of Nucleic Acid Bases 2008 Phys. Chem. Chem. Phys. 2008, 10, 2595-2610 10.1039/b719370j
    • (2008) Phys. Chem. Chem. Phys. , vol.10 , pp. 2595-2610
    • Sponer, J.1    Riley, K.E.2    Hobza, P.3
  • 24
    • 0037764044 scopus 로고    scopus 로고
    • Non-Watson-Crick Base-pairing and Hydration in RNA Motifs: Molecular Dynamics of 5S RNA Loop e
    • Reblova, K.; Spackova, N.; Stefl, R. Non-Watson-Crick Base-pairing and Hydration in RNA Motifs: Molecular Dynamics of 5S RNA Loop E Biophys. J. 2003, 84, 3564-3582 10.1016/S0006-3495(03)75089-9
    • (2003) Biophys. J. , vol.84 , pp. 3564-3582
    • Reblova, K.1    Spackova, N.2    Stefl, R.3
  • 25
    • 34347404466 scopus 로고    scopus 로고
    • Nucleic Acid Solvation: From Outside to Insight
    • Auffinger, P.; Hashem, Y. Nucleic Acid Solvation: From Outside to Insight Curr. Opin. Struct. Biol. 2007, 17, 325-333 10.1016/j.sbi.2007.05.008
    • (2007) Curr. Opin. Struct. Biol. , vol.17 , pp. 325-333
    • Auffinger, P.1    Hashem, Y.2
  • 26
    • 84862592400 scopus 로고    scopus 로고
    • Cations in Charge: Magnesium Ions in RNA Folding and Catalysis
    • Bowman, J. C.; Lenz, T. K.; Hud, N. V.; Williams, L. D. Cations in Charge: Magnesium Ions in RNA Folding and Catalysis Curr. Opin. Struct. Biol. 2012, 22, 262-272 10.1016/j.sbi.2012.04.006
    • (2012) Curr. Opin. Struct. Biol. , vol.22 , pp. 262-272
    • Bowman, J.C.1    Lenz, T.K.2    Hud, N.V.3    Williams, L.D.4
  • 27
    • 84896304097 scopus 로고    scopus 로고
    • Ion Binding to Quadruplex DNA Stems. Comparison of MM and QM Descriptions Reveals Sizable Polarization Effects Not Included in Contemporary Simulations
    • Gkionis, K.; Kruse, H.; Platts, J.; Mladek, A.; Koca, J.; Sponer, J. Ion Binding to Quadruplex DNA Stems. Comparison of MM and QM Descriptions Reveals Sizable Polarization Effects Not Included in Contemporary Simulations J. Chem. Theory Comput. 2014, 10, 1326-1340 10.1021/ct4009969
    • (2014) J. Chem. Theory Comput. , vol.10 , pp. 1326-1340
    • Gkionis, K.1    Kruse, H.2    Platts, J.3    Mladek, A.4    Koca, J.5    Sponer, J.6
  • 28
    • 0031273653 scopus 로고    scopus 로고
    • Model, Multiply Hydrogen-Bonded Water Oligomers (N = 3-20). How Closely Can a Separable, ab Initio-Grounded Molecular Mechanics Procedure Reproduce the Results of Supermolecule Quantum Chemistry Computations?
    • Gresh, N. Model, Multiply Hydrogen-Bonded Water Oligomers (N = 3-20). How Closely Can a Separable, ab Initio-Grounded Molecular Mechanics Procedure Reproduce the Results of Supermolecule Quantum Chemistry Computations? J. Phys. Chem. A 1997, 101, 8680-94 10.1021/jp9713423
    • (1997) J. Phys. Chem. A , vol.101 , pp. 8680-8694
    • Gresh, N.1
  • 29
    • 84884944777 scopus 로고    scopus 로고
    • Nature and Magnitude of Aromatic Base Stacking in DNA and RNA: Quantum Chemistry, Molecular Mechanics, and Experiment
    • Sponer, J.; Sponer, J. E.; Mladek, A.; Jurecka, M.; Banas, P.; Otyepka, M. Nature and Magnitude of Aromatic Base Stacking in DNA and RNA: Quantum Chemistry, Molecular Mechanics, and Experiment Biopolymers 2013, 99, 978-988 10.1002/bip.22322
    • (2013) Biopolymers , vol.99 , pp. 978-988
    • Sponer, J.1    Sponer, J.E.2    Mladek, A.3    Jurecka, M.4    Banas, P.5    Otyepka, M.6
  • 30
    • 84863686749 scopus 로고    scopus 로고
    • Can We Accurately Describe the Structure of Adenine Tracts in B-DNA? Reference Quantum-Chemical Computations Reveal Overstabilization of Stacking by Molecular Mechanics
    • Banas, P.; Mladek, A.; Otyepka, M.; Zgarbova, M.; Jurecka, M.; Svozil, D.; Lankas, F.; Sponer, J. Can We Accurately Describe the Structure of Adenine Tracts in B-DNA? Reference Quantum-Chemical Computations Reveal Overstabilization of Stacking by Molecular Mechanics J. Chem. Theory Comput. 2012, 8, 2448-2460 10.1021/ct3001238
    • (2012) J. Chem. Theory Comput. , vol.8 , pp. 2448-2460
    • Banas, P.1    Mladek, A.2    Otyepka, M.3    Zgarbova, M.4    Jurecka, M.5    Svozil, D.6    Lankas, F.7    Sponer, J.8
  • 31
    • 34548729444 scopus 로고    scopus 로고
    • Toward a Separate Reproduction of the Contributions to the Hartree- Fock and DFT Intermolecular Interaction energies by Polarizable Molecular Mechanics with the SIBFA Potential
    • Piquemal, J.-P.; Chevreau, H.; Gresh, N. Toward a Separate Reproduction of the Contributions to the Hartree- Fock and DFT Intermolecular Interaction energies by Polarizable Molecular Mechanics with the SIBFA Potential J. Chem. Theory Comput. 2007, 3, 824-837 10.1021/ct7000182
    • (2007) J. Chem. Theory Comput. , vol.3 , pp. 824-837
    • Piquemal, J.-P.1    Chevreau, H.2    Gresh, N.3
  • 32
    • 83455218435 scopus 로고    scopus 로고
    • Directional Dependence of Hydrogen Bonds. A Density-Functional Based Energy Decomposition and its Implication on Force-Field Development
    • Lu, Z.; Zhu, N.; Wu, Q.; Zhang, Y. J. Directional Dependence of Hydrogen Bonds. A Density-Functional Based Energy Decomposition and its Implication on Force-Field Development J. Chem. Theory Comput. 2011, 7, 4038-4049 10.1021/ct2003226
    • (2011) J. Chem. Theory Comput. , vol.7 , pp. 4038-4049
    • Lu, Z.1    Zhu, N.2    Wu, Q.3    Zhang, Y.J.4
  • 33
    • 84875974483 scopus 로고    scopus 로고
    • Accurate First Principles Model Potentials for intermolecular Interactions
    • Gordon, M. S.; Smith, Q. A.; Xu, P.; Slipchenko, L. V. Accurate First Principles Model Potentials for intermolecular Interactions Annu. Rev. Phys. Chem. 2013, 64, 553-578 10.1146/annurev-physchem-040412-110031
    • (2013) Annu. Rev. Phys. Chem. , vol.64 , pp. 553-578
    • Gordon, M.S.1    Smith, Q.A.2    Xu, P.3    Slipchenko, L.V.4
  • 34
    • 80054712735 scopus 로고    scopus 로고
    • Effective Fragment Potential Study of the Interaction of the DNA Bases
    • Smith, Q. A.; Gordon, M. S.; Slipchenko, L. V. Effective Fragment Potential Study of the Interaction of the DNA Bases J. Phys. Chem. A 2011, 115, 11269-11276 10.1021/jp2047954
    • (2011) J. Phys. Chem. A , vol.115 , pp. 11269-11276
    • Smith, Q.A.1    Gordon, M.S.2    Slipchenko, L.V.3
  • 35
    • 84922639701 scopus 로고    scopus 로고
    • Multipolar Ewald Methods. Applications Using a Quantum Mechanical Force-Field
    • Giese, T. J.; Panteva, M. T.; Chen, H.; York, D. M. Multipolar Ewald Methods. Applications Using a Quantum Mechanical Force-Field J. Chem. Theory Comput. 2015, 11, 451-461 10.1021/ct500799g
    • (2015) J. Chem. Theory Comput. , vol.11 , pp. 451-461
    • Giese, T.J.1    Panteva, M.T.2    Chen, H.3    York, D.M.4
  • 36
  • 37
    • 36649021120 scopus 로고    scopus 로고
    • Design of a Next-Generation Force-Field: The X-Pol Potential
    • Gao, J. Design of a Next-Generation Force-Field: the X-Pol Potential J. Chem. Theory Comput. 2007, 3, 1890-1900 10.1021/ct700167b
    • (2007) J. Chem. Theory Comput. , vol.3 , pp. 1890-1900
    • Gao, J.1
  • 38
    • 84907208731 scopus 로고    scopus 로고
    • Prediction of Intramolecular Polarization of Aromatic Amino Acids using Kriging Machine Learning
    • Fletcher, T. L.; Davie, S. J.; Popelier, P. L. A. Prediction of Intramolecular Polarization of Aromatic Amino Acids using Kriging Machine Learning J. Chem. Theory Comput. 2014, 10, 3708-3719 10.1021/ct500416k
    • (2014) J. Chem. Theory Comput. , vol.10 , pp. 3708-3719
    • Fletcher, T.L.1    Davie, S.J.2    Popelier, P.L.A.3
  • 39
    • 84922311325 scopus 로고    scopus 로고
    • Electrostatic Forces. Formulas for the First Derivatives of a Polarizable, Anisotropic Electrostatic Potential Energy Function Based on Machine Learning
    • Mills, M. J. L.; Popelier, P. L. A. Electrostatic Forces. Formulas for the First Derivatives of a Polarizable, Anisotropic Electrostatic Potential Energy Function Based on Machine Learning J. Chem. Theory Comput. 2014, 10, 3840-3856 10.1021/ct500565g
    • (2014) J. Chem. Theory Comput. , vol.10 , pp. 3840-3856
    • Mills, M.J.L.1    Popelier, P.L.A.2
  • 40
    • 80755155886 scopus 로고    scopus 로고
    • Accurate Molecular Crystal Lattice Lattice Energies from a Fragment QM/MM Approach with On- The-Fly Ab initio Force Field Parametrization
    • Wen, S.; Beran, G. J. O. Accurate Molecular Crystal Lattice Lattice Energies from a Fragment QM/MM Approach with On-the-Fly Ab initio Force Field Parametrization J. Chem. Theory Comput. 2011, 7, 3733-3742 10.1021/ct200541h
    • (2011) J. Chem. Theory Comput. , vol.7 , pp. 3733-3742
    • Wen, S.1    Beran, G.J.O.2
  • 41
    • 84986440367 scopus 로고
    • Energetics of Zn2+ Binding to a Series of Biologically-relevant Ligands. A Molecular Mechanics Investigation Grounded on ab initio SCF Supermolecular Computations
    • Gresh, N. Energetics of Zn2+ Binding to a Series of Biologically-relevant Ligands. A Molecular Mechanics Investigation Grounded on ab initio SCF Supermolecular Computations J. Comput. Chem. 1995, 16, 856-882 10.1002/jcc.540160705
    • (1995) J. Comput. Chem. , vol.16 , pp. 856-882
    • Gresh, N.1
  • 42
    • 36649010414 scopus 로고    scopus 로고
    • J. Chem. Theory Comput. Anisotropic, Polarizable Molecular Mechanics Studies of Inter-, Intramolecular Interactions, and Ligand-macromolecule Complexes. A Bottom-up Strategy
    • Gresh, N.; Cisneros, G. A.; Darden, T. A.; Piquemal, J. J. Chem. Theory Comput. Anisotropic, Polarizable Molecular Mechanics Studies of Inter-, Intramolecular Interactions, and Ligand-macromolecule Complexes. A Bottom-up Strategy J. Chem. Theory Comput. 2007, 3, 1960-1986 10.1021/ct700134r
    • (2007) J. Chem. Theory Comput. , vol.3 , pp. 1960-1986
    • Gresh, N.1    Cisneros, G.A.2    Darden, T.A.3    Piquemal, J.4
  • 43
    • 0043289936 scopus 로고    scopus 로고
    • Theoretical Study of Binding of Hydrated Cations Zn(II) and Mg(II) to Guanosine 5′Monophosphate. Towards Polarizable Molecular Mechanics for DNA and RNA
    • Gresh, N.; Sponer, J. E.; Spackova, N.; Leszczynski, J.; Sponer, J. Theoretical Study of Binding of Hydrated Cations Zn(II) and Mg(II) to Guanosine 5′Monophosphate. Towards Polarizable Molecular Mechanics for DNA and RNA J. Phys. Chem. B 2003, 107, 8669-8681 10.1021/jp022659s
    • (2003) J. Phys. Chem. B , vol.107 , pp. 8669-8681
    • Gresh, N.1    Sponer, J.E.2    Spackova, N.3    Leszczynski, J.4    Sponer, J.5
  • 44
    • 0000437958 scopus 로고    scopus 로고
    • Complexes of Pentahydrated Zn2+ with Guanine, Adenine, and the Guanine-Cytosine and Adenine-Thymine Base-pairs. Structures and Energies Characterized Guanine-Cytosine and Adenine-Thymine Base-Pairs by Polarizable Molecular Mechanics and ab initio Calculations
    • Gresh, N.; Sponer, J. Complexes of Pentahydrated Zn2+ with Guanine, Adenine, and the Guanine-Cytosine and Adenine-Thymine Base-pairs. Structures and Energies Characterized Guanine-Cytosine and Adenine-Thymine Base-Pairs by Polarizable Molecular Mechanics and ab initio Calculations J. Phys. Chem. B 1999, 103, 11415-11427 10.1021/jp9921351
    • (1999) J. Phys. Chem. B , vol.103 , pp. 11415-11427
    • Gresh, N.1    Sponer, J.2
  • 45
    • 17544396285 scopus 로고    scopus 로고
    • Potential Energy Surface of the Cytosine Dimer: MP2 Complete Basis Set Limit Interaction Energies, CCSD(T) Correction Term, and Comparison with the AMBER Force Field
    • Jurecka, P.; Sponer, J.; Hobza, P. Potential Energy Surface of the Cytosine Dimer: MP2 Complete Basis Set Limit Interaction Energies, CCSD(T) Correction Term, and Comparison with the AMBER Force Field J. Phys. Chem. B 2004, 108, 5466-5471 10.1021/jp049956c
    • (2004) J. Phys. Chem. B , vol.108 , pp. 5466-5471
    • Jurecka, P.1    Sponer, J.2    Hobza, P.3
  • 46
    • 33746614482 scopus 로고
    • Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen
    • Dunning, T. H. Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen J. Chem. Phys. 1989, 90, 1007-1023 10.1063/1.456153
    • (1989) J. Chem. Phys. , vol.90 , pp. 1007-1023
    • Dunning, T.H.1
  • 47
    • 0001243187 scopus 로고    scopus 로고
    • The Role of Databases in Support of Computational Chemistry Calculations
    • Feller, D. The Role of Databases in Support of Computational Chemistry Calculations J. Comput. Chem. 1996, 17, 1571-85 10.1002/(SICI)1096-987X(199610)17:13<1571::AID-JCC9>3.0.CO;2-P
    • (1996) J. Comput. Chem. , vol.17 , pp. 1571-1585
    • Feller, D.1
  • 48
    • 84903300627 scopus 로고    scopus 로고
    • A Supervised Fitting Approach to Force Field Parametrization with Application to the SIBFA Polarizable Force Field
    • Devereux, M.; Gresh, N.; Piquemal, J.-P.; Meuwly, M. A Supervised Fitting Approach to Force Field Parametrization with Application to the SIBFA Polarizable Force Field J. Comput. Chem. 2014, 35, 1577-1591 10.1002/jcc.23661
    • (2014) J. Comput. Chem. , vol.35 , pp. 1577-1591
    • Devereux, M.1    Gresh, N.2    Piquemal, J.-P.3    Meuwly, M.4
  • 49
    • 84984051896 scopus 로고
    • Interactions between Nucleic Acid Bases in Hydrogen-bonded and Stacked Configurations: The Role of the Molecular Charge Distribution
    • Langlet, J.; Claverie, P.; Caron, F.; Boeuve, J. C. Interactions between Nucleic Acid Bases in Hydrogen-bonded and Stacked Configurations: The Role of the Molecular Charge Distribution Int. J. Quantum Chem. 1981, 20, 299-338 10.1002/qua.560200204
    • (1981) Int. J. Quantum Chem. , vol.20 , pp. 299-338
    • Langlet, J.1    Claverie, P.2    Caron, F.3    Boeuve, J.C.4
  • 50
    • 0037943839 scopus 로고
    • Frozen Fragment Reduced Variational Space Analysis of Hydrogen Bonding Interactions. Application to the Water Dimer
    • Stevens, W. J.; Fink, W. Frozen Fragment Reduced Variational Space Analysis of Hydrogen Bonding Interactions. Application to the Water Dimer Chem. Phys. Lett. 1987, 139, 15-22 10.1016/0009-2614(87)80143-4
    • (1987) Chem. Phys. Lett. , vol.139 , pp. 15-22
    • Stevens, W.J.1    Fink, W.2
  • 51
    • 84890021933 scopus 로고
    • The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies. Some Procedures with Reduced Errors
    • Boys, S. F.; Bernardi, F. The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies. Some Procedures with Reduced Errors Mol. Phys. 1970, 19, 553-566 10.1080/00268977000101561
    • (1970) Mol. Phys. , vol.19 , pp. 553-566
    • Boys, S.F.1    Bernardi, F.2
  • 52
    • 0009687148 scopus 로고
    • Decomposition of the Interaction Energy between Metal Cations and Water or Ammonia with Inclusion of Counterpoise Corrections to the Interaction Energy Terms
    • Cammi, R.; Hofmann, H.-J.; Tomasi, J. Decomposition of the Interaction Energy between Metal Cations and Water or Ammonia with Inclusion of Counterpoise Corrections to the Interaction Energy Terms Theor. Chem. Acc. 1989, 76, 297-313 10.1007/BF00529931
    • (1989) Theor. Chem. Acc. , vol.76 , pp. 297-313
    • Cammi, R.1    Hofmann, H.-J.2    Tomasi, J.3
  • 54
    • 34250817103 scopus 로고
    • A New Mixing of Hartree-Fock and Local Density-Functional Theories
    • Becke, A. D. A New Mixing of Hartree-Fock and Local Density-Functional Theories J. Chem. Phys. 1993, 98, 1372-1377 10.1063/1.464304
    • (1993) J. Chem. Phys. , vol.98 , pp. 1372-1377
    • Becke, A.D.1
  • 55
    • 0001312393 scopus 로고
    • Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Surfaces
    • Jeziorski, B.; Moszynski, R.; Szalewicz, K. Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Surfaces Chem. Rev. 1994, 94, 1887-1930 10.1021/cr00031a008
    • (1994) Chem. Rev. , vol.94 , pp. 1887-1930
    • Jeziorski, B.1    Moszynski, R.2    Szalewicz, K.3
  • 56
    • 0035857248 scopus 로고    scopus 로고
    • Comment on Using Kohn-Sham Orbitals in Symmetry-Adapted Perturbation Theory to Investigate Intermolecular Interactions
    • Jansen, G.; Heßelmann, A. J. Comment on Using Kohn-Sham Orbitals in Symmetry-Adapted Perturbation Theory to Investigate Intermolecular Interactions J. Phys. Chem. A 2001, 105, 11156-11157 10.1021/jp0112774
    • (2001) J. Phys. Chem. A , vol.105 , pp. 11156-11157
    • Jansen, G.1    Heßelmann, A.J.2
  • 57
    • 0037123613 scopus 로고    scopus 로고
    • First-Order Intermolecular Interaction Energies from Kohn-Sham Orbitals
    • Heßelmann, A.; Jansen, G. First-Order Intermolecular Interaction Energies from Kohn-Sham Orbitals Chem. Phys. Lett. 2002, 357, 464-470 10.1016/S0009-2614(02)00538-9
    • (2002) Chem. Phys. Lett. , vol.357 , pp. 464-470
    • Heßelmann, A.1    Jansen, G.2
  • 58
    • 0037136182 scopus 로고    scopus 로고
    • Intermolecular Induction and Exchange-Induction Energies from Coupled-Perturbed Kohn-Sham Density Functional Theory
    • Heßelmann, A.; Jansen, G. Intermolecular Induction and Exchange-Induction Energies from Coupled-Perturbed Kohn-Sham Density Functional Theory Chem. Phys. Lett. 2002, 362, 319-325 10.1016/S0009-2614(02)01097-7
    • (2002) Chem. Phys. Lett. , vol.362 , pp. 319-325
    • Heßelmann, A.1    Jansen, G.2
  • 59
    • 0037427675 scopus 로고    scopus 로고
    • Intermolecular Dispersion Energies from Time-Dependent Density Functional Theory
    • Heßelmann, A.; Jansen, G. Intermolecular Dispersion Energies from Time-Dependent Density Functional Theory Chem. Phys. Lett. 2003, 367, 778-784 10.1016/S0009-2614(02)01796-7
    • (2003) Chem. Phys. Lett. , vol.367 , pp. 778-784
    • Heßelmann, A.1    Jansen, G.2
  • 60
    • 2942535140 scopus 로고    scopus 로고
    • The Helium Dimer Potential from a Combined Density Functional Theory and Symmetry-Adapted Perturbation Theory Approach Using an Exact Exchange Correlation Potential
    • Heßelmann, A.; Jansen, G. The Helium Dimer Potential from a Combined Density Functional Theory and Symmetry-Adapted Perturbation Theory Approach Using an Exact Exchange Correlation Potential Phys. Chem. Chem. Phys. 2003, 5, 5010-5014 10.1039/b310529f
    • (2003) Phys. Chem. Chem. Phys. , vol.5 , pp. 5010-5014
    • Heßelmann, A.1    Jansen, G.2
  • 64
  • 65
    • 0031285839 scopus 로고    scopus 로고
    • RI-MP2: First Derivatives and Global Consistency
    • Weigend, F.; Haeser, M. RI-MP2: First Derivatives and Global Consistency Theor. Chem. Acc. 1997, 97, 331-340 10.1007/s002140050269
    • (1997) Theor. Chem. Acc. , vol.97 , pp. 331-340
    • Weigend, F.1    Haeser, M.2
  • 66
    • 0040759177 scopus 로고    scopus 로고
    • RI-MP2: Optimized Auxiliary Basis Sets and Demonstration of Efficiency
    • Weigend, F.; Haeser, H.; Patzelt, H.; Ahlrichs, R. RI-MP2: Optimized Auxiliary Basis Sets and Demonstration of Efficiency Chem. Phys. Lett. 1998, 294, 143-152 10.1016/S0009-2614(98)00862-8
    • (1998) Chem. Phys. Lett. , vol.294 , pp. 143-152
    • Weigend, F.1    Haeser, H.2    Patzelt, H.3    Ahlrichs, R.4
  • 67
    • 0346317394 scopus 로고    scopus 로고
    • Improved Formulas for the Calculation of the Electrostatic Contribution to Intermolecular Interaction Energy from Multipolar Expansion of the Electronic Distribution
    • Piquemal, J.-P.; Gresh, N.; Giessner-Prettre, C. Improved Formulas for the Calculation of the Electrostatic Contribution to Intermolecular Interaction Energy from Multipolar Expansion of the Electronic Distribution J. Phys. Chem. A 2003, 107, 10353-10359 10.1021/jp035748t
    • (2003) J. Phys. Chem. A , vol.107 , pp. 10353-10359
    • Piquemal, J.-P.1    Gresh, N.2    Giessner-Prettre, C.3
  • 68
    • 0001475763 scopus 로고
    • Distributed Multipole Analysis, or How to Describe a Molecular Charge Distribution
    • Stone, A. J. Distributed Multipole Analysis, or How to Describe a Molecular Charge Distribution Chem. Phys. Lett. 1981, 83, 233-239 10.1016/0009-2614(81)85452-8
    • (1981) Chem. Phys. Lett. , vol.83 , pp. 233-239
    • Stone, A.J.1
  • 69
    • 84947640036 scopus 로고
    • Distributed Multipole Analysis-Methods and Applications
    • Stone, A. J.; Alderton, M. Distributed Multipole Analysis-Methods and Applications Mol. Phys. 1985, 56, 1047-1064 10.1080/00268978500102891
    • (1985) Mol. Phys. , vol.56 , pp. 1047-1064
    • Stone, A.J.1    Alderton, M.2
  • 70
    • 0011057301 scopus 로고
    • The Exact Multicenter Multipolar Part of a Molecular Charge Distribution and its Simplified Representations
    • Vigné-Maeder, F.; Claverie, P. The Exact Multicenter Multipolar Part of a Molecular Charge Distribution and its Simplified Representations J. Chem. Phys. 1988, 88, 4934-4948 10.1063/1.454705
    • (1988) J. Chem. Phys. , vol.88 , pp. 4934-4948
    • Vigné-Maeder, F.1    Claverie, P.2
  • 71
    • 33845183588 scopus 로고
    • Transferability of Molecular Distributed Polarizabilities from a Simple Localized Orbital Based Method
    • Garmer, D. R.; Stevens, W. J. Transferability of Molecular Distributed Polarizabilities from a Simple Localized Orbital Based Method J. Phys. Chem. 1989, 93, 8263-8270 10.1021/j100362a023
    • (1989) J. Phys. Chem. , vol.93 , pp. 8263-8270
    • Garmer, D.R.1    Stevens, W.J.2
  • 72
    • 0007332098 scopus 로고    scopus 로고
    • HONDO 99.6, 1999, based on HONDO 95.3; Dupuis, M. Marquez, A. Davidson, E. R. Indiana University: Bloomington, IN
    • Dupuis, M.; Marquez, A.; Davidson, E. R. HONDO 99.6, 1999, based on HONDO 95.3; Dupuis, M.; Marquez, A.; Davidson, E. R. Quantum Chemistry Program Exchange (QCPE); Indiana University: Bloomington, IN, 1999; 47405.
    • (1999) Quantum Chemistry Program Exchange (QCPE) , pp. 47405
    • Dupuis, M.1    Marquez, A.2    Davidson, E.R.3
  • 73
    • 36549100412 scopus 로고
    • A Simple Measure of Electron Localization in Atomic and Molecular Systems
    • Becke, A. K.; Edgecombe, K. E. A Simple Measure of Electron Localization in Atomic and Molecular Systems J. Chem. Phys. 1990, 92, 5397-5403 10.1063/1.458517
    • (1990) J. Chem. Phys. , vol.92 , pp. 5397-5403
    • Becke, A.K.1    Edgecombe, K.E.2
  • 74
    • 0027946619 scopus 로고
    • Classification of Chemical Bonds Based on Topological Analysis of Electron Localization Functions
    • Silvi, B.; Savin, A. Classification of Chemical Bonds Based on Topological Analysis of Electron Localization Functions Nature 1994, 371, 683-686 10.1038/371683a0
    • (1994) Nature , vol.371 , pp. 683-686
    • Silvi, B.1    Savin, A.2
  • 75
    • 84884686103 scopus 로고    scopus 로고
    • Further Refinements of Next Generation Force Fields. Nonempirical Localization of Off-centered Points in Molecules
    • Chaudret, R.; Gresh, N.; Cisneros, A.; Scemama, A.; Piquemal, J.-P. Further Refinements of Next Generation Force Fields. Nonempirical Localization of Off-centered Points in Molecules Can. J. Chem. 2013, 91, 804-810 10.1139/cjc-2012-0547
    • (2013) Can. J. Chem. , vol.91 , pp. 804-810
    • Chaudret, R.1    Gresh, N.2    Cisneros, A.3    Scemama, A.4    Piquemal, J.-P.5
  • 76
    • 0031547902 scopus 로고    scopus 로고
    • I-nolls: A Program for Interactive Non-linear Least-squares Fit of the Parameters of Physical Models
    • Law, M. M.; Hutson, J. M. I-nolls: a Program for Interactive Non-linear Least-squares Fit of the Parameters of Physical Models Comput. Phys. Commun. 1997, 102, 252-268 10.1016/S0010-4655(97)00013-1
    • (1997) Comput. Phys. Commun. , vol.102 , pp. 252-268
    • Law, M.M.1    Hutson, J.M.2
  • 77
    • 0028007797 scopus 로고
    • A Comprehensive Energy Component Analysis of the Interaction of Hard and Soft Dications with Biological Ligands
    • Garmer, D. R.; Gresh, N. A Comprehensive Energy Component Analysis of the Interaction of Hard and Soft Dications with Biological Ligands J. Am. Chem. Soc. 1994, 116, 3556-3567 10.1021/ja00087a049
    • (1994) J. Am. Chem. Soc. , vol.116 , pp. 3556-3567
    • Garmer, D.R.1    Gresh, N.2
  • 78
    • 84984076278 scopus 로고
    • Computations of Intermolecular Interactions. Expansion of a Charge-transfer Energy Contribution in the Framework of an Additive Procedure. Applications to Hydrogen-bonded Systems
    • Gresh, N.; Claverie, P.; Pullman, A. Computations of Intermolecular Interactions. Expansion of a Charge-transfer Energy Contribution in the Framework of an Additive Procedure. Applications to Hydrogen-bonded Systems Int. J. Quantum Chem. 1982, 22, 199-215 10.1002/qua.560220118
    • (1982) Int. J. Quantum Chem. , vol.22 , pp. 199-215
    • Gresh, N.1    Claverie, P.2    Pullman, A.3
  • 79
    • 84987055122 scopus 로고
    • Intermolecular Interactions. Elaboration on an Additive Procedure Including an Explicit Charge-Transfer Contribution
    • Gresh, N.; Claverie, P.; Pullman, A. Intermolecular Interactions. Elaboration on an Additive Procedure Including an Explicit Charge-Transfer Contribution Int. J. Quantum Chem. 1986, 29, 101-118 10.1002/qua.560290110
    • (1986) Int. J. Quantum Chem. , vol.29 , pp. 101-118
    • Gresh, N.1    Claverie, P.2    Pullman, A.3
  • 80
    • 0001310666 scopus 로고
    • Adjustment of the SIBFA Procedure for Potential Maps to Study Hydrogen-Bonding Vibrational Frequencies
    • Creuzet, S.; Langlet, J.; N. Gresh, N. Adjustment of the SIBFA Procedure for Potential Maps to Study Hydrogen-Bonding Vibrational Frequencies J. Chim. Phys. 1991, 88, 2399-2409
    • (1991) J. Chim. Phys. , vol.88 , pp. 2399-2409
    • Creuzet, S.1    Langlet, J.2    Gresh, N.N.3
  • 82
    • 33645326510 scopus 로고    scopus 로고
    • Nature of Base Stacking. Reference Quantum-Chemical Stacking Energies in Ten Unique B-DNA Base-Pair Steps
    • Sponer, J.; Jurecka, P.; Marchan, I.; Luque, F. J.; Orozco, M.; Hobza, P. Nature of Base Stacking. Reference Quantum-Chemical Stacking Energies in Ten Unique B-DNA Base-Pair Steps Chem.-Eur. J. 2006, 12, 2854-2865 10.1002/chem.200501239
    • (2006) Chem. - Eur. J. , vol.12 , pp. 2854-2865
    • Sponer, J.1    Jurecka, P.2    Marchan, I.3    Luque, F.J.4    Orozco, M.5    Hobza, P.6
  • 83
    • 84908053264 scopus 로고    scopus 로고
    • Substituent-Modulated Affinities of Halobenzne Derivatives to the HIV-1 Integrase Binsing Site. Analysis of the Interaction Energies by Parallel Quantum Chemistry and Polarizable Molecular Mechanics
    • El Hage, K.; Piquemal, J. P.; Hobaika, Z.; Maroun, R.; Gresh, N. Substituent-Modulated Affinities of Halobenzne Derivatives to the HIV-1 Integrase Binsing Site. Analysis of the Interaction Energies by Parallel Quantum Chemistry and Polarizable Molecular Mechanics J. Phys. Chem. A 2014, 118, 9772-9782 10.1021/jp5079899
    • (2014) J. Phys. Chem. A , vol.118 , pp. 9772-9782
    • El Hage, K.1    Piquemal, J.P.2    Hobaika, Z.3    Maroun, R.4    Gresh, N.5
  • 84
    • 84898435016 scopus 로고    scopus 로고
    • Scalable Evaluation of Polarization Energy and Associated Forces in Polarizable Molecular Dynamics: I. Toward Massively Parallel Direct Space Computations
    • Lipparini, F.; Lagardère, L.; Stamm, B.; Cancès, E.; Schnieders, M.; Ren, P.; Maday, Y.; Piquemal, J.-P. Scalable Evaluation of Polarization Energy and Associated Forces in Polarizable Molecular Dynamics: I. Toward Massively Parallel Direct Space Computations J. Chem. Theory Comput. 2014, 10, 1638-1651 10.1021/ct401096t
    • (2014) J. Chem. Theory Comput. , vol.10 , pp. 1638-1651
    • Lipparini, F.1    Lagardère, L.2    Stamm, B.3    Cancès, E.4    Schnieders, M.5    Ren, P.6    Maday, Y.7    Piquemal, J.-P.8
  • 85
    • 80054901924 scopus 로고    scopus 로고
    • Telomere Structure and Stability. Covalency in Hydrogen Bonds, Not Resonance Assistance, Causes Cooperativity in Guanine Quartets
    • Fonsecca Guerra, C.; Zijlstra, H.; Paragi, G.; Bickelhaupt, F. M. Telomere Structure and Stability. Covalency in Hydrogen Bonds, Not Resonance Assistance, Causes Cooperativity in Guanine Quartets Chem.-Eur. J. 2011, 17, 12612-12622 10.1002/chem.201102234
    • (2011) Chem. - Eur. J. , vol.17 , pp. 12612-12622
    • Fonsecca Guerra, C.1    Zijlstra, H.2    Paragi, G.3    Bickelhaupt, F.M.4
  • 86
    • 84891754098 scopus 로고    scopus 로고
    • Exploring Non-Covalent Interactions in Guanine- and Xanthine-Based Model DNA Quadruplex Structures: A Comprehensive Quantum-Chemical Approach
    • Yurenko, Y. P.; Novotny, J.; Sklenar, V.; Marek, R. Exploring Non-Covalent Interactions in Guanine- and Xanthine-Based Model DNA Quadruplex Structures: a Comprehensive Quantum-Chemical Approach Phys. Chem. Chem. Phys. 2014, 16, 2072-2084 10.1039/C3CP53875C
    • (2014) Phys. Chem. Chem. Phys. , vol.16 , pp. 2072-2084
    • Yurenko, Y.P.1    Novotny, J.2    Sklenar, V.3    Marek, R.4
  • 87
    • 84903787142 scopus 로고    scopus 로고
    • Tailoring the Properties of Quadruplex Nucleobases for Biological and Nanomaterial Applications
    • Novotny, J.; Yurenko, Y. P.; Kulhanek, P.; Marek, R. Tailoring the Properties of Quadruplex Nucleobases for Biological and Nanomaterial Applications Phys. Chem. Chem. Phys. 2014, 16, 15241-15248 10.1039/c4cp00541d
    • (2014) Phys. Chem. Chem. Phys. , vol.16 , pp. 15241-15248
    • Novotny, J.1    Yurenko, Y.P.2    Kulhanek, P.3    Marek, R.4
  • 88
    • 0005835158 scopus 로고
    • Energetics and Structure in Neutral, Cationic, and Anionic H-bonded Complexes. A Combined Ab Initio SCF/MP2 Supermolecular, Density Functional Theory, and Molecular Mechanics Investigation
    • Smith, D. A. ACS Symposium Series No. 569; American Chemical Society: Washington, DC
    • Gresh, N.; Leboeuf, M.; Salahub, D. R. Energetics and Structure in Neutral, Cationic, and Anionic H-bonded Complexes. A Combined Ab Initio SCF/MP2 Supermolecular, Density Functional Theory, and Molecular Mechanics Investigation. In Modeling the Hydrogen Bond; Smith, D. A., Ed.; ACS Symposium Series No. 569; American Chemical Society: Washington, DC, 1994; pp 82-112.
    • (1994) Modeling the Hydrogen Bond , pp. 82-112
    • Gresh, N.1    Leboeuf, M.2    Salahub, D.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.