메뉴 건너뛰기




Volumn 64, Issue , 2013, Pages 553-578

Accurate first principles model potentials for intermolecular interactions

Author keywords

Charge transfer; Dispersion; Effective fragment potential; EFP; Exchange repulsion; QM EFP

Indexed keywords

CHARGE TRANSFER; DISPERSIONS; NUMERICAL METHODS; PERTURBATION TECHNIQUES;

EID: 84875974483     PISSN: 0066426X     EISSN: None     Source Type: Book Series    
DOI: 10.1146/annurev-physchem-040412-110031     Document Type: Article
Times cited : (153)

References (142)
  • 1
    • 6944251055 scopus 로고
    • Note on an approximation treatment for many-electron systems
    • Moller C, PlessetMS. 1934. Note on an approximation treatment for many-electron systems. Phys. Rev. 46:618-22
    • (1934) Phys. Rev. , vol.46 , pp. 618-622
    • Moller, C.1    Plesset, M.S.2
  • 3
    • 33847389465 scopus 로고    scopus 로고
    • Coupled-cluster theory in quantum chemistry
    • Bartlett RJ,Musiał M. 2007. Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys. 79:291-352
    • (2007) Rev. Mod. Phys. , vol.79 , pp. 291-352
    • Bartlett, R.J.1    Musiał, M.2
  • 5
    • 0001480137 scopus 로고    scopus 로고
    • Symmetry-adapted perturbation theory for the calculation of Hartree-Fock interaction energies
    • Moszynski R. 1996. Symmetry-adapted perturbation theory for the calculation of Hartree-Fock interaction energies. Mol. Phys. 88:741-58
    • (1996) Mol. Phys. , vol.88 , pp. 741-758
    • Moszynski, R.1
  • 7
    • 0000138517 scopus 로고    scopus 로고
    • An effective fragmentmethod for modeling solvent effects in quantum mechanical calculations
    • Day PN, Jensen JH,Gordon MS,Webb SP, StevensWJ, et al. 1996. An effective fragmentmethod for modeling solvent effects in quantum mechanical calculations. J. Chem. Phys. 105:1968-86
    • (1996) J. Chem. Phys. , vol.105 , pp. 1968-1986
    • Day, P.N.1    Jensen, J.H.2    Gordon, M.S.3    Webb, S.P.4    Stevens, W.J.5
  • 8
    • 0035138053 scopus 로고    scopus 로고
    • The effective fragment potential method: A QM-basedMMapproach to modeling environmental effects in chemistry
    • Gordon MS, Freitag MA, Bandyopadhyay P, Jensen JH, Kairys V, Stevens WJ. 2001. The effective fragment potential method: A QM-basedMMapproach to modeling environmental effects in chemistry. J. Phys. Chem. A 105:293-307
    • (2001) J. Phys. Chem. A , vol.105 , pp. 293-307
    • Gordon, M.S.1    Freitag, M.A.2    Bandyopadhyay, P.3    Jensen, J.H.4    Kairys, V.5    Stevens, W.J.6
  • 9
    • 34548786766 scopus 로고    scopus 로고
    • The effective fragment potential: A general method for predicting intermolecular forces
    • Gordon MS, Slipchenko LV, Li H, Jensen JH. 2007. The effective fragment potential: A general method for predicting intermolecular forces. Annu. Rep. Comput. Chem. 3:177-93
    • (2007) Annu. Rep. Comput. Chem. , vol.3 , pp. 177-193
    • Gordon, M.S.1    Slipchenko, L.V.2    Li, H.3    Jensen, J.H.4
  • 10
    • 78649830841 scopus 로고    scopus 로고
    • Noncovalent interactions in extended systems described by the effective fragment potential method: Theory and application to nucleobase oligomers
    • Ghosh D, Kosenkov D, Vanovschi V, Williams CF, Herbert JM, et al. 2010. Noncovalent interactions in extended systems described by the effective fragment potential method: theory and application to nucleobase oligomers. J. Phys. Chem. A 114:12739-54
    • (2010) J. Phys. Chem. A , vol.114 , pp. 12739-12754
    • Ghosh, D.1    Kosenkov, D.2    Vanovschi, V.3    Williams, C.F.4    Herbert, J.M.5
  • 11
    • 0001475763 scopus 로고
    • Distributed multipole analysis, or how to describe a molecular charge distribution
    • Stone AJ. 1981. Distributed multipole analysis, or how to describe a molecular charge distribution. Chem. Phys. Lett. 83:233-39
    • (1981) Chem. Phys. Lett. , vol.83 , pp. 233-239
    • Stone, A.J.1
  • 13
    • 0000189651 scopus 로고
    • Density-functional thermochemistry. 3. The role of exact exchange
    • Becke AD. 1993. Density-functional thermochemistry. 3. The role of exact exchange. J. Chem. Phys. 98:5648-52
    • (1993) J. Chem. Phys. , vol.98 , pp. 5648-5652
    • Becke, A.D.1
  • 14
    • 0345491105 scopus 로고
    • Development of the Colle-Salvetti correlation energy formula into a functional of the electron density
    • Lee CT, Yang WT, Parr RG. 1988. Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B 37:785-89
    • (1988) Phys. Rev. B , vol.37 , pp. 785-789
    • Lee, C.T.1    Yang, W.T.2    Parr, R.G.3
  • 15
    • 0037961695 scopus 로고    scopus 로고
    • Density functional theory based effective fragment potential method
    • Adamovic I, FreitagMA, Gordon MS. 2003. Density functional theory based effective fragment potential method. J. Chem. Phys. 118:6725-32
    • (2003) J. Chem. Phys. , vol.118 , pp. 6725-6732
    • Adamovic, I.1    Freitag, M.A.2    Gordon, M.S.3
  • 16
    • 54949146551 scopus 로고    scopus 로고
    • Solvent effects on optical properties of molecules: A combined time-dependent density functional theory/effective fragment potential approach
    • Yoo S, Zahariev F, Sok S, Gordon MS. 2008. Solvent effects on optical properties of molecules: A combined time-dependent density functional theory/effective fragment potential approach. J. Chem. Phys. 129:144112
    • (2008) J. Chem. Phys. , vol.129 , pp. 144112
    • Yoo, S.1    Zahariev, F.2    Sok, S.3    Gordon, M.S.4
  • 17
    • 77954018077 scopus 로고    scopus 로고
    • Solvent-induced frequency shifts: Configuration interaction singles combined with the effective fragment potential method
    • Arora P, Slipchenko LV, Webb SP, Defusco A, Gordon MS. 2010. Solvent-induced frequency shifts: configuration interaction singles combined with the effective fragment potential method. J. Phys. Chem. A 114:6742-50
    • (2010) J. Phys. Chem. A , vol.114 , pp. 6742-6750
    • Arora, P.1    Slipchenko, L.V.2    Webb, S.P.3    Defusco, A.4    Gordon, M.S.5
  • 20
    • 0000191927 scopus 로고    scopus 로고
    • The effective fragment model for solvation: Internal rotation in formamide
    • Chen W, Gordon MS. 1996. The effective fragment model for solvation: internal rotation in formamide. J. Chem. Phys. 105:11081-90
    • (1996) J. Chem. Phys. , vol.105 , pp. 11081-11090
    • Chen, W.1    Gordon, M.S.2
  • 21
    • 0000317636 scopus 로고    scopus 로고
    • Study of small water clusters using the effective fragment potential model
    • Merrill GN, Gordon MS.
    • Merrill GN, Gordon MS. 1998. Study of small water clusters using the effective fragment potential model. J. Phys. Chem. A 102:2650-57
    • (1998) J. Phys. Chem. A , vol.102 , pp. 2650-2657
  • 22
    • 84961980734 scopus 로고    scopus 로고
    • Solvation of the Menshutkin reaction: A rigorous test of the effective fragment method
    • Webb SP, Gordon MS. 1999. Solvation of the Menshutkin reaction: A rigorous test of the effective fragment method. J. Phys. Chem. A 103:1265-73
    • (1999) J. Phys. Chem. A , vol.103 , pp. 1265-1273
    • Webb, S.P.1    Gordon, M.S.2
  • 23
    • 0034224645 scopus 로고    scopus 로고
    • A combined discrete/continuum solvation model: Application to glycine
    • Bandyopadhyay P, Gordon MS. 2000. A combined discrete/continuum solvation model: application to glycine. J. Chem. Phys. 113:1104-9
    • (2000) J. Chem. Phys. , vol.113 , pp. 1104-1109
    • Bandyopadhyay, P.1    Gordon, M.S.2
  • 24
    • 0001128874 scopus 로고    scopus 로고
    • A study of water clusters using the effective fragment potential and Monte Carlo simulated annealing
    • Day PN, PachterR,Gordon MS,Merrill GN. 2000. A study of water clusters using the effective fragment potential and Monte Carlo simulated annealing. J. Chem. Phys. 112:2063-73
    • (2000) J. Chem. Phys. , vol.112 , pp. 2063-2073
    • Day, P.N.1    Pachterrgordon, M.S.2    Merrill, G.N.3
  • 25
    • 84961982139 scopus 로고    scopus 로고
    • An integrated effective fragment- polarizable continuum approach to solvation: Theory and application to glycine
    • Bandyopadhyay P, Gordon MS, Mennucci B, Tomasi J. 2002. An integrated effective fragment- polarizable continuum approach to solvation: theory and application to glycine. J. Chem. Phys. 116:5023- 32
    • (2002) J. Chem. Phys. , vol.116 , pp. 5023-5032
    • Bandyopadhyay, P.1    Gordon, M.S.2    Mennucci, B.3    Tomasi, J.4
  • 26
    • 14844364281 scopus 로고    scopus 로고
    • Solvent effects on the SN2 reaction: Application of the density functional theory-based effective fragment potential method
    • Adamovic I, Gordon MS. 2005. Solvent effects on the SN2 reaction: application of the density functional theory-based effective fragment potential method. J. Phys. Chem. A 109:1629-36
    • (2005) J. Phys. Chem. A , vol.109 , pp. 1629-1636
    • Adamovic, I.1    Gordon, M.S.2
  • 27
    • 84961983516 scopus 로고    scopus 로고
    • Alanine: Then there was water
    • Mullin JM, Gordon MS. 2009. Alanine: Then there was water. J. Phys. Chem. B 113:8657-69
    • (2009) J. Phys. Chem. B , vol.113 , pp. 8657-8669
    • Mullin, J.M.1    Gordon, M.S.2
  • 28
    • 84961979191 scopus 로고    scopus 로고
    • Water and alanine: From puddles (32) to ponds(49)
    • Mullin JM, Gordon MS. 2009. Water and alanine: from puddles(32) to ponds(49). J. Phys. Chem. B 113:14413-20
    • (2009) J Phys Chem B , vol.113 , pp. 14413-14420
    • Mullin, J.M.1    Gordon, M.S.2
  • 30
    • 4344679514 scopus 로고    scopus 로고
    • The effective fragment potential: Small clusters and radial distribution functions
    • Netzloff HM, Gordon MS. 2004. The effective fragment potential: small clusters and radial distribution functions. J. Chem. Phys. 121:2711-14
    • (2004) J. Chem. Phys. , vol.121 , pp. 2711-2714
    • Netzloff, H.M.1    Gordon, M.S.2
  • 31
    • 54849415060 scopus 로고    scopus 로고
    • Ab initioQM/MMmolecular dynamics study on the excited-state hydrogen transfer of 7-azaindole in water solution
    • Kina D, Nakayama A, Noro T, Taketsugu T, Gordon MS. 2008. Ab initioQM/MMmolecular dynamics study on the excited-state hydrogen transfer of 7-azaindole in water solution. J. Phys. Chem. A 112:9675- 83
    • (2008) J. Phys. Chem. A , vol.112 , pp. 9675-9683
    • Kina, D.1    Nakayama, A.2    Noro, T.3    Taketsugu, T.4    Gordon, M.S.5
  • 33
    • 24144448982 scopus 로고    scopus 로고
    • A quantum mechanical approach to the kinetics of the hydrogen abstraction reaction H2O2 + OH → HO2 + H2O
    • Atadinc F, Guaydin H, Ozen AS, Aviyente V. 2005. A quantum mechanical approach to the kinetics of the hydrogen abstraction reaction H2O2 + OH → HO2 + H2O. Int. J. Chem. Kinetics 37:502-14
    • (2005) Int. J. Chem. Kinetics , vol.37 , pp. 502-514
    • Atadinc, F.1    Guaydin, H.2    Ozen, A.S.3    Aviyente, V.4
  • 34
    • 72449162608 scopus 로고    scopus 로고
    • Quantum mechanical/effective fragment potential (QM/EFP) study of phosphate monoester aminolysis in aqueous solution
    • Ferreira DEC, Florentino BPD, Rocha WR, Nome F. 2009. Quantum mechanical/effective fragment potential (QM/EFP) study of phosphate monoester aminolysis in aqueous solution. J. Phys. Chem. B 113:14831-36
    • (2009) J. Phys. Chem. B , vol.113 , pp. 14831-14836
    • Dec, F.1    Bpd, F.2    Rocha, W.R.3    Nome, F.4
  • 35
    • 43049094784 scopus 로고    scopus 로고
    • Assessment of two surface Monte Carlo (TSMC) method to find stationary points of (H2O)15 and (H2O)20 clusters
    • Bandyopadhyay P. 2008. Assessment of two surface Monte Carlo (TSMC) method to find stationary points of (H2O)15 and (H2O)20 clusters. Theor. Chem. Acc. 120:307-12
    • (2008) Theor. Chem. Acc. , vol.120 , pp. 307-312
    • Bandyopadhyay, P.1
  • 36
    • 24944489192 scopus 로고    scopus 로고
    • Theoretical study of the solvation of fluorine and chlorine anions by water
    • Kemp DA, Gordon MS. 2005. Theoretical study of the solvation of fluorine and chlorine anions by water. J. Phys. Chem. A 109:7688-99
    • (2005) J. Phys. Chem. A , vol.109 , pp. 7688-7699
    • Kemp, D.A.1    Gordon, M.S.2
  • 37
    • 48849096571 scopus 로고    scopus 로고
    • An interpretation of the enhancement of the water dipole moment due to the presence of other water molecules
    • Kemp DA, Gordon MS. 2008. An interpretation of the enhancement of the water dipole moment due to the presence of other water molecules. J. Phys. Chem. A 112:4885-94
    • (2008) J. Phys. Chem. A , vol.112 , pp. 4885-4894
    • Kemp, D.A.1    Gordon, M.S.2
  • 38
    • 0142072032 scopus 로고    scopus 로고
    • Anion-water clusters A(H2O)16, A = OH, F, SH, Cl, and Br: An effective fragment potential test case
    • Merrill GN, Webb SP.
    • Merrill GN, Webb SP. 2003. Anion-water clusters A(H2O)16, A = OH, F, SH, Cl, and Br: an effective fragment potential test case. J. Phys. Chem. A 107:7852-60
    • (2003) J. Phys. Chem. A , vol.107 , pp. 7852-7860
  • 39
    • 0037461689 scopus 로고    scopus 로고
    • Formation of alkali metal/alkaline earth cation water clusters, M(H2O)1 6 M = Li+ Na+ K+ Mg2+ and Ca2+ an effective fragment potential (EFP) case study
    • Merrill GN, Webb SP, Bivin DB. 2003. Formation of alkali metal/alkaline earth cation water clusters, M(H2O)16, M = Li+, Na+, K+, Mg2+, and Ca2+: an effective fragment potential (EFP) case study. J. Phys. Chem. A 107:386-96
    • (2003) J Phys Chem A , vol.107 , pp. 386-396
    • Merrill, G.N.1    Webb, S.P.2    Bivin, D.B.3
  • 40
    • 1242265563 scopus 로고    scopus 로고
    • The application of the effective fragment potential method to molecular anion solvation: A study of ten oxyanion-water clusters, A(H2O)14
    • Merrill GN, Webb SP.
    • Merrill GN, Webb SP. 2004. The application of the effective fragment potential method to molecular anion solvation: A study of ten oxyanion-water clusters, A(H2O)14. J. Phys. Chem. A 108:833-39
    • (2004) J. Phys. Chem. A , vol.108 , pp. 833-839
  • 41
    • 43049139163 scopus 로고    scopus 로고
    • A microsolvation approach to the prediction of the relative enthalpies and free energies of hydration for ammonium ions
    • Merrill GN, Fletcher GD. 2008. A microsolvation approach to the prediction of the relative enthalpies and free energies of hydration for ammonium ions. Theor. Chem. Acc. 120:5-22
    • (2008) Theor. Chem. Acc. , vol.120 , pp. 5-22
    • Merrill, G.N.1    Fletcher, G.D.2
  • 42
    • 33847090784 scopus 로고    scopus 로고
    • Hydration of uranyl cations: Effective fragment potential approach
    • Chandrakumar KRS, Ghanty TK, Ghosh SK,Mukherjee T. 2007. Hydration of uranyl cations: effective fragment potential approach. J. Mol. Struct. 807:93-99
    • (2007) J. Mol. Struct. , vol.807 , pp. 93-99
    • Krs, C.1    Ghanty, T.K.2    Ghosh Skmukherjee, T.3
  • 43
    • 0001222603 scopus 로고    scopus 로고
    • Solvation of sodium chloride: An effective fragment study of NaCl(H2O)n
    • Petersen CP, Gordon MS. 1999. Solvation of sodium chloride: an effective fragment study of NaCl(H2O)n. J. Phys. Chem. A 103:4162-66
    • (1999) J. Phys. Chem. A , vol.103 , pp. 4162-4166
    • Petersen, C.P.1    Gordon, M.S.2
  • 44
    • 3543048024 scopus 로고    scopus 로고
    • The onset of dissociation in the aqueous LiOH clusters: A solvation study with the effective fragment potential model and quantum mechanics methods
    • Yoshikawa A,Morales JA. 2004. The onset of dissociation in the aqueous LiOH clusters: A solvation study with the effective fragment potential model and quantum mechanics methods. J. Mol. Struct. 681:27-40
    • (2004) J. Mol. Struct. , vol.681 , pp. 27-40
    • Yoshikawa, A.1    Morales, J.A.2
  • 45
    • 0035850381 scopus 로고    scopus 로고
    • Solvent effect on the global and atomic DFT-based reactivity descriptors using the effective fragment potential model: Solvation of ammonia
    • Balawender R, Safi B, Geerlings P. 2001. Solvent effect on the global and atomic DFT-based reactivity descriptors using the effective fragment potential model: solvation of ammonia. J. Phys. Chem. A 105:6703-10
    • (2001) J. Phys. Chem. A , vol.105 , pp. 6703-6710
    • Balawender, R.1    Safi, B.2    Geerlings, P.3
  • 46
    • 0035857232 scopus 로고    scopus 로고
    • Solvent effect on electronegativity, hardness, condensed Fukui functions, and softness, in a large series of diatomic and small polyatomic molecules: Use of the EFP model
    • Safi B, Balawender R, Geerlings P. 2001. Solvent effect on electronegativity, hardness, condensed Fukui functions, and softness, in a large series of diatomic and small polyatomic molecules: use of the EFP model. J. Phys. Chem. A 105:11102-9
    • (2001) J. Phys. Chem. A , vol.105 , pp. 11102-11109
    • Safi, B.1    Balawender, R.2    Geerlings, P.3
  • 47
    • 0001427609 scopus 로고    scopus 로고
    • A study of aqueous glutamic acid using the effective fragment potential method
    • Day PN, Pachter R. 1997. A study of aqueous glutamic acid using the effective fragment potential method. J. Chem. Phys. 107:2990-99
    • (1997) J. Chem. Phys. , vol.107 , pp. 2990-2999
    • Day, P.N.1    Pachter, R.2
  • 48
    • 11444259221 scopus 로고    scopus 로고
    • Theoretical investigations of acetylcholine (ACh) and acetylthiocholine (ATCh) using ab initio and effective fragment potential methods
    • Song J, Gordon MS, Deakyne CA, Zheng WC. 2004. Theoretical investigations of acetylcholine (ACh) and acetylthiocholine (ATCh) using ab initio and effective fragment potential methods. J. Phys. Chem. A 108:11419-32
    • (2004) J. Phys. Chem. A , vol.108 , pp. 11419-11432
    • Song, J.1    Gordon, M.S.2    Deakyne, C.A.3    Zheng, W.C.4
  • 49
    • 80052309967 scopus 로고    scopus 로고
    • Solvent-induced shift of the lowest singlet π → π charge-transfer excited state of p-nitroaniline in water: An application of the TDDFT/EFP1 method
    • Sok S, Willow SY, Zahariev F, Gordon MS. 2011. Solvent-induced shift of the lowest singlet π → π charge-transfer excited state of p-nitroaniline in water: an application of the TDDFT/EFP1 method. J. Phys. Chem. A 115:9801-9
    • (2011) J. Phys. Chem. A , vol.115 , pp. 9801-9809
    • Sok, S.1    Willow, S.Y.2    Zahariev, F.3    Gordon, M.S.4
  • 50
    • 36549091857 scopus 로고
    • An improved simple model for the van der Waals potential based on universal damping functions for the dispersion coefficients
    • Tang KT, Toennies JP. 1984. An improved simple model for the van der Waals potential based on universal damping functions for the dispersion coefficients. J. Chem. Phys. 80:3726-41
    • (1984) J. Chem. Phys. , vol.80 , pp. 3726-3741
    • Tang, K.T.1    Toennies, J.P.2
  • 51
    • 68249153515 scopus 로고    scopus 로고
    • Damping functions in the effective fragment potential method
    • Slipchenko LV, Gordon MS. 2009. Damping functions in the effective fragment potential method. Mol. Phys. 107:999-1016
    • (2009) Mol. Phys. , vol.107 , pp. 999-1016
    • Slipchenko, L.V.1    Gordon, M.S.2
  • 52
    • 33748769762 scopus 로고    scopus 로고
    • Methanol-water mixtures: A microsolvation study using the effective fragment potential method
    • Adamovic I, Gordon MS. 2006. Methanol-water mixtures: A microsolvation study using the effective fragment potential method. J. Phys. Chem. A 110:10267-73
    • (2006) J. Phys. Chem. A , vol.110 , pp. 10267-10273
    • Adamovic, I.1    Gordon, M.S.2
  • 54
    • 33846588840 scopus 로고    scopus 로고
    • Electrostatic energy in the effective fragment potential method: Theory and application to benzene dimmer
    • Slipchenko LV, Gordon MS. 2007. Electrostatic energy in the effective fragment potential method: theory and application to benzene dimer. J. Comput. Chem. 28:276-91
    • (2007) J. Comput. Chem. , vol.28 , pp. 276-291
    • Slipchenko, L.V.1    Gordon, M.S.2
  • 55
    • 46349109795 scopus 로고    scopus 로고
    • Modeling π-π Interactions with the effective fragment potential method: The benzene dimer and substituents
    • Smith T, Slipchenko LV, Gordon MS. 2008. Modeling π-π interactions with the effective fragment potential method: The benzene dimer and substituents. J. Phys. Chem. A 112:5286-94
    • (2008) J. Phys. Chem. A , vol.112 , pp. 5286-5294
    • Smith, T.1    Slipchenko, L.V.2    Gordon, M.S.3
  • 56
    • 79955851419 scopus 로고    scopus 로고
    • Benzene-pyridine interactions predicted by the effective fragment potential method
    • Smith QA, Gordon MS, Slipchenko LV. 2011. Benzene-pyridine interactions predicted by the effective fragment potential method. J. Phys. Chem. A 115:4598-609
    • (2011) J. Phys. Chem. A , vol.115 , pp. 4598-4609
    • Smith, Q.A.1    Gordon, M.S.2    Slipchenko, L.V.3
  • 57
    • 80054712735 scopus 로고    scopus 로고
    • Effective fragment potential study of the interaction of DNA bases
    • Smith QA, Gordon MS, Slipchenko LV. 2011. Effective fragment potential study of the interaction of DNA bases. J. Phys. Chem. A 115:11269-76
    • (2011) J. Phys. Chem. A , vol.115 , pp. 11269-11276
    • Smith, Q.A.1    Gordon, M.S.2    Slipchenko, L.V.3
  • 58
    • 84858021420 scopus 로고    scopus 로고
    • Intermolecular interactions in complex liquids: Effective fragment potential investigation of water-tert-butanol mixtures
    • Hands MD, Slipchenko LV. 2012. Intermolecular interactions in complex liquids: effective fragment potential investigation of water-tert-butanol mixtures. J. Phys. Chem. B 116:2775-86
    • (2012) J. Phys. Chem. B , vol.116 , pp. 2775-2786
    • Hands, M.D.1    Slipchenko, L.V.2
  • 59
    • 63849190874 scopus 로고    scopus 로고
    • Water-benzene interactions: An effective fragment potential and correlated quantum chemistry study
    • Slipchenko LV, Gordon MS. 2009. Water-benzene interactions: an effective fragment potential and correlated quantum chemistry study. J. Phys. Chem. A 113:2092-102
    • (2009) J. Phys. Chem. A , vol.113 , pp. 2092-2102
    • Slipchenko, L.V.1    Gordon, M.S.2
  • 60
    • 85073165638 scopus 로고    scopus 로고
    • Coarse-grained intermolecular potentials derived from the effective fragment potential: Application to water, benzene, and carbon tetrachloride
    • ed.DMYork, T-S Lee New York Springer
    • Pranami G, Slipchenko L, Lamm MH, Gordon MS. 2009. Coarse-grained intermolecular potentials derived from the effective fragment potential: application to water, benzene, and carbon tetrachloride. In Multi-Scale Quantum Models for Biocatalysis, ed.DMYork, T-S Lee, pp. 197-218. New York: Springer
    • (2009) Multi-Scale Quantum Models for Biocatalysis , pp. 197-218
    • Pranami, G.1    Slipchenko, L.2    Lamm, M.H.3    Gordon, M.S.4
  • 61
    • 84865074490 scopus 로고    scopus 로고
    • Accurate prediction of non-covalent interaction energies with the effective fragment potential method: Comparison of energy components to symmetry-adapted perturbation theory for the S22 test set
    • Flick JC, Kosenkov D, Hohenstein EG, Sherrill CD, Slipchenko LV. 2012. Accurate prediction of non-covalent interaction energies with the effective fragment potential method: comparison of energy components to symmetry-adapted perturbation theory for the S22 test set. J Chem. Theory Comput. 8:2835-43
    • (2012) J Chem. Theory Comput. , vol.8 , pp. 2835-2843
    • Flick, J.C.1    Kosenkov, D.2    Hohenstein, E.G.3    Sherrill, C.D.4    Slipchenko, L.V.5
  • 63
    • 84862180062 scopus 로고    scopus 로고
    • Efficient calculations of dispersion energies for nanoscale systems from coupled density response functions
    • Podeszwa R, Cencek W, Szalewicz K. 2012. Efficient calculations of dispersion energies for nanoscale systems from coupled density response functions. J. Chem. Theory Comput. 8:1963-69
    • (2012) J. Chem. Theory Comput. , vol.8 , pp. 1963-1969
    • Podeszwa, R.1    Cencek, W.2    Szalewicz, K.3
  • 64
    • 34547555267 scopus 로고    scopus 로고
    • Charge transfer interaction in the effective fragment potential method
    • Li H, Gordon MS, Jensen JH. 2006. Charge transfer interaction in the effective fragment potential method. J. Chem. Phys. 124:214108
    • (2006) J. Chem. Phys. , vol.124 , pp. 214108
    • Li, H.1    Gordon, M.S.2    Jensen, J.H.3
  • 66
    • 77949266021 scopus 로고    scopus 로고
    • Exchange repulsion between effective fragment potentials and ab initio molecules
    • Kemp D, Rintelman J, Gordon M, Jensen J. 2010. Exchange repulsion between effective fragment potentials and ab initio molecules. Theor. Chem. Acc. 125:481-91
    • (2010) Theor. Chem. Acc. , vol.125 , pp. 481-491
    • Kemp, D.1    Rintelman, J.2    Gordon, M.3    Jensen, J.4
  • 67
    • 84863527821 scopus 로고    scopus 로고
    • The dispersion interaction between quantum mechanics and effective fragment potential molecules
    • Smith QA, Ruedenberg K, Gordon MS, Slipchenko LV. 2012. The dispersion interaction between quantum mechanics and effective fragment potential molecules. J. Chem. Phys. 136:244107
    • (2012) J. Chem. Phys. , vol.136 , pp. 244107
    • Smith, Q.A.1    Ruedenberg, K.2    Gordon, M.S.3    Slipchenko, L.V.4
  • 69
    • 84885102778 scopus 로고    scopus 로고
    • Advances in electronic structure theory: GAMESS a decade later
    • ed. CE Dykstra, G Frenking, KS Kim, GE Scuseria Amsterdam, Elsevier
    • Gordon MS, Schmidt MW. 2005. Advances in electronic structure theory: GAMESS a decade later. In Theory and Applications of Computational Chemistry, ed. CE Dykstra, G Frenking, KS Kim, GE Scuseria, pp. 1167-89. Amsterdam: Elsevier
    • (2005) Theory and Applications of Computational Chemistry , pp. 1167-1189
    • Gordon, M.S.1    Schmidt, M.W.2
  • 70
    • 0001414996 scopus 로고    scopus 로고
    • Q-Chem 2.0: A high-performance ab initio electronic structure program package
    • Kong J, White CA, Krylov AI, Sherrill D, Adamson RD, et al. 2000. Q-Chem 2.0: A high-performance ab initio electronic structure program package. J. Comput. Chem. 21:1532-48
    • (2000) J. Comput. Chem. , vol.21 , pp. 1532-1548
    • Kong, J.1    White, C.A.2    Krylov, A.I.3    Sherrill, D.4    Adamson, R.D.5
  • 71
    • 33746563448 scopus 로고    scopus 로고
    • Advances in methods and algorithms in a modern quantum chemistry program package
    • Shao Y,Molnar LF, Jung Y, Kussmann J, Ochsenfeld C, et al. 2006. Advances in methods and algorithms in a modern quantum chemistry program package. Phys. Chem. Chem. Phys. 8:3172-91
    • (2006) Phys. Chem. Chem. Phys. , vol.8 , pp. 3172-3191
    • Shao Ymolnar, L.F.1    Jung, Y.2    Kussmann, J.3    Ochsenfeld, C.4
  • 72
    • 0038391194 scopus 로고
    • Effective fragment method for modeling intermolecular hydrogen-bonding effects on quantum-mechanical calculations
    • Jensen JH, Day PN, Gordon MS, Basch H, Cohen D, et al. 1994. Effective fragment method for modeling intermolecular hydrogen-bonding effects on quantum-mechanical calculations. ACS Symp. Ser. 569:139-51
    • (1994) ACS Symp. Ser. , vol.569 , pp. 139-151
    • Jensen, J.H.1    Day, P.N.2    Gordon, M.S.3    Basch, H.4    Cohen, D.5
  • 73
    • 79951522167 scopus 로고    scopus 로고
    • Implementation of the analytic energy gradient for the combined time-dependent density functional theory/effective fragment potential method: Application to excited-state molecular dynamics simulations
    • Minezawa N, Silva ND, Zahariev F, Gordon MS. 2011. Implementation of the analytic energy gradient for the combined time-dependent density functional theory/effective fragment potential method: application to excited-state molecular dynamics simulations. J. Chem. Phys. 134:054111
    • (2011) J. Chem. Phys. , vol.134 , pp. 054111
    • Minezawa, N.1    Silva, N.D.2    Zahariev, F.3    Gordon, M.S.4
  • 75
    • 84655171824 scopus 로고    scopus 로고
    • Fragmentation methods: A route to accurate calculations on large systems
    • Gordon MS, Fedorov DG, Pruitt SR, Slipchenko LV. 2011. Fragmentation methods: A route to accurate calculations on large systems. Chem. Rev. 112:632-72
    • (2011) Chem. Rev. , vol.112 , pp. 632-672
    • Gordon, M.S.1    Fedorov, D.G.2    Pruitt, S.R.3    Slipchenko, L.V.4
  • 76
    • 33845312676 scopus 로고    scopus 로고
    • Gradients of the polarization energy in the effective fragment potential method
    • Li H, Netzloff HM, Gordon MS. 2006. Gradients of the polarization energy in the effective fragment potential method. J. Chem. Phys. 125:194103
    • (2006) J. Chem. Phys. , vol.125 , pp. 194103
    • Li, H.1    Netzloff, H.M.2    Gordon, M.S.3
  • 78
    • 23444454124 scopus 로고    scopus 로고
    • Dynamic polarizability, dispersion coefficient C6 and dispersion energy in the effective fragment potential method
    • Adamovic I, Gordon MS. 2005. Dynamic polarizability, dispersion coefficient C6 and dispersion energy in the effective fragment potential method. Mol. Phys. 103:379-87
    • (2005) Mol. Phys. , vol.103 , pp. 379-387
    • Adamovic, I.1    Gordon, M.S.2
  • 79
    • 0000194090 scopus 로고    scopus 로고
    • Evaluation of charge penetration between distributed multipolar expansions
    • Freitag MA, Gordon MS, Jensen JH, Stevens WJ. 2000. Evaluation of charge penetration between distributed multipolar expansions. J. Chem. Phys. 112:7300-6
    • (2000) J. Chem. Phys. , vol.112 , pp. 7300-7306
    • Freitag, M.A.1    Gordon, M.S.2    Jensen, J.H.3    Stevens, W.J.4
  • 80
    • 0000106210 scopus 로고    scopus 로고
    • An approximate formula for the intermolecular Pauli repulsion between closed shell molecules
    • Jensen JH, Gordon MS. 1996. An approximate formula for the intermolecular Pauli repulsion between closed shell molecules. Mol. Phys. 89:1313-25
    • (1996) Mol. Phys. , vol.89 , pp. 1313-1325
    • Jensen, J.H.1    Gordon, M.S.2
  • 81
    • 0000485819 scopus 로고    scopus 로고
    • An approximate formula for the intermolecular Pauli repulsion between closed shell molecules. II. Application to the effective fragment potential method
    • Jensen JH, Gordon MS. 1998. An approximate formula for the intermolecular Pauli repulsion between closed shell molecules. II. Application to the effective fragment potential method. J. Chem. Phys. 108:4772-82
    • (1998) J. Chem. Phys. , vol.108 , pp. 4772-4782
    • Jensen, J.H.1    Gordon, M.S.2
  • 82
    • 0035932855 scopus 로고    scopus 로고
    • Intermolecular exchange-induction and charge transfer: Derivation of approximate formulas using nonorthogonal localized molecular orbitals
    • Jensen JH. 2001. Intermolecular exchange-induction and charge transfer: derivation of approximate formulas using nonorthogonal localized molecular orbitals. J. Chem. Phys. 114:8775-83
    • (2001) J. Chem. Phys. , vol.114 , pp. 8775-8783
    • Jensen, J.H.1
  • 83
    • 33947448345 scopus 로고
    • Molecular compunds and their spectra. 2
    • Mulliken RS. 1952. Molecular compunds and their spectra. 2. J. Am. Chem. Soc. 74:811-24
    • (1952) J. Am. Chem. Soc. , vol.74 , pp. 811-824
    • Mulliken, R.S.1
  • 84
    • 79957621096 scopus 로고    scopus 로고
    • Unveiling electron promiscuity
    • Ben-Amotz D. 2011. Unveiling electron promiscuity. J. Phys. Chem. Lett. 2:1216-22
    • (2011) J. Phys. Chem. Lett. , vol.2 , pp. 1216-1222
    • Ben-Amotz, D.1
  • 85
    • 75749094385 scopus 로고    scopus 로고
    • Polarization and charge transfer in the hydration of chloride ions
    • Zhao Z, Rogers DM, Beck TL. 2010. Polarization and charge transfer in the hydration of chloride ions. J. Chem. Phys. 132:014502
    • (2010) J. Chem. Phys. , vol.132 , pp. 014502
    • Zhao, Z.1    Rogers, D.M.2    Beck, T.L.3
  • 86
    • 47049131893 scopus 로고    scopus 로고
    • Charge transfer andOHvibrational frequency red shifts in nitratewater clusters
    • Ramesh SG, Re SY, Hynes JT. 2008. Charge transfer andOHvibrational frequency red shifts in nitratewater clusters. J. Phys. Chem. A 112:3391-98
    • (2008) J. Phys. Chem. A , vol.112 , pp. 3391-3398
    • Ramesh, S.G.1    Re, S.Y.2    Hynes, J.T.3
  • 87
    • 33645662402 scopus 로고    scopus 로고
    • Effects of cations on the hydrogen bond network of liquid water: New results from X-ray absorption spectroscopy of liquid microjets
    • Cappa CD, Smith JD, Messer BM, Cohen RC, Saykally RJ. 2006. Effects of cations on the hydrogen bond network of liquid water: new results from X-ray absorption spectroscopy of liquid microjets. J. Phys. Chem. B 110:5301-9
    • (2006) J. Phys. Chem. B , vol.110 , pp. 5301-5309
    • Cappa, C.D.1    Smith, J.D.2    Messer, B.M.3    Cohen, R.C.4    Saykally, R.J.5
  • 88
    • 0037168354 scopus 로고    scopus 로고
    • Isolating the charge-transfer component of the anionic H bond via spin suppression of the intracluster proton transfer reaction in the NO·H2O entrance channel complex
    • RobertsonWH, Johnson MA,MyshakinEM, Jordan KD. 2002. Isolating the charge-transfer component of the anionic H bond via spin suppression of the intracluster proton transfer reaction in the NO·H2O entrance channel complex. J. Phys. Chem. A 106:10010-14
    • (2002) J. Phys. Chem. A , vol.106 , pp. 10010-10014
    • Robertson, W.H.1    Johnson, M.A.2    Myshakin, E.M.3    Jordan, K.D.4
  • 89
    • 0034608960 scopus 로고    scopus 로고
    • Frequency shifts in the hydrogen-bonded OH stretch in halide-water clusters: The importance of charge transfer
    • Thompson WH, Hynes JT. 2000. Frequency shifts in the hydrogen-bonded OH stretch in halide-water clusters: The importance of charge transfer. J. Am. Chem. Soc. 122:6278-86
    • (2000) J. Am. Chem. Soc. , vol.122 , pp. 6278-6286
    • Thompson, W.H.1    Hynes, J.T.2
  • 90
    • 84875795629 scopus 로고    scopus 로고
    • The effects of charge transfer on the properties of liquid water
    • Lee AJ, Rick SW. 2011. The effects of charge transfer on the properties of liquid water. J. Chem. Phys. 134:184507
    • (2011) J. Chem. Phys. , vol.134 , pp. 184507
    • Lee, A.J.1    Rick, S.W.2
  • 91
    • 79959882215 scopus 로고    scopus 로고
    • The orientation and charge of water at the hydrophobic oil droplet-water interface
    • Vacha R, Rick SW, Jungwirth P, de Beer AGF, de Aguiar HB, et al. 2011. The orientation and charge of water at the hydrophobic oil droplet-water interface. J. Am. Chem. Soc. 133:10204-10
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 10204-10210
    • Vacha, R.1    Rick, S.W.2    Jungwirth, P.3    De Beer Agf4    De Aguiar, H.B.5
  • 93
    • 0017100947 scopus 로고
    • Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme
    • Warshel A, LevittM. 1976. Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J. Mol. Biol. 103:227-49
    • (1976) J. Mol. Biol. , vol.103 , pp. 227-249
    • Warshel, A.1    Levitt, M.2
  • 94
    • 0000357781 scopus 로고
    • Calculations of chemical processes in solutions
    • Warshel A. 1979. Calculations of chemical processes in solutions. J. Phys. Chem. 83:1640-52
    • (1979) J. Phys. Chem. , vol.83 , pp. 1640-1652
    • Warshel, A.1
  • 95
    • 0000420301 scopus 로고
    • Microscopic calculations of solvent effects on absorption spectra of conjugated molecules
    • Luzhkov V, Warshel A. 1991. Microscopic calculations of solvent effects on absorption spectra of conjugated molecules. J. Am. Chem. Soc. 113:4491-99
    • (1991) J. Am. Chem. Soc. , vol.113 , pp. 4491-4499
    • Luzhkov, V.1    Warshel, A.2
  • 96
    • 0001491955 scopus 로고    scopus 로고
    • Hybrid quantum and molecular mechanical simulations: An alternative avenue to solvent effects in organic chemistry
    • Gao J. 1996. Hybrid quantum and molecular mechanical simulations: an alternative avenue to solvent effects in organic chemistry. Acc. Chem. Res. 29:298-305
    • (1996) Acc. Chem. Res. , vol.29 , pp. 298-305
    • Gao, J.1
  • 97
    • 36049038877 scopus 로고    scopus 로고
    • Solvatochromic shifts of the n → π transition of acetone from steam vapor to ambient aqueous solution: A combined configuration interaction QM/MM simulation study incorporating solvent polarization
    • Lin YL, Gao JL. 2007. Solvatochromic shifts of the n → π transition of acetone from steam vapor to ambient aqueous solution: A combined configuration interaction QM/MM simulation study incorporating solvent polarization. J. Chem. Theory Comput. 3:1484-93
    • (2007) J. Chem. Theory Comput. , vol.3 , pp. 1484-1493
    • Lin, Y.L.1    Gao, J.L.2
  • 98
    • 0031490976 scopus 로고    scopus 로고
    • Solvent effects on the n → π transition of pyrimidine in aqueous solution
    • Gao JL, Byun K. 1997. Solvent effects on the n → π transition of pyrimidine in aqueous solution. Theor. Chem. Acc. 96:151-56
    • (1997) Theor. Chem. Acc. , vol.96 , pp. 151-156
    • Gao, J.L.1    Byun, K.2
  • 99
    • 0000151568 scopus 로고
    • Excited states of the bacteriochlorophyll-b dimer of Rhodopseudomonas viridis: A QM/MM study of the photosynthetic reaction center that includes MM polarization
    • Thompson MA, Schenter GK. 1995. Excited states of the bacteriochlorophyll-b dimer of Rhodopseudomonas viridis: A QM/MM study of the photosynthetic reaction center that includes MM polarization. J. Phys. Chem. 99:6374-86
    • (1995) J. Phys. Chem. , vol.99 , pp. 6374-6386
    • Thompson, M.A.1    Schenter, G.K.2
  • 100
    • 0035828026 scopus 로고    scopus 로고
    • The combinedmulticonfigurational self-consistent-field/molecular mechanics wave function approach
    • PoulsenTD, Kongsted J, Osted A, Ogilby PR, Mikkelsen KV. 2001. The combinedmulticonfigurational self-consistent-field/molecular mechanics wave function approach. J. Chem. Phys. 115:2393-400
    • (2001) J. Chem. Phys. , vol.115 , pp. 2393-2400
    • Poulsen, T.D.1    Kongsted, J.2    Osted, A.3    Ogilby, P.R.4    Mikkelsen, K.V.5
  • 101
    • 0037020056 scopus 로고    scopus 로고
    • Dipole and quadrupole moments of liquid water calculated within the coupled cluster/molecular mechanics method
    • Kongsted J, Osted A, Mikkelsen KV, Christiansen O. 2002. Dipole and quadrupole moments of liquid water calculated within the coupled cluster/molecular mechanics method. Chem. Phys. Lett. 364:379-86
    • (2002) Chem. Phys. Lett. , vol.364 , pp. 379-386
    • Kongsted, J.1    Osted, A.2    Mikkelsen, K.V.3    Christiansen, O.4
  • 102
    • 0037054682 scopus 로고    scopus 로고
    • The QM/MM approach for wavefunctions, energies and response functions within self-consistent field and coupled cluster theories
    • Kongsted J, Osted A, Mikkelsen KV, Christiansen O. 2002. The QM/MM approach for wavefunctions, energies and response functions within self-consistent field and coupled cluster theories. Mol. Phys. 100:1813-28
    • (2002) Mol. Phys. , vol.100 , pp. 1813-1828
    • Kongsted, J.1    Osted, A.2    Mikkelsen, K.V.3    Christiansen, O.4
  • 103
    • 0037460275 scopus 로고    scopus 로고
    • Linear response functions for coupled cluster/molecular mechanics including polarization interactions
    • Kongsted J, Osted A, Mikkelsen KV, Christiansen O. 2003. Linear response functions for coupled cluster/molecular mechanics including polarization interactions. J. Chem. Phys. 118:1620-33
    • (2003) J. Chem. Phys. , vol.118 , pp. 1620-1633
    • Kongsted, J.1    Osted, A.2    Mikkelsen, K.V.3    Christiansen, O.4
  • 104
    • 84961972930 scopus 로고    scopus 로고
    • Coupled cluster calculation of the n→π electronic transition of acetone in aqueous solution
    • Aidas K, Kongsted J, Osted A, Mikkelsen KV, Christiansen O. 2005. Coupled cluster calculation of the n→π electronic transition of acetone in aqueous solution. J. Phys. Chem. A 109:8001-10
    • (2005) J. Phys. Chem. A , vol.109 , pp. 8001-8010
    • Aidas, K.1    Kongsted, J.2    Osted, A.3    Mikkelsen, K.V.4    Christiansen, O.5
  • 105
    • 78349276203 scopus 로고    scopus 로고
    • QM/MM methodology: Fundamentals, scope, and limitations
    • ed. H Grotendorst Julich Ger: NIC
    • Thiel W. 2009. QM/MM methodology: fundamentals, scope, and limitations. In Multiscale Simulation Methods in Molecular Sciences, ed. H Grotendorst, pp. 203-14. Julich, Ger.: NIC
    • (2009) Multiscale Simulation Methods in Molecular Sciences , pp. 203-214
    • Thiel, W.1
  • 106
    • 79851480219 scopus 로고    scopus 로고
    • Solvent effects on the electronic transitions of p-nitroaniline: A QM/EFP study
    • Kosenkov D, Slipchenko LV. 2010. Solvent effects on the electronic transitions of p-nitroaniline: A QM/EFP study. J. Phys. Chem. A 115:392-401
    • (2010) J. Phys. Chem. A , vol.115 , pp. 392-401
    • Kosenkov, D.1    Slipchenko, L.V.2
  • 107
    • 84961982200 scopus 로고    scopus 로고
    • Solvation of the excited states of chromophores in polarizable environment: Orbital relaxation versus polarization
    • Slipchenko LV. 2010. Solvation of the excited states of chromophores in polarizable environment: orbital relaxation versus polarization. J. Phys. Chem. A 114:8824-30
    • (2010) J. Phys. Chem. A , vol.114 , pp. 8824-8830
    • Slipchenko, L.V.1
  • 108
    • 79959562988 scopus 로고    scopus 로고
    • The effect of solvation on vertical ionization energy of thymine: From microhydration to bulk
    • GhoshD, IsayevO, Slipchenko LV,Krylov AI. 2011. The effect of solvation on vertical ionization energy of thymine: from microhydration to bulk. J. Phys. Chem. A 115:6028-38
    • (2011) J. Phys. Chem. A , vol.115 , pp. 6028-6038
    • Ghosh, D.1    Isayev, O.2    Slipchenko, L.V.3    Krylov, A.I.4
  • 109
    • 67650733858 scopus 로고    scopus 로고
    • A combined effective fragment potential- fragment molecular orbital method. I. The energy expression and initial applications
    • Nagata T, Fedorov DG, Kitaura K, Gordon MS. 2009. A combined effective fragment potential- fragment molecular orbital method. I. The energy expression and initial applications. J. Chem. Phys. 131:024101
    • (2009) J. Chem. Phys. , vol.131 , pp. 024101
    • Nagata, T.1    Fedorov, D.G.2    Kitaura, K.3    Gordon, M.S.4
  • 110
    • 79551619581 scopus 로고    scopus 로고
    • A combined effective fragment potential-fragment molecular orbital method. II. Analytic gradient and application to the geometry optimization of solvated tetraglycine and chignolin
    • Nagata T, Fedorov DG, Sawada T, Kitaura K, Gordon MS. 2011. A combined effective fragment potential-fragment molecular orbital method. II. Analytic gradient and application to the geometry optimization of solvated tetraglycine and chignolin. J. Chem. Phys. 134:034110
    • (2011) J. Chem. Phys. , vol.134 , pp. 034110
    • Nagata, T.1    Fedorov, D.G.2    Sawada, T.3    Kitaura, K.4    Gordon, M.S.5
  • 111
    • 84962428822 scopus 로고    scopus 로고
    • Polarization energy gradients in combined quantum mechanics, effective fragment potential, and polarizable continuum model calculations
    • Li H, Gordon MS. 2007. Polarization energy gradients in combined quantum mechanics, effective fragment potential, and polarizable continuum model calculations. J. Chem. Phys. 126:124112
    • (2007) J. Chem. Phys. , vol.126 , pp. 124112
    • Li, H.1    Gordon, M.S.2
  • 114
    • 33744470857 scopus 로고    scopus 로고
    • Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs
    • Jurecka P, S poner J, C erny J, Hobza P. 2006. Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. Phys. Chem. Chem. Phys. 8:1985-93
    • (2006) Phys. Chem. Chem. Phys. , vol.8 , pp. 1985-1993
    • Jurecka, P.1    Sponer, J.2    Cerny, J.3    Hobza, P.4
  • 115
    • 80051662513 scopus 로고    scopus 로고
    • S66: A well-balanced database of benchmark interaction energies relevant to biomolecular structures
    • R ezaJ, Riley KE, Hobza P. 2011. S66: A well-balanced database of benchmark interaction energies relevant to biomolecular structures. J. Chem. Theory Comput. 7:2427-38
    • (2011) J. Chem. Theory Comput. , vol.7 , pp. 2427-2438
    • Reza, J.1    Riley, K.E.2    Hobza, P.3
  • 116
    • 26844534384 scopus 로고
    • Self-consistent molecular-orbital methods 0.20. Basis set for correlated wave functions
    • Krishnan R, Binkley JS, Seeger R, Pople JA. 1980. Self-consistent molecular-orbital methods 0.20. Basis set for correlated wave functions. J. Chem. Phys. 72:650-54
    • (1980) J. Chem. Phys. , vol.72 , pp. 650-654
    • Krishnan, R.1    Binkley, J.S.2    Seeger, R.3    Pople, J.A.4
  • 117
    • 84986468715 scopus 로고
    • Efficient diffuse function augmented basis sets for anion calculations 0.3. The 3-21+G basis set for 1st-row elements, Li-F
    • Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PV. 1983. Efficient diffuse function augmented basis sets for anion calculations 0.3. The 3-21+G basis set for 1st-row elements, Li-F. J. Comput. Chem. 4:294-301
    • (1983) J. Comput. Chem. , vol.4 , pp. 294-301
    • Clark, T.1    Chandrasekhar, J.2    Spitznagel, G.W.3    Schleyer, P.V.4
  • 118
    • 36549091139 scopus 로고
    • Self-consistent molecular-orbital methods 0.25. Supplementary functions for Gaussian basis sets
    • Frisch MJ, Pople JA, Binkley JS. 1984. Self-consistent molecular-orbital methods 0.25. Supplementary functions for Gaussian basis sets. J. Chem. Phys. 80:3265-69
    • (1984) J. Chem. Phys. , vol.80 , pp. 3265-3269
    • Frisch, M.J.1    Pople, J.A.2    Binkley, J.S.3
  • 119
    • 1542742144 scopus 로고    scopus 로고
    • Molecule intrinsicminimal basis sets. I. Exact resolution of ab initio optimized molecular orbitals in terms of deformed atomic minimal-basis orbitals
    • LuWC,WangCZ, SchmidtMW, Bytautas L,HoKM,RuedenbergK. 2004. Molecule intrinsicminimal basis sets. I. Exact resolution of ab initio optimized molecular orbitals in terms of deformed atomic minimal-basis orbitals. J. Chem. Phys. 120:2629-37
    • (2004) J. Chem. Phys. , vol.120 , pp. 2629-2637
    • Lu, W.C.1    Wang, C.Z.2    Schmidt, M.W.3    Bytautas, L.4    Hok, M.5    Ruedenberg, K.6
  • 120
    • 0037943839 scopus 로고
    • Frozen fragment reduced variational space analysis of hydrogen bonding interactions: Application to the water dimer
    • StevensWJ, Fink WH. 1987. Frozen fragment reduced variational space analysis of hydrogen bonding interactions: application to the water dimer. Chem. Phys. Lett. 139:15-22
    • (1987) Chem. Phys. Lett. , vol.139 , pp. 15-22
    • Stevens, W.J.1    Fink, W.H.2
  • 121
    • 27844483380 scopus 로고    scopus 로고
    • Energy recomposition analyses for many-body interaction and applications to water complexes
    • Chen W, Gordon MS. 1996. Energy recomposition analyses for many-body interaction and applications to water complexes. J. Phys. Chem. 100:14316-28
    • (1996) J. Phys. Chem. , vol.100 , pp. 14316-14328
    • Chen, W.1    Gordon, M.S.2
  • 122
    • 0004739802 scopus 로고    scopus 로고
    • Modeling intermolecular exchange integrals between nonorthogonal molecular orbitals
    • Jensen JH. 1996. Modeling intermolecular exchange integrals between nonorthogonal molecular orbitals. J. Chem. Phys. 104:7795-96
    • (1996) J. Chem. Phys. , vol.104 , pp. 7795-7796
    • Jensen, J.H.1
  • 124
    • 77955916844 scopus 로고    scopus 로고
    • Effective fragment molecular orbital method: A merger of the effective fragment potential and fragment molecular orbital methods
    • Steinmann C, Fedorov DG, Jensen JH. 2010. Effective fragment molecular orbital method: A merger of the effective fragment potential and fragment molecular orbital methods. J. Phys. Chem. A 114:8705-12
    • (2010) J. Phys. Chem. A , vol.114 , pp. 8705-8712
    • Steinmann, C.1    Fedorov, D.G.2    Jensen, J.H.3
  • 126
    • 66149156829 scopus 로고    scopus 로고
    • Hydrogen bonding and π-stacking: How reliable are force fields? A critical evaluation of force field descriptions of nonbonded interactions
    • Paton RS, Goodman JM. 2009. Hydrogen bonding and π-stacking: How reliable are force fields? A critical evaluation of force field descriptions of nonbonded interactions. J. Chem. Inf. Model. 49:944-55
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 944-955
    • Paton, R.S.1    Goodman, J.M.2
  • 128
    • 84987112033 scopus 로고
    • Reliable isotropic and anisotropic dipolar dispersion energies, evaluated using constrained dipole oscillator strength techniques, with application to interactions involving H2, N2, and the rare gases
    • Meath WJ, Kumar A. 1990. Reliable isotropic and anisotropic dipolar dispersion energies, evaluated using constrained dipole oscillator strength techniques, with application to interactions involving H2, N2, and the rare gases. Int. J. Quantum Chem. 38:501-20
    • (1990) Int. J. Quantum Chem. , vol.38 , pp. 501-520
    • Meath, W.J.1    Kumar, A.2
  • 129
    • 0000960929 scopus 로고
    • Density functional theory of time-dependent systems
    • ed. EKU Gross, RM Dreizler New York: Plenum
    • Gross EK, Ullrich CA, Gossmann UJ. 1995. Density functional theory of time-dependent systems. In Density Functional Theory, ed. EKU Gross, RM Dreizler, pp. 149-72. New York: Plenum
    • (1995) Density Functional Theory , pp. 149-172
    • Gross, E.K.1    Ullrich, C.A.2    Gossmann, U.J.3
  • 130
    • 33646387717 scopus 로고    scopus 로고
    • Specific ion effects at the air/water interface
    • Jungwirth P, Tobias DJ. 2006. Specific ion effects at the air/water interface. Chem. Rev. 106:1259-81
    • (2006) Chem. Rev. , vol.106 , pp. 1259-1281
    • Jungwirth, P.1    Tobias, D.J.2
  • 131
    • 12844249938 scopus 로고    scopus 로고
    • Electron spectroscopy of aqueous solution interfaces reveals surface enhancement of halides
    • Ghosal S, Hemminger JC, Bluhm H, Mun BS, Hebenstreit ELD, et al. 2005. Electron spectroscopy of aqueous solution interfaces reveals surface enhancement of halides. Science 307:563-66
    • (2005) Science , vol.307 , pp. 563-566
    • Ghosal, S.1    Hemminger, J.C.2    Bluhm, H.3    Mun, B.S.4    Hebenstreit, E.L.D.5
  • 132
    • 44649190403 scopus 로고    scopus 로고
    • Is the liquid water surface basic or acidic? Macroscopic versusmolecularscale investigations
    • Petersen PB, Saykally RJ. 2008. Is the liquid water surface basic or acidic? Macroscopic versusmolecularscale investigations. Chem. Phys. Lett. 458:255-61
    • (2008) Chem. Phys. Lett. , vol.458 , pp. 255-261
    • Petersen, P.B.1    Saykally, R.J.2
  • 133
    • 65249102887 scopus 로고    scopus 로고
    • Water structure at the air-aqueous interface of divalent cation and nitrate solutions
    • Xu M, Spinney R, Allen HC. 2009. Water structure at the air-aqueous interface of divalent cation and nitrate solutions. J. Phys. Chem. B 113:4102-10
    • (2009) J. Phys. Chem. B , vol.113 , pp. 4102-4110
    • Xu, M.1    Spinney, R.2    Allen, H.C.3
  • 135
    • 67449084506 scopus 로고    scopus 로고
    • Dewetting and hydrophobic interaction in physical and biological systems
    • Berne BJ, Weeks JD, Zhou RH. 2009. Dewetting and hydrophobic interaction in physical and biological systems. Annu. Rev. Phys. Chem. 60:85-103
    • (2009) Annu. Rev. Phys. Chem. , vol.60 , pp. 85-103
    • Berne, B.J.1    Weeks, J.D.2    Zhou, R.H.3
  • 136
    • 77954319021 scopus 로고    scopus 로고
    • Does the hydrated electron occupy a cavity?
    • Larsen RE,Glover WJ, Schwartz BJ. 2010. Does the hydrated electron occupy a cavity? Science 329:65-69
    • (2010) Science , vol.329 , pp. 65-69
    • Larsen Reglover, W.J.1    Schwartz, B.J.2
  • 137
    • 77949638476 scopus 로고    scopus 로고
    • Vibrational spectroscopy as a probe of structure and dynamics in liquid water
    • Bakker HJ, Skinner JL. 2010. Vibrational spectroscopy as a probe of structure and dynamics in liquid water. Chem. Rev. 110:1498-517
    • (2010) Chem. Rev. , vol.110 , pp. 1498-1517
    • Bakker, H.J.1    Skinner, J.L.2
  • 138
    • 78951476403 scopus 로고    scopus 로고
    • Nature's most squishy ion: The important role of solvent polarization in the description of the hydrated electron
    • Herbert JM, Jacobson LD. 2011. Nature's most squishy ion: The important role of solvent polarization in the description of the hydrated electron. Int. Rev. Phys. Chem. 30:1-48
    • (2011) Int. Rev. Phys. Chem. , vol.30 , pp. 1-48
    • Herbert, J.M.1    Jacobson, L.D.2
  • 139
    • 33748630760 scopus 로고    scopus 로고
    • Natural energy decomposition analysis: The linear response electrical self energy
    • Schenter GK, Glendening ED. 1996. Natural energy decomposition analysis: The linear response electrical self energy. J. Phys. Chem. 100:17152-56
    • (1996) J. Phys. Chem. , vol.100 , pp. 17152-17156
    • Schenter, G.K.1    Glendening, E.D.2
  • 140
    • 30344476109 scopus 로고    scopus 로고
    • Natural energy decomposition analysis: Extension to density functional methods and analysis of cooperative effects in water clusters
    • Glendening ED. 2005. Natural energy decomposition analysis: extension to density functional methods and analysis of cooperative effects in water clusters. J. Phys. Chem. A 109:11936-40
    • (2005) J. Phys. Chem. A , vol.109 , pp. 11936-11940
    • Glendening, E.D.1
  • 141
    • 75749150144 scopus 로고    scopus 로고
    • A second generation distributed point polarizable water model
    • Kumar R,Wang F-F, Jenness GR, Jordan KD. 2010. A second generation distributed point polarizable water model. J. Chem. Phys. 132:014309
    • (2010) J. Chem. Phys. , vol.132 , pp. 014309
    • Kumar Rwang, F.-F.1    Jenness, G.R.2    Jordan, K.D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.