-
1
-
-
84892961071
-
-
[Internet], International Agency for Research on Cancer, Lyon, France, Available at:
-
Ferlay J., Soerjomantaram I., Ervik M., et al. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC Cancer Base No. 11 2013, [Internet], International Agency for Research on Cancer, Lyon, France, Available at:. http://globocan.iarc.fr.
-
(2013)
GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC Cancer Base No. 11
-
-
Ferlay, J.1
Soerjomantaram, I.2
Ervik, M.3
-
2
-
-
0347444723
-
MicroRNAs: genomics, biogenesis, mechanism, and function
-
Bartel D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116:281-297.
-
(2004)
Cell
, vol.116
, pp. 281-297
-
-
Bartel, D.P.1
-
4
-
-
39749110083
-
Small non-coding RNAs in animal development
-
Stefani G., Slack F.J. Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 2008, 9:219-230.
-
(2008)
Nat Rev Mol Cell Biol
, vol.9
, pp. 219-230
-
-
Stefani, G.1
Slack, F.J.2
-
5
-
-
58849163959
-
MicroRNAs: key regulators of stem cells
-
Gangaraju V.K., Lin H. MicroRNAs: key regulators of stem cells. Nat Rev Mol Cell Biol 2009, 10:116-125.
-
(2009)
Nat Rev Mol Cell Biol
, vol.10
, pp. 116-125
-
-
Gangaraju, V.K.1
Lin, H.2
-
6
-
-
74249084440
-
MiR-15a and miR-16-1 in cancer: discovery, function and future perspectives
-
Aqeilan R.I., Calin G.A., Croce C.M. miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ 2010, 17:215-220.
-
(2010)
Cell Death Differ
, vol.17
, pp. 215-220
-
-
Aqeilan, R.I.1
Calin, G.A.2
Croce, C.M.3
-
7
-
-
84867401829
-
Androgen-regulated miR-32 targets BTG2 and is overexpressed in castration-resistant prostate cancer
-
Jalava S.E., Urbanucci A., Latonen L., et al. Androgen-regulated miR-32 targets BTG2 and is overexpressed in castration-resistant prostate cancer. Oncogene 2012, 31:4460-4471.
-
(2012)
Oncogene
, vol.31
, pp. 4460-4471
-
-
Jalava, S.E.1
Urbanucci, A.2
Latonen, L.3
-
8
-
-
77954661057
-
The functional significance of microRNA-145 in prostate cancer
-
Zaman M.S., Chen Y., Deng G., et al. The functional significance of microRNA-145 in prostate cancer. Br J Cancer 2010, 103:256-264.
-
(2010)
Br J Cancer
, vol.103
, pp. 256-264
-
-
Zaman, M.S.1
Chen, Y.2
Deng, G.3
-
9
-
-
70349750196
-
MiR-21: an androgen receptor-regulated microRNA that promotes hormone-dependent and hormone-independent prostate cancer growth
-
Ribas J., Ni X., Haffner M., et al. miR-21: an androgen receptor-regulated microRNA that promotes hormone-dependent and hormone-independent prostate cancer growth. Cancer Res 2009, 69:7165-7169.
-
(2009)
Cancer Res
, vol.69
, pp. 7165-7169
-
-
Ribas, J.1
Ni, X.2
Haffner, M.3
-
10
-
-
33144490646
-
AmicroRNA expression signature of human solid tumors defines cancer gene targets
-
Volinia S., Calin G.A., Liu C.-G., et al. AmicroRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 2006, 103:2257-2261.
-
(2006)
Proc Natl Acad Sci U S A
, vol.103
, pp. 2257-2261
-
-
Volinia, S.1
Calin, G.A.2
Liu, C.-G.3
-
11
-
-
34447132924
-
MicroRNA expression profiling in prostate cancer
-
Porkka K.P., Pfeiffer M.J., Waltering K.K., et al. MicroRNA expression profiling in prostate cancer. Cancer Res 2007, 67:6130-6135.
-
(2007)
Cancer Res
, vol.67
, pp. 6130-6135
-
-
Porkka, K.P.1
Pfeiffer, M.J.2
Waltering, K.K.3
-
12
-
-
51049123624
-
Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer
-
Ambs S., Prueitt R.L., Yi M., et al. Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res 2008, 68:6162-6170.
-
(2008)
Cancer Res
, vol.68
, pp. 6162-6170
-
-
Ambs, S.1
Prueitt, R.L.2
Yi, M.3
-
13
-
-
0030844906
-
Allelic loss on chromosome 13q in human prostate carcinoma
-
Melamed J., Einhorn J.M., Ittmann M.M. Allelic loss on chromosome 13q in human prostate carcinoma. Clin Cancer Res 1997, 3:1867-1872.
-
(1997)
Clin Cancer Res
, vol.3
, pp. 1867-1872
-
-
Melamed, J.1
Einhorn, J.M.2
Ittmann, M.M.3
-
14
-
-
14444267766
-
Identification of two distinct deleted regions on chromosome 13 in prostate cancer
-
Li C., Larsson C., Futreal A. Identification of two distinct deleted regions on chromosome 13 in prostate cancer. Oncogene 1998, 16:481-487.
-
(1998)
Oncogene
, vol.16
, pp. 481-487
-
-
Li, C.1
Larsson, C.2
Futreal, A.3
-
15
-
-
55549114664
-
The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities
-
Bonci D., Coppola V., Musumeci M., et al. The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med 2008, 14:1271-1277.
-
(2008)
Nat Med
, vol.14
, pp. 1271-1277
-
-
Bonci, D.1
Coppola, V.2
Musumeci, M.3
-
16
-
-
29244446792
-
Wnt proteins prevent apoptosis of both uncommitted osteoblast progenitors and differentiated osteoblasts by beta-catenin-dependent and -independent signaling cascades involving Src/ERK and phosphatidylinositol 3-kinase/AKT
-
Almeida M., Han L., Bellido T., et al. Wnt proteins prevent apoptosis of both uncommitted osteoblast progenitors and differentiated osteoblasts by beta-catenin-dependent and -independent signaling cascades involving Src/ERK and phosphatidylinositol 3-kinase/AKT. JBiol Chem 2005, 280:41342-41351.
-
(2005)
JBiol Chem
, vol.280
, pp. 41342-41351
-
-
Almeida, M.1
Han, L.2
Bellido, T.3
-
17
-
-
74149083873
-
Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes
-
Takeshita F., Patrawala L., Osaki M., et al. Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Mol Ther 2010, 18:181-187.
-
(2010)
Mol Ther
, vol.18
, pp. 181-187
-
-
Takeshita, F.1
Patrawala, L.2
Osaki, M.3
-
18
-
-
80054032535
-
Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer
-
Musumeci M., Coppola V., Addario A., et al. Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer. Oncogene 2011, 30:4231-4242.
-
(2011)
Oncogene
, vol.30
, pp. 4231-4242
-
-
Musumeci, M.1
Coppola, V.2
Addario, A.3
-
19
-
-
34250851115
-
AmicroRNA component of the p53 tumour suppressor network
-
He L., He X., Lim L.P., et al. AmicroRNA component of the p53 tumour suppressor network. Nature 2007, 447:1130-1134.
-
(2007)
Nature
, vol.447
, pp. 1130-1134
-
-
He, L.1
He, X.2
Lim, L.P.3
-
20
-
-
34547458550
-
P53-mediated activation of miRNA34 candidate tumor-suppressor genes
-
Bommer G.T., Gerin I., Feng Y., et al. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 2007, 17:1298-1307.
-
(2007)
Curr Biol
, vol.17
, pp. 1298-1307
-
-
Bommer, G.T.1
Gerin, I.2
Feng, Y.3
-
21
-
-
34249812122
-
MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells
-
Welch C., Chen Y., Stallings R.L. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 2007, 26:5017-5022.
-
(2007)
Oncogene
, vol.26
, pp. 5017-5022
-
-
Welch, C.1
Chen, Y.2
Stallings, R.L.3
-
22
-
-
42349098965
-
The quest for the 1p36 tumor suppressor
-
Bagchi A., Mills A.A. The quest for the 1p36 tumor suppressor. Cancer Res 2008, 68:2551-2556.
-
(2008)
Cancer Res
, vol.68
, pp. 2551-2556
-
-
Bagchi, A.1
Mills, A.A.2
-
23
-
-
84863050461
-
Epigenetic silencing of miR-34a in human prostate cancer cells and tumor tissue specimens can be reversed by BR-DIM treatment
-
Kong D., Heath E., Chen W., et al. Epigenetic silencing of miR-34a in human prostate cancer cells and tumor tissue specimens can be reversed by BR-DIM treatment. Am J Transl Res 2012, 4:14-23.
-
(2012)
Am J Transl Res
, vol.4
, pp. 14-23
-
-
Kong, D.1
Heath, E.2
Chen, W.3
-
24
-
-
84868011894
-
Inactivation of AR and Notch-1 signaling by miR-34a attenuates prostate cancer aggressiveness
-
Kashat M., Azzouz L., Sarkar S.H., et al. Inactivation of AR and Notch-1 signaling by miR-34a attenuates prostate cancer aggressiveness. Am J Transl Res 2012, 4:432-442.
-
(2012)
Am J Transl Res
, vol.4
, pp. 432-442
-
-
Kashat, M.1
Azzouz, L.2
Sarkar, S.H.3
-
25
-
-
54449092239
-
Effects of miR-34a on cell growth and chemoresistance in prostate cancer PC3 cells
-
Fujita Y., Kojima K., Hamada N., et al. Effects of miR-34a on cell growth and chemoresistance in prostate cancer PC3 cells. Biochem Biophys Res Commun 2008, 377:114-119.
-
(2008)
Biochem Biophys Res Commun
, vol.377
, pp. 114-119
-
-
Fujita, Y.1
Kojima, K.2
Hamada, N.3
-
26
-
-
79952205258
-
Systematic analysis of microRNAs targeting the androgen receptor in prostate cancer cells
-
Östling P., Leivonen S.K., Aakula A., et al. Systematic analysis of microRNAs targeting the androgen receptor in prostate cancer cells. Cancer Res 2011, 71:1956-1967.
-
(2011)
Cancer Res
, vol.71
, pp. 1956-1967
-
-
Östling, P.1
Leivonen, S.K.2
Aakula, A.3
-
27
-
-
79953320228
-
New strategies in metastatic prostate cancer: targeting the androgen receptor signaling pathway
-
Attard G., Richards J., de Bono J.S. New strategies in metastatic prostate cancer: targeting the androgen receptor signaling pathway. Clin Cancer Res 2011, 17:1649-1657.
-
(2011)
Clin Cancer Res
, vol.17
, pp. 1649-1657
-
-
Attard, G.1
Richards, J.2
de Bono, J.S.3
-
28
-
-
49749151009
-
MicroRNA-34 mediates AR-dependent p53-induced apoptosis in prostate cancer
-
Rokhlin O.W., Scheinker V.S., Taghiyev A.F., et al. MicroRNA-34 mediates AR-dependent p53-induced apoptosis in prostate cancer. Cancer Biol Ther 2008, 7:1288-1296.
-
(2008)
Cancer Biol Ther
, vol.7
, pp. 1288-1296
-
-
Rokhlin, O.W.1
Scheinker, V.S.2
Taghiyev, A.F.3
-
30
-
-
77956989411
-
MiR-34a attenuates paclitaxel-resistance of hormone-refractory prostate cancer PC3 cells through direct and indirect mechanisms
-
Kojima K., Fujita Y., Nozawa Y., et al. MiR-34a attenuates paclitaxel-resistance of hormone-refractory prostate cancer PC3 cells through direct and indirect mechanisms. Prostate 2010, 70:1501-1512.
-
(2010)
Prostate
, vol.70
, pp. 1501-1512
-
-
Kojima, K.1
Fujita, Y.2
Nozawa, Y.3
-
31
-
-
49749126791
-
Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer
-
Lodygin D., Tarasov V., Epanchintsev A., et al. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle 2008, 7:2591-2600.
-
(2008)
Cell Cycle
, vol.7
, pp. 2591-2600
-
-
Lodygin, D.1
Tarasov, V.2
Epanchintsev, A.3
-
32
-
-
84855334413
-
MicroRNA-34a modulates c-Myc transcriptional complexes to suppress malignancy in human prostate cancer cells
-
Yamamura S., Saini S., Majid S., et al. MicroRNA-34a modulates c-Myc transcriptional complexes to suppress malignancy in human prostate cancer cells. PLoS One 2012, 7:e29722.
-
(2012)
PLoS One
, vol.7
, pp. e29722
-
-
Yamamura, S.1
Saini, S.2
Majid, S.3
-
33
-
-
84865827705
-
MYC is activated by USP2a-mediated modulation of microRNAs in prostate cancer
-
Benassi B., Flavin R., Marchionni L., et al. MYC is activated by USP2a-mediated modulation of microRNAs in prostate cancer. Cancer Discov 2012, 2:236-247.
-
(2012)
Cancer Discov
, vol.2
, pp. 236-247
-
-
Benassi, B.1
Flavin, R.2
Marchionni, L.3
-
34
-
-
84871970908
-
MicroRNA-34b inhibits prostate cancer through demethylation, active chromatin modifications and AKT pathways
-
Majid S., Dar A.A., Saini S., et al. MicroRNA-34b inhibits prostate cancer through demethylation, active chromatin modifications and AKT pathways. Clin Cancer Res 2013, 19:73-84.
-
(2013)
Clin Cancer Res
, vol.19
, pp. 73-84
-
-
Majid, S.1
Dar, A.A.2
Saini, S.3
-
35
-
-
34547128128
-
Hierarchical organization of prostate cancer cells in xenograft tumors: the CD44+alpha2beta1+ cell population is enriched in tumor-initiating cells
-
Patrawala L., Calhoun-Davis T., Schneider-Broussard R., et al. Hierarchical organization of prostate cancer cells in xenograft tumors: the CD44+alpha2beta1+ cell population is enriched in tumor-initiating cells. Cancer Res 2007, 67:6796-6805.
-
(2007)
Cancer Res
, vol.67
, pp. 6796-6805
-
-
Patrawala, L.1
Calhoun-Davis, T.2
Schneider-Broussard, R.3
-
36
-
-
79751473114
-
The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44
-
Liu C., Kelnar K., Liu B., et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 2011, 17:211-215.
-
(2011)
Nat Med
, vol.17
, pp. 211-215
-
-
Liu, C.1
Kelnar, K.2
Liu, B.3
-
37
-
-
70449571904
-
MiR-143 interferes with ERK5 signaling, and abrogates prostate cancer progression in mice
-
Clapé C., Fritz V., Henriquet C., et al. miR-143 interferes with ERK5 signaling, and abrogates prostate cancer progression in mice. PloS One 2009, 4:e7542.
-
(2009)
PloS One
, vol.4
, pp. e7542
-
-
Clapé, C.1
Fritz, V.2
Henriquet, C.3
-
38
-
-
60149095444
-
Most mammalian mRNAs are conserved targets of microRNAs
-
Friedman R.C., Farh K.K., Burge C.B., et al. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009, 19:92-105.
-
(2009)
Genome Res
, vol.19
, pp. 92-105
-
-
Friedman, R.C.1
Farh, K.K.2
Burge, C.B.3
-
39
-
-
84862812020
-
Anovel miR-155/miR-143 cascade controls glycolysis by regulating hexokinase 2 in breast cancer cells
-
Jiang S., Zhang L.F., Zhang H.W., et al. Anovel miR-155/miR-143 cascade controls glycolysis by regulating hexokinase 2 in breast cancer cells. EMBO J 2012, 31:1985-1998.
-
(2012)
EMBO J
, vol.31
, pp. 1985-1998
-
-
Jiang, S.1
Zhang, L.F.2
Zhang, H.W.3
-
40
-
-
79955771439
-
MicroRNA-145 is regulated by DNA methylation and p53 gene mutation in prostate cancer
-
Suh S.O., Chen Y., Zaman M.S., et al. MicroRNA-145 is regulated by DNA methylation and p53 gene mutation in prostate cancer. Carcinogenesis 2011, 32:772-778.
-
(2011)
Carcinogenesis
, vol.32
, pp. 772-778
-
-
Suh, S.O.1
Chen, Y.2
Zaman, M.S.3
-
41
-
-
79953696225
-
MiR-143 decreases prostate cancer cells proliferation and migration and enhances their sensitivity to docetaxel through suppression of KRAS
-
Xu B., Niu X., Zhang X., et al. miR-143 decreases prostate cancer cells proliferation and migration and enhances their sensitivity to docetaxel through suppression of KRAS. Mol Cell Biochem 2011, 350:207-213.
-
(2011)
Mol Cell Biochem
, vol.350
, pp. 207-213
-
-
Xu, B.1
Niu, X.2
Zhang, X.3
-
42
-
-
67449158993
-
Androgen receptor expression in prostate cancer cells is suppressed by activation of epidermal growth factor receptor and ErbB2
-
Cai C., Portnoy D.C., Wang H., et al. Androgen receptor expression in prostate cancer cells is suppressed by activation of epidermal growth factor receptor and ErbB2. Cancer Res 2009, 69:5202-5209.
-
(2009)
Cancer Res
, vol.69
, pp. 5202-5209
-
-
Cai, C.1
Portnoy, D.C.2
Wang, H.3
-
43
-
-
84859880428
-
The miRNA-kallikrein axis of interaction: a new dimension in the pathogenesis of prostate cancer
-
White N.M.A., Youssef Y.M., Fendler A., et al. The miRNA-kallikrein axis of interaction: a new dimension in the pathogenesis of prostate cancer. Biol Chem 2012, 393:379-389.
-
(2012)
Biol Chem
, vol.393
, pp. 379-389
-
-
White, N.M.A.1
Youssef, Y.M.2
Fendler, A.3
-
44
-
-
79952339573
-
Restoration of miR-145 expression suppresses cell proliferation, migration and invasion in prostate cancer by targeting FSCN1
-
Fuse M., Nohata N., Kojima S., et al. Restoration of miR-145 expression suppresses cell proliferation, migration and invasion in prostate cancer by targeting FSCN1. Int J Oncol 2011, 38:1093-1101.
-
(2011)
Int J Oncol
, vol.38
, pp. 1093-1101
-
-
Fuse, M.1
Nohata, N.2
Kojima, S.3
-
45
-
-
79959315490
-
SWAP70, actin-binding protein, function as an oncogene targeting tumor-suppressive miR-145 in prostate cancer
-
Chiyomaru T., Tatarano S., Kawakami K., et al. SWAP70, actin-binding protein, function as an oncogene targeting tumor-suppressive miR-145 in prostate cancer. Prostate 2011, 71:1559-1567.
-
(2011)
Prostate
, vol.71
, pp. 1559-1567
-
-
Chiyomaru, T.1
Tatarano, S.2
Kawakami, K.3
-
46
-
-
84879957962
-
MicroRNA-143 inhibits cell migration and invasion by targeting matrix metalloproteinase 13 in prostate cancer
-
Wu D., Huang P., Wang L., et al. MicroRNA-143 inhibits cell migration and invasion by targeting matrix metalloproteinase 13 in prostate cancer. Mol Med Rep 2013, 8:626-630.
-
(2013)
Mol Med Rep
, vol.8
, pp. 626-630
-
-
Wu, D.1
Huang, P.2
Wang, L.3
-
47
-
-
79957599227
-
Identification of miRs-143 and -145 that is associated with bone metastasis of prostate cancer and involved in the regulation of EMT
-
Peng X., Guo W., Liu T., et al. Identification of miRs-143 and -145 that is associated with bone metastasis of prostate cancer and involved in the regulation of EMT. PloS One 2011, 6:e20341.
-
(2011)
PloS One
, vol.6
, pp. e20341
-
-
Peng, X.1
Guo, W.2
Liu, T.3
-
48
-
-
84896878421
-
The tumor-suppressive microRNA-143/145 cluster inhibits cell migration and invasion by targeting GOLM1 in prostate cancer
-
Kojima S., Enokida H., Yoshino H., et al. The tumor-suppressive microRNA-143/145 cluster inhibits cell migration and invasion by targeting GOLM1 in prostate cancer. JHum Genet 2014, 59:78-87.
-
(2014)
JHum Genet
, vol.59
, pp. 78-87
-
-
Kojima, S.1
Enokida, H.2
Yoshino, H.3
-
49
-
-
84866464390
-
MiR-143 and miR-145 inhibit stem cell characteristics of PC-3 prostate cancer cells
-
Huang S., Guo W., Tang Y., et al. miR-143 and miR-145 inhibit stem cell characteristics of PC-3 prostate cancer cells. Oncol Rep 2012, 28:1831-1837.
-
(2012)
Oncol Rep
, vol.28
, pp. 1831-1837
-
-
Huang, S.1
Guo, W.2
Tang, Y.3
-
50
-
-
77649251655
-
Role for DNA Methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells
-
Vrba L., Jensen T.J., Garbe J.C., et al. Role for DNA Methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells. PLoS One 2010, 5:e8697.
-
(2010)
PLoS One
, vol.5
, pp. e8697
-
-
Vrba, L.1
Jensen, T.J.2
Garbe, J.C.3
-
51
-
-
70450198396
-
Epithelial-mesenchymal transitions in development and disease
-
Thiery J.P., Acloque H., Huang R.Y.J., et al. Epithelial-mesenchymal transitions in development and disease. Cell 2009, 139:871-890.
-
(2009)
Cell
, vol.139
, pp. 871-890
-
-
Thiery, J.P.1
Acloque, H.2
Huang, R.Y.J.3
-
52
-
-
41649091906
-
The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2
-
Park S.M., Gaur A.B., Lengyel E., et al. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 2008, 22:894-907.
-
(2008)
Genes Dev
, vol.22
, pp. 894-907
-
-
Park, S.M.1
Gaur, A.B.2
Lengyel, E.3
-
53
-
-
69249156944
-
MiR-200 regulates PDGF-D-mediated epithelial-mesenchymal transition, adhesion, and invasion of prostate cancer cells
-
Kong D., Li Y., Wang Z., et al. miR-200 regulates PDGF-D-mediated epithelial-mesenchymal transition, adhesion, and invasion of prostate cancer cells. Stem Cells 2009, 27:1712-1721.
-
(2009)
Stem Cells
, vol.27
, pp. 1712-1721
-
-
Kong, D.1
Li, Y.2
Wang, Z.3
-
54
-
-
84872608167
-
MiR-1 and miR-200 inhibit EMT via Slug-dependent and tumorigenesis via Slug-independent mechanisms
-
Liu Y.N., Yin J.J., Abou-Kheir W., et al. MiR-1 and miR-200 inhibit EMT via Slug-dependent and tumorigenesis via Slug-independent mechanisms. Oncogene 2013, 32:296-306.
-
(2013)
Oncogene
, vol.32
, pp. 296-306
-
-
Liu, Y.N.1
Yin, J.J.2
Abou-Kheir, W.3
-
55
-
-
79960705270
-
TGF-β1-induced EMT of non-transformed prostate hyperplasia cells is characterized by early induction of SNAI2/Slug
-
Slabáková E., Pernicová Z., Slavíčková E., et al. TGF-β1-induced EMT of non-transformed prostate hyperplasia cells is characterized by early induction of SNAI2/Slug. Prostate 2011, 71:1332-1343.
-
(2011)
Prostate
, vol.71
, pp. 1332-1343
-
-
Slabáková, E.1
Pernicová, Z.2
Slavíčková, E.3
-
56
-
-
84896694961
-
MiR-200b inhibits prostate cancer EMT, growth and metastasis
-
Williams L.V., Veliceasa D., Vinokour E., et al. miR-200b inhibits prostate cancer EMT, growth and metastasis. PLoS One 2013, 8:e83991.
-
(2013)
PLoS One
, vol.8
, pp. e83991
-
-
Williams, L.V.1
Veliceasa, D.2
Vinokour, E.3
-
57
-
-
84862863817
-
Biochemical relapse following radical prostatectomy and miR-200a levels in prostate cancer
-
Barron N., Keenan J., Gammell P., et al. Biochemical relapse following radical prostatectomy and miR-200a levels in prostate cancer. Prostate 2012, 72:1193-1199.
-
(2012)
Prostate
, vol.72
, pp. 1193-1199
-
-
Barron, N.1
Keenan, J.2
Gammell, P.3
-
58
-
-
77957902732
-
Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells
-
Kong D., Banerjee S., Ahmad A., et al. Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PLoS One 2010, 5:e12445.
-
(2010)
PLoS One
, vol.5
, pp. e12445
-
-
Kong, D.1
Banerjee, S.2
Ahmad, A.3
-
59
-
-
79953649060
-
MiR-203 controls proliferation, migration and invasive potential of prostate cancer cell lines
-
Viticchiè G., Lena A.M., Latina A., et al. MiR-203 controls proliferation, migration and invasive potential of prostate cancer cell lines. Cell Cycle 2011, 10:1121-1131.
-
(2011)
Cell Cycle
, vol.10
, pp. 1121-1131
-
-
Viticchiè, G.1
Lena, A.M.2
Latina, A.3
-
60
-
-
65549115615
-
MiR-205 Exerts tumor-suppressive functions in human prostate through down-regulation of protein kinase Cepsilon
-
Gandellini P., Folini M., Longoni N., et al. miR-205 Exerts tumor-suppressive functions in human prostate through down-regulation of protein kinase Cepsilon. Cancer Res 2009, 69:2287-2295.
-
(2009)
Cancer Res
, vol.69
, pp. 2287-2295
-
-
Gandellini, P.1
Folini, M.2
Longoni, N.3
-
61
-
-
84887226016
-
MiR-205 is frequently downregulated in prostate cancer and acts as a tumor suppressor by inhibiting tumor growth
-
Wang N., Li Q., Feng N.-H., et al. miR-205 is frequently downregulated in prostate cancer and acts as a tumor suppressor by inhibiting tumor growth. Asian J Androl 2013, 15:735-741.
-
(2013)
Asian J Androl
, vol.15
, pp. 735-741
-
-
Wang, N.1
Li, Q.2
Feng, N.-H.3
-
62
-
-
79959811503
-
Downregulation of miR-205 and miR-31 confers resistance to chemotherapy-induced apoptosis in prostate cancer cells
-
Bhatnagar N., Li X., Padi S.K.R., et al. Downregulation of miR-205 and miR-31 confers resistance to chemotherapy-induced apoptosis in prostate cancer cells. Cell Death Dis 2010, 1:e105.
-
(2010)
Cell Death Dis
, vol.1
, pp. e105
-
-
Bhatnagar, N.1
Li, X.2
Padi, S.K.R.3
-
63
-
-
84872619333
-
MiR-130a, miR-203 and miR-205 jointly repress key oncogenic pathways and are downregulated in prostate carcinoma
-
Boll K., Reiche K., Kasack K., et al. MiR-130a, miR-203 and miR-205 jointly repress key oncogenic pathways and are downregulated in prostate carcinoma. Oncogene 2013, 32:277-285.
-
(2013)
Oncogene
, vol.32
, pp. 277-285
-
-
Boll, K.1
Reiche, K.2
Kasack, K.3
-
64
-
-
77956305756
-
MicroRNA let-7a inhibits proliferation of human prostate cancer cells invitro and invivo by targeting E2F2 and CCND2
-
Dong Q., Meng P., Wang T., et al. MicroRNA let-7a inhibits proliferation of human prostate cancer cells invitro and invivo by targeting E2F2 and CCND2. PloS One 2010, 5:e10147.
-
(2010)
PloS One
, vol.5
, pp. e10147
-
-
Dong, Q.1
Meng, P.2
Wang, T.3
-
65
-
-
84859125688
-
MicroRNA let-7c is downregulated in prostate cancer and suppresses prostate cancer growth
-
Nadiminty N., Tummala R., Lou W., et al. MicroRNA let-7c is downregulated in prostate cancer and suppresses prostate cancer growth. PLoS One 2012, 7:e32832.
-
(2012)
PLoS One
, vol.7
, pp. e32832
-
-
Nadiminty, N.1
Tummala, R.2
Lou, W.3
-
66
-
-
48649103982
-
Afeedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment
-
Rybak A., Fuchs H., Smirnova L., et al. Afeedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat Cell Biol 2008, 10:987-993.
-
(2008)
Nat Cell Biol
, vol.10
, pp. 987-993
-
-
Rybak, A.1
Fuchs, H.2
Smirnova, L.3
-
67
-
-
40849108663
-
Selective blockade of microRNA processing by Lin28
-
Viswanathan S.R., Daley G.Q., Gregory R.I. Selective blockade of microRNA processing by Lin28. Science 2008, 320:97-100.
-
(2008)
Science
, vol.320
, pp. 97-100
-
-
Viswanathan, S.R.1
Daley, G.Q.2
Gregory, R.I.3
-
68
-
-
67649881121
-
Lin28 promotes transformation and is associated with advanced human malignancies
-
Viswanathan S.R., Powers J.T., Einhorn W., et al. Lin28 promotes transformation and is associated with advanced human malignancies. Nat Genet 2009, 41:843-848.
-
(2009)
Nat Genet
, vol.41
, pp. 843-848
-
-
Viswanathan, S.R.1
Powers, J.T.2
Einhorn, W.3
-
69
-
-
60549104367
-
Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7
-
Dangi-Garimella S., Yun J., Eves E.M., et al. Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. EMBO J 2009, 28:347-358.
-
(2009)
EMBO J
, vol.28
, pp. 347-358
-
-
Dangi-Garimella, S.1
Yun, J.2
Eves, E.M.3
-
70
-
-
20444460289
-
MicroRNA expression profiles classify human cancers
-
Lu J., Getz G., Miska E.A., et al. MicroRNA expression profiles classify human cancers. Nature 2005, 435:834-838.
-
(2005)
Nature
, vol.435
, pp. 834-838
-
-
Lu, J.1
Getz, G.2
Miska, E.A.3
-
71
-
-
62549160957
-
Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation
-
Chang T.C., Zeitels L.R., Hwang H.W., et al. Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation. Proc Natl Acad Sci U S A 2009, 106:3384-3389.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 3384-3389
-
-
Chang, T.C.1
Zeitels, L.R.2
Hwang, H.W.3
-
72
-
-
34247593034
-
Impaired microRNA processing enhances cellular transformation and tumorigenesis
-
Kumar M.S., Lu J., Mercer K.L., et al. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 2007, 39:673-677.
-
(2007)
Nat Genet
, vol.39
, pp. 673-677
-
-
Kumar, M.S.1
Lu, J.2
Mercer, K.L.3
-
73
-
-
79955721096
-
Change in expression of miR-let7c, miR-100, and miR-218 from high grade localized prostate cancer to metastasis
-
Leite K.R.M., Sousa-Canavez J.M., Reis S.T., et al. Change in expression of miR-let7c, miR-100, and miR-218 from high grade localized prostate cancer to metastasis. Urol Oncol 2011, 29:265-269.
-
(2011)
Urol Oncol
, vol.29
, pp. 265-269
-
-
Leite, K.R.M.1
Sousa-Canavez, J.M.2
Reis, S.T.3
-
74
-
-
84862908609
-
MicroRNA let-7c suppresses androgen receptor expression and activity via regulation of Myc expression in prostate cancer cells
-
Nadiminty N., Tummala R., Lou W., et al. MicroRNA let-7c suppresses androgen receptor expression and activity via regulation of Myc expression in prostate cancer cells. JBiol Chem 2012, 287:1527-1537.
-
(2012)
JBiol Chem
, vol.287
, pp. 1527-1537
-
-
Nadiminty, N.1
Tummala, R.2
Lou, W.3
-
75
-
-
84879355935
-
Lin28 promotes growth of prostate cancer cells and activates the androgen receptor
-
Tummala R., Nadiminty N., Lou W., et al. Lin28 promotes growth of prostate cancer cells and activates the androgen receptor. Am J Pathol 2013, 183:288-295.
-
(2013)
Am J Pathol
, vol.183
, pp. 288-295
-
-
Tummala, R.1
Nadiminty, N.2
Lou, W.3
-
76
-
-
84863343713
-
Loss of let-7 up-regulates EZH2 in prostate cancer consistent with the acquisition of cancer stem cell signatures that are attenuated by BR-DIM
-
Kong D., Heath E., Chen W., et al. Loss of let-7 up-regulates EZH2 in prostate cancer consistent with the acquisition of cancer stem cell signatures that are attenuated by BR-DIM. PloS One 2012, 7:e33729.
-
(2012)
PloS One
, vol.7
, pp. e33729
-
-
Kong, D.1
Heath, E.2
Chen, W.3
-
77
-
-
57649124289
-
Repression of E-cadherin by the polycomb group protein EZH2 in cancer
-
Cao Q., Yu J., Dhanasekaran S.M., et al. Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene 2008, 27:7274-7284.
-
(2008)
Oncogene
, vol.27
, pp. 7274-7284
-
-
Cao, Q.1
Yu, J.2
Dhanasekaran, S.M.3
-
78
-
-
58149239686
-
Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer
-
Varambally S., Cao Q., Mani R.S., et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 2008, 322:1695-1699.
-
(2008)
Science
, vol.322
, pp. 1695-1699
-
-
Varambally, S.1
Cao, Q.2
Mani, R.S.3
-
79
-
-
35748937338
-
Integrative genomics analysis reveals silencing of beta-adrenergic signaling by polycomb in prostate cancer
-
Yu J., Cao Q., Mehra R., et al. Integrative genomics analysis reveals silencing of beta-adrenergic signaling by polycomb in prostate cancer. Cancer Cell 2007, 12:419-431.
-
(2007)
Cancer Cell
, vol.12
, pp. 419-431
-
-
Yu, J.1
Cao, Q.2
Mehra, R.3
-
80
-
-
79960090382
-
Enforced expression of miR-101 inhibits prostate cancer cell growth by modulating the COX-2 pathway invivo
-
Hao Y., Gu X., Zhao Y., et al. Enforced expression of miR-101 inhibits prostate cancer cell growth by modulating the COX-2 pathway invivo. Cancer Prev Res (Phila) 2011, 4:1073-1083.
-
(2011)
Cancer Prev Res (Phila)
, vol.4
, pp. 1073-1083
-
-
Hao, Y.1
Gu, X.2
Zhao, Y.3
-
81
-
-
22844438244
-
Prostate carcinogenesis and inflammation: emerging insights
-
Palapattu G.S., Sutcliffe S., Bastian P.J., et al. Prostate carcinogenesis and inflammation: emerging insights. Carcinogenesis 2005, 26:1170-1181.
-
(2005)
Carcinogenesis
, vol.26
, pp. 1170-1181
-
-
Palapattu, G.S.1
Sutcliffe, S.2
Bastian, P.J.3
-
82
-
-
84871576625
-
The microRNA -23b/-27b cluster suppresses the metastatic phenotype of castration-resistant prostate cancer cells
-
Ishteiwy R.A., Ward T.M., Dykxhoorn D.M., et al. The microRNA -23b/-27b cluster suppresses the metastatic phenotype of castration-resistant prostate cancer cells. PLoS One 2012, 7:e52106.
-
(2012)
PLoS One
, vol.7
, pp. e52106
-
-
Ishteiwy, R.A.1
Ward, T.M.2
Dykxhoorn, D.M.3
-
83
-
-
84863992937
-
Androgen-regulated processing of the oncomir miR-27a, which targets Prohibitin in prostate cancer
-
Fletcher C.E., Dart D.A., Sita-Lumsden A., et al. Androgen-regulated processing of the oncomir miR-27a, which targets Prohibitin in prostate cancer. Hum Mol Genet 2012, 21:3112-3127.
-
(2012)
Hum Mol Genet
, vol.21
, pp. 3112-3127
-
-
Fletcher, C.E.1
Dart, D.A.2
Sita-Lumsden, A.3
-
84
-
-
84860757028
-
MicroRNA-133 inhibits cell proliferation, migration and invasion in prostate cancer cells by targeting the epidermal growth factor receptor
-
Tao J., Wu D., Xu B., et al. microRNA-133 inhibits cell proliferation, migration and invasion in prostate cancer cells by targeting the epidermal growth factor receptor. Oncol Rep 2012, 27:1967-1975.
-
(2012)
Oncol Rep
, vol.27
, pp. 1967-1975
-
-
Tao, J.1
Wu, D.2
Xu, B.3
-
85
-
-
84873507539
-
Epigenetic repression of miR-31 disrupts androgen receptor homeostasis and contributes to prostate cancer progression
-
Lin P.C., Chiu Y.L., Banerjee S., et al. Epigenetic repression of miR-31 disrupts androgen receptor homeostasis and contributes to prostate cancer progression. Cancer Res 2013, 73:1232-1244.
-
(2013)
Cancer Res
, vol.73
, pp. 1232-1244
-
-
Lin, P.C.1
Chiu, Y.L.2
Banerjee, S.3
-
86
-
-
84861767427
-
Novel molecular targets regulated by tumor suppressors microRNA-1 and microRNA-133a in bladder cancer
-
Yamasaki T., Yoshino H., Enokida H., et al. Novel molecular targets regulated by tumor suppressors microRNA-1 and microRNA-133a in bladder cancer. Int J Oncol 2012, 40:1821-1830.
-
(2012)
Int J Oncol
, vol.40
, pp. 1821-1830
-
-
Yamasaki, T.1
Yoshino, H.2
Enokida, H.3
-
87
-
-
33847333362
-
Hyaluronan stimulates transformation of androgen-independent prostate cancer
-
Lin S.L., Chang D., Ying S.Y. Hyaluronan stimulates transformation of androgen-independent prostate cancer. Carcinogenesis 2007, 28:310-320.
-
(2007)
Carcinogenesis
, vol.28
, pp. 310-320
-
-
Lin, S.L.1
Chang, D.2
Ying, S.Y.3
-
88
-
-
40449131878
-
Loss of mir-146a function in hormone-refractory prostate cancer
-
Lin S.L., Chiang A., Chang D., et al. Loss of mir-146a function in hormone-refractory prostate cancer. RNA 2008, 14:417-424.
-
(2008)
RNA
, vol.14
, pp. 417-424
-
-
Lin, S.L.1
Chiang, A.2
Chang, D.3
-
89
-
-
84883489767
-
Tumor suppressive miR-124 targets androgen receptor and inhibits proliferation of prostate cancer cells
-
Shi X.B., Xue L., Ma A.H., et al. Tumor suppressive miR-124 targets androgen receptor and inhibits proliferation of prostate cancer cells. Oncogene 2013, 32:4130-4138.
-
(2013)
Oncogene
, vol.32
, pp. 4130-4138
-
-
Shi, X.B.1
Xue, L.2
Ma, A.H.3
-
90
-
-
84867686625
-
MiR-17-5p targets the p300/CBP-associated factor and modulates androgen receptor transcriptional activity in cultured prostate cancer cells
-
Gong A.Y., Eischeid A.N., Xiao J., et al. miR-17-5p targets the p300/CBP-associated factor and modulates androgen receptor transcriptional activity in cultured prostate cancer cells. BMC Cancer 2012, 12:492.
-
(2012)
BMC Cancer
, vol.12
, pp. 492
-
-
Gong, A.Y.1
Eischeid, A.N.2
Xiao, J.3
-
91
-
-
84902585797
-
Loss of miR-100 enhances migration, invasion, epithelial-mesenchymal transition and stemness properties in prostate cancer cells through targeting Argonaute 2
-
Wang M., Ren D., Guo W., et al. Loss of miR-100 enhances migration, invasion, epithelial-mesenchymal transition and stemness properties in prostate cancer cells through targeting Argonaute 2. Int J Oncol 2014, 45:362-372.
-
(2014)
Int J Oncol
, vol.45
, pp. 362-372
-
-
Wang, M.1
Ren, D.2
Guo, W.3
-
92
-
-
84904288804
-
Tumor-suppressive microRNA-218 inhibits cancer cell migration and invasion via targeting of LASP1 in prostate cancer
-
Nishikawa R., Goto Y., Sakamoto S., et al. Tumor-suppressive microRNA-218 inhibits cancer cell migration and invasion via targeting of LASP1 in prostate cancer. Cancer Sci 2014, 105:802-811.
-
(2014)
Cancer Sci
, vol.105
, pp. 802-811
-
-
Nishikawa, R.1
Goto, Y.2
Sakamoto, S.3
-
93
-
-
0033034390
-
Molecular biology of neuroblastoma
-
Maris J.M., Matthay K.K. Molecular biology of neuroblastoma. JClin Oncol 1999, 17:2264-2279.
-
(1999)
JClin Oncol
, vol.17
, pp. 2264-2279
-
-
Maris, J.M.1
Matthay, K.K.2
-
94
-
-
0036698536
-
Detection of genetic alterations in advanced prostate cancer by comparative genomic hybridization
-
Kasahara K., Taguchi T., Yamasaki I., et al. Detection of genetic alterations in advanced prostate cancer by comparative genomic hybridization. Cancer Genet Cytogenet 2002, 137:59-63.
-
(2002)
Cancer Genet Cytogenet
, vol.137
, pp. 59-63
-
-
Kasahara, K.1
Taguchi, T.2
Yamasaki, I.3
-
96
-
-
67349254469
-
MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells
-
Li T., Li D., Sha J., et al. MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem Biophys Res Commun 2009, 383:280-285.
-
(2009)
Biochem Biophys Res Commun
, vol.383
, pp. 280-285
-
-
Li, T.1
Li, D.2
Sha, J.3
-
97
-
-
78951483439
-
Serum miRNA-21: elevated levels in patients with metastatic hormone-refractory prostate cancer and potential predictive factor for the efficacy of docetaxel-based chemotherapy
-
Zhang H.L., Yang L.F., Zhu Y., et al. Serum miRNA-21: elevated levels in patients with metastatic hormone-refractory prostate cancer and potential predictive factor for the efficacy of docetaxel-based chemotherapy. Prostate 2011, 71:326-331.
-
(2011)
Prostate
, vol.71
, pp. 326-331
-
-
Zhang, H.L.1
Yang, L.F.2
Zhu, Y.3
-
98
-
-
84862828919
-
MiR-21 as an independent biochemical recurrence predictor and potential therapeutic target for prostate cancer
-
Li T., Li R.S., Li Y.H., et al. miR-21 as an independent biochemical recurrence predictor and potential therapeutic target for prostate cancer. JUrol 2012, 187:1466-1472.
-
(2012)
JUrol
, vol.187
, pp. 1466-1472
-
-
Li, T.1
Li, R.S.2
Li, Y.H.3
-
99
-
-
42249090353
-
MiR-21 Gene expression triggered by AP-1 is sustained through a double-negative feedback mechanism
-
Fujita S., Ito T., Mizutani T., et al. miR-21 Gene expression triggered by AP-1 is sustained through a double-negative feedback mechanism. JMol Biol 2008, 378:492-504.
-
(2008)
JMol Biol
, vol.378
, pp. 492-504
-
-
Fujita, S.1
Ito, T.2
Mizutani, T.3
-
100
-
-
42049109923
-
Activator protein-1 transcription factors are associated with progression and recurrence of prostate cancer
-
Ouyang X., Jessen W.J., Al-Ahmadie H., et al. Activator protein-1 transcription factors are associated with progression and recurrence of prostate cancer. Cancer Res 2008, 68:2132-2144.
-
(2008)
Cancer Res
, vol.68
, pp. 2132-2144
-
-
Ouyang, X.1
Jessen, W.J.2
Al-Ahmadie, H.3
-
101
-
-
0037112367
-
Constitutive activation of Stat3 in human prostate tumors and cell lines: direct inhibition of Stat3 signaling induces apoptosis of prostate cancer cells
-
Mora L.B., Buettner R., Seigne J., et al. Constitutive activation of Stat3 in human prostate tumors and cell lines: direct inhibition of Stat3 signaling induces apoptosis of prostate cancer cells. Cancer Res 2002, 62:6659-6666.
-
(2002)
Cancer Res
, vol.62
, pp. 6659-6666
-
-
Mora, L.B.1
Buettner, R.2
Seigne, J.3
-
102
-
-
4243156987
-
Signal transducer and activator of transcription 3 (STAT3) activation in prostate cancer: direct STAT3 inhibition induces apoptosis in prostate cancer lines
-
Barton B.E., Karras J.G., Murphy T.F., et al. Signal transducer and activator of transcription 3 (STAT3) activation in prostate cancer: direct STAT3 inhibition induces apoptosis in prostate cancer lines. Mol Cancer Ther 2004, 3:11-20.
-
(2004)
Mol Cancer Ther
, vol.3
, pp. 11-20
-
-
Barton, B.E.1
Karras, J.G.2
Murphy, T.F.3
-
104
-
-
84876122205
-
BTG2 loss and miR-21 upregulation contribute to prostate cell transformation by inducing luminal markers expression and epithelial-mesenchymal transition
-
Coppola V., Musumeci M., Patrizii M., et al. BTG2 loss and miR-21 upregulation contribute to prostate cell transformation by inducing luminal markers expression and epithelial-mesenchymal transition. Oncogene 2013, 32:1843-1853.
-
(2013)
Oncogene
, vol.32
, pp. 1843-1853
-
-
Coppola, V.1
Musumeci, M.2
Patrizii, M.3
-
105
-
-
77955121375
-
Identification of a cell of origin for human prostate cancer
-
Goldstein A.S., Huang J., Guo C., et al. Identification of a cell of origin for human prostate cancer. Science 2010, 329:568-571.
-
(2010)
Science
, vol.329
, pp. 568-571
-
-
Goldstein, A.S.1
Huang, J.2
Guo, C.3
-
106
-
-
77249178726
-
Basal epithelial stem cells are efficient targets for prostate cancer initiation
-
Lawson D.A., Zong Y., Memarzadeh S., et al. Basal epithelial stem cells are efficient targets for prostate cancer initiation. Proc Natl Acad Sci U S A 2010, 107:2610-2615.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 2610-2615
-
-
Lawson, D.A.1
Zong, Y.2
Memarzadeh, S.3
-
107
-
-
79955534639
-
MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1α expression
-
Liu L.Z., Li C., Chen Q., et al. MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1α expression. PLoS One 2011, 6:e19139.
-
(2011)
PLoS One
, vol.6
, pp. e19139
-
-
Liu, L.Z.1
Li, C.2
Chen, Q.3
-
108
-
-
84861474291
-
MiR-21 may acts as an oncomir by targeting RECK, a matrix metalloproteinase regulator, in prostate cancer
-
Reis S.T., Pontes-Junior J., Antunes A.A., et al. miR-21 may acts as an oncomir by targeting RECK, a matrix metalloproteinase regulator, in prostate cancer. BMC Urol 2012, 12:14.
-
(2012)
BMC Urol
, vol.12
, pp. 14
-
-
Reis, S.T.1
Pontes-Junior, J.2
Antunes, A.A.3
-
109
-
-
77954509251
-
Involvement of microRNA-21 in mediating chemo-resistance to docetaxel in androgen-independent prostate cancer PC3 cells
-
Shi G., Ye D., Yao X., et al. Involvement of microRNA-21 in mediating chemo-resistance to docetaxel in androgen-independent prostate cancer PC3 cells. Acta Pharmacol Sin 2010, 31:867-873.
-
(2010)
Acta Pharmacol Sin
, vol.31
, pp. 867-873
-
-
Shi, G.1
Ye, D.2
Yao, X.3
-
110
-
-
84907291841
-
MiR-21 increases the programmed cell death 4 gene-regulated cell proliferation in head and neck squamous carcinoma cell lines
-
Sun Z., Li S., Kaufmann A.M., et al. miR-21 increases the programmed cell death 4 gene-regulated cell proliferation in head and neck squamous carcinoma cell lines. Oncol Rep 2014, 32:2283-2289.
-
(2014)
Oncol Rep
, vol.32
, pp. 2283-2289
-
-
Sun, Z.1
Li, S.2
Kaufmann, A.M.3
-
111
-
-
84898912166
-
MicroRNA-21 stimulates gastric cancer growth and invasion by inhibiting the tumor suppressor effects of programmed cell death protein 4 and phosphatase and tensin homolog
-
Li L., Zhou L., Li Y., et al. MicroRNA-21 stimulates gastric cancer growth and invasion by inhibiting the tumor suppressor effects of programmed cell death protein 4 and phosphatase and tensin homolog. JBUON 2014, 19:228-236.
-
(2014)
JBUON
, vol.19
, pp. 228-236
-
-
Li, L.1
Zhou, L.2
Li, Y.3
-
112
-
-
76949085030
-
MiR-21: an oncomir on strike in prostate cancer
-
Folini M., Gandellini P., Longoni N., et al. miR-21: an oncomir on strike in prostate cancer. Mol Cancer 2010, 9:12.
-
(2010)
Mol Cancer
, vol.9
, pp. 12
-
-
Folini, M.1
Gandellini, P.2
Longoni, N.3
-
113
-
-
84905379640
-
Androgen receptor and microRNA-21 axis downregulates transforming growth factor beta receptor II (TGFBR2) expression in prostate cancer
-
Mishra S., Deng J.J., Gowda P.S., et al. Androgen receptor and microRNA-21 axis downregulates transforming growth factor beta receptor II (TGFBR2) expression in prostate cancer. Oncogene 2014, 33:4097-4106.
-
(2014)
Oncogene
, vol.33
, pp. 4097-4106
-
-
Mishra, S.1
Deng, J.J.2
Gowda, P.S.3
-
114
-
-
23044464236
-
Extensive modulation of a set of microRNAs in primary glioblastoma
-
Ciafrè S.A., Galardi S., Mangiola A., et al. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 2005, 334:1351-1358.
-
(2005)
Biochem Biophys Res Commun
, vol.334
, pp. 1351-1358
-
-
Ciafrè, S.A.1
Galardi, S.2
Mangiola, A.3
-
115
-
-
34548388833
-
Micro-RNA profiling in kidney and bladder cancers
-
Gottardo F., Liu C.G., Ferracin M., et al. Micro-RNA profiling in kidney and bladder cancers. Urol Oncol 2007, 25:387-392.
-
(2007)
Urol Oncol
, vol.25
, pp. 387-392
-
-
Gottardo, F.1
Liu, C.G.2
Ferracin, M.3
-
116
-
-
34548168073
-
MiR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1
-
Galardi S., Mercatelli N., Giorda E., et al. miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. JBiol Chem 2007, 282:23716-23724.
-
(2007)
JBiol Chem
, vol.282
, pp. 23716-23724
-
-
Galardi, S.1
Mercatelli, N.2
Giorda, E.3
-
117
-
-
66049148777
-
The role of microRNA-221 and microRNA-222 in androgen-independent prostate cancer cell lines
-
Sun T., Wang Q., Balk S., et al. The role of microRNA-221 and microRNA-222 in androgen-independent prostate cancer cell lines. Cancer Res 2009, 69:3356-3363.
-
(2009)
Cancer Res
, vol.69
, pp. 3356-3363
-
-
Sun, T.1
Wang, Q.2
Balk, S.3
-
118
-
-
84870272631
-
Tumor suppressive microRNAs (miR-222 and miR-31) regulate molecular pathways based on microRNA expression signature in prostate cancer
-
Fuse M., Kojima S., Enokida H., et al. Tumor suppressive microRNAs (miR-222 and miR-31) regulate molecular pathways based on microRNA expression signature in prostate cancer. JHum Genet 2012, 57:691-699.
-
(2012)
JHum Genet
, vol.57
, pp. 691-699
-
-
Fuse, M.1
Kojima, S.2
Enokida, H.3
-
119
-
-
84866294356
-
MiR-221 expression affects invasion potential of human prostate carcinoma cell lines by targeting DVL2
-
Zheng C., Yinghao S., Li J. MiR-221 expression affects invasion potential of human prostate carcinoma cell lines by targeting DVL2. Med Oncol 2012, 29:815-822.
-
(2012)
Med Oncol
, vol.29
, pp. 815-822
-
-
Zheng, C.1
Yinghao, S.2
Li, J.3
-
120
-
-
58149240996
-
The inhibition of the highly expressed miR-221 and miR-222 impairs the growth of prostate carcinoma xenografts in mice
-
Mercatelli N., Coppola V., Bonci D., et al. The inhibition of the highly expressed miR-221 and miR-222 impairs the growth of prostate carcinoma xenografts in mice. PLoS One 2008, 3:e4029.
-
(2008)
PLoS One
, vol.3
, pp. e4029
-
-
Mercatelli, N.1
Coppola, V.2
Bonci, D.3
-
121
-
-
65949104849
-
Thrombin induces tumor cell cycle activation and spontaneous growth by down-regulation of p27Kip1, in association with the up-regulation of Skp2 and MiR-222
-
Hu L., Ibrahim S., Liu C., et al. Thrombin induces tumor cell cycle activation and spontaneous growth by down-regulation of p27Kip1, in association with the up-regulation of Skp2 and MiR-222. Cancer Res 2009, 69:3374-3381.
-
(2009)
Cancer Res
, vol.69
, pp. 3374-3381
-
-
Hu, L.1
Ibrahim, S.2
Liu, C.3
-
122
-
-
84901490134
-
MiR-221 promotes the development of androgen independence in prostate cancer cells via downregulation of HECTD2 and RAB1A
-
Sun T., Wang X., He H.H., et al. MiR-221 promotes the development of androgen independence in prostate cancer cells via downregulation of HECTD2 and RAB1A. Oncogene 2014, 33:2790-2803.
-
(2014)
Oncogene
, vol.33
, pp. 2790-2803
-
-
Sun, T.1
Wang, X.2
He, H.H.3
-
123
-
-
78650842745
-
MicroRNAs 221/222 and genistein-mediated regulation of ARHI tumor suppressor gene in prostate cancer
-
Chen Y., Zaman M.S., Deng G., et al. MicroRNAs 221/222 and genistein-mediated regulation of ARHI tumor suppressor gene in prostate cancer. Cancer Prev Res (Phila) 2011, 4:76-86.
-
(2011)
Cancer Prev Res (Phila)
, vol.4
, pp. 76-86
-
-
Chen, Y.1
Zaman, M.S.2
Deng, G.3
-
124
-
-
80155161975
-
The expression and clinical significance of GTP-binding RAS-like 3 (ARHI) and microRNA 221 and 222 in prostate cancer
-
Lin D., Cui F., Bu Q., et al. The expression and clinical significance of GTP-binding RAS-like 3 (ARHI) and microRNA 221 and 222 in prostate cancer. JInt Med Res 2011, 39:1870-1875.
-
(2011)
JInt Med Res
, vol.39
, pp. 1870-1875
-
-
Lin, D.1
Cui, F.2
Bu, Q.3
-
125
-
-
38049100559
-
An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells
-
Shi X.B., Xue L., Yang J., et al. An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells. Proc Natl Acad Sci U S A 2007, 104:19983-19988.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 19983-19988
-
-
Shi, X.B.1
Xue, L.2
Yang, J.3
-
126
-
-
20444440706
-
Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation
-
Lee Y.S., Kim H.K., Chung S., et al. Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation. JBiol Chem 2005, 280:16635-16641.
-
(2005)
JBiol Chem
, vol.280
, pp. 16635-16641
-
-
Lee, Y.S.1
Kim, H.K.2
Chung, S.3
-
127
-
-
0025940113
-
Wild-type p53 suppresses growth of human prostate cancer cells containing mutant p53 alleles
-
Isaacs W.B., Carter B.S., Ewing C.M. Wild-type p53 suppresses growth of human prostate cancer cells containing mutant p53 alleles. Cancer Res 1991, 51:4716-4720.
-
(1991)
Cancer Res
, vol.51
, pp. 4716-4720
-
-
Isaacs, W.B.1
Carter, B.S.2
Ewing, C.M.3
-
128
-
-
40749090479
-
Widespread deregulation of microRNA expression in human prostate cancer
-
Ozen M., Creighton C.J., Ozdemir M., et al. Widespread deregulation of microRNA expression in human prostate cancer. Oncogene 2008, 27:1788-1793.
-
(2008)
Oncogene
, vol.27
, pp. 1788-1793
-
-
Ozen, M.1
Creighton, C.J.2
Ozdemir, M.3
-
129
-
-
33847738628
-
Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b
-
Scott G.K., Goga A., Bhaumik D., et al. Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b. JBiol Chem 2007, 282:1479-1486.
-
(2007)
JBiol Chem
, vol.282
, pp. 1479-1486
-
-
Scott, G.K.1
Goga, A.2
Bhaumik, D.3
-
130
-
-
33244474190
-
MCM7 amplification and overexpression are associated with prostate cancer progression
-
Ren B., Yu G., Tseng G.C., et al. MCM7 amplification and overexpression are associated with prostate cancer progression. Oncogene 2006, 25:1090-1098.
-
(2006)
Oncogene
, vol.25
, pp. 1090-1098
-
-
Ren, B.1
Yu, G.2
Tseng, G.C.3
-
131
-
-
84883487767
-
MicroRNA-106b-25 cluster expression is associated with early disease recurrence and targets caspase-7 and focal adhesion in human prostate cancer
-
Hudson R.S., Yi M., Esposito D., et al. MicroRNA-106b-25 cluster expression is associated with early disease recurrence and targets caspase-7 and focal adhesion in human prostate cancer. Oncogene 2013, 32:4139-4147.
-
(2013)
Oncogene
, vol.32
, pp. 4139-4147
-
-
Hudson, R.S.1
Yi, M.2
Esposito, D.3
-
132
-
-
77953948708
-
Identification of the miR-106b~25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation
-
Poliseno L., Salmena L., Riccardi L., et al. Identification of the miR-106b~25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation. Sci Signal 2010, 3:ra29.
-
(2010)
Sci Signal
, vol.3
, pp. ra29
-
-
Poliseno, L.1
Salmena, L.2
Riccardi, L.3
-
133
-
-
79952413655
-
Down-regulation of microRNA 106b is involved in p21-mediated cell cycle arrest in response to radiation in prostate cancer cells
-
Li B., Shi X.B., Nori D., et al. Down-regulation of microRNA 106b is involved in p21-mediated cell cycle arrest in response to radiation in prostate cancer cells. Prostate 2011, 71:567-574.
-
(2011)
Prostate
, vol.71
, pp. 567-574
-
-
Li, B.1
Shi, X.B.2
Nori, D.3
-
134
-
-
84922519100
-
BIM is the primary mediator of MYC-induced apoptosis in multiple solid tissues
-
Muthalagu N., Junttila M.R., Wiese K.E., et al. BIM is the primary mediator of MYC-induced apoptosis in multiple solid tissues. Cell Rep 2014, 8:1347-1353.
-
(2014)
Cell Rep
, vol.8
, pp. 1347-1353
-
-
Muthalagu, N.1
Junttila, M.R.2
Wiese, K.E.3
-
135
-
-
84901733293
-
MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor PDCD4 and promotes cell transformation, proliferation, and metastasis in renal cell carcinoma
-
Li X., Xin S., He Z., et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor PDCD4 and promotes cell transformation, proliferation, and metastasis in renal cell carcinoma. Cell Physiol Biochem 2014, 33:1631-1642.
-
(2014)
Cell Physiol Biochem
, vol.33
, pp. 1631-1642
-
-
Li, X.1
Xin, S.2
He, Z.3
-
136
-
-
84883027905
-
Comprehensive microRNA profiling of prostate cancer
-
Walter B.A., Valera V.A., Pinto P.A., et al. Comprehensive microRNA profiling of prostate cancer. JCancer 2013, 4:350-357.
-
(2013)
JCancer
, vol.4
, pp. 350-357
-
-
Walter, B.A.1
Valera, V.A.2
Pinto, P.A.3
-
137
-
-
78649318287
-
MiR-148a is an androgen-responsive microRNA that promotes LNCaP prostate cell growth by repressing its target CAND1 expression
-
Murata T., Takayama K., Katayama S., et al. miR-148a is an androgen-responsive microRNA that promotes LNCaP prostate cell growth by repressing its target CAND1 expression. Prostate Cancer Prostatic Dis 2010, 13:356-361.
-
(2010)
Prostate Cancer Prostatic Dis
, vol.13
, pp. 356-361
-
-
Murata, T.1
Takayama, K.2
Katayama, S.3
-
138
-
-
77953486364
-
MiR-148a attenuates paclitaxel resistance of hormone-refractory, drug-resistant prostate cancer PC3 cells by regulating MSK1 expression
-
Fujita Y., Kojima K., Ohhashi R., et al. MiR-148a attenuates paclitaxel resistance of hormone-refractory, drug-resistant prostate cancer PC3 cells by regulating MSK1 expression. JBiol Chem 2010, 285:19076-19084.
-
(2010)
JBiol Chem
, vol.285
, pp. 19076-19084
-
-
Fujita, Y.1
Kojima, K.2
Ohhashi, R.3
-
139
-
-
78751527881
-
MicroRNA-616 induces androgen-independent growth of prostate cancer cells by suppressing expression of tissue factor pathway inhibitor TFPI-2
-
Ma S., Chan Y.P., Kwan P.S., et al. MicroRNA-616 induces androgen-independent growth of prostate cancer cells by suppressing expression of tissue factor pathway inhibitor TFPI-2. Cancer Res 2011, 71:583-592.
-
(2011)
Cancer Res
, vol.71
, pp. 583-592
-
-
Ma, S.1
Chan, Y.P.2
Kwan, P.S.3
-
140
-
-
71649087944
-
Effect of miR-296 on the apoptosis of androgen-independent prostate cancer cells
-
Cheng P., Li R., Lin B., et al. Effect of miR-296 on the apoptosis of androgen-independent prostate cancer cells. JReprod Contracept 2009, 20:1-9.
-
(2009)
JReprod Contracept
, vol.20
, pp. 1-9
-
-
Cheng, P.1
Li, R.2
Lin, B.3
-
141
-
-
20144383392
-
Functional epigenomics identifies genes frequently silenced in prostate cancer
-
Lodygin D., Epanchintsev A., Menssen A., et al. Functional epigenomics identifies genes frequently silenced in prostate cancer. Cancer Res 2005, 65:4218-4227.
-
(2005)
Cancer Res
, vol.65
, pp. 4218-4227
-
-
Lodygin, D.1
Epanchintsev, A.2
Menssen, A.3
-
142
-
-
84875807408
-
Upregulation of miR-153 promotes cell proliferation via downregulation of the PTEN tumor suppressor gene in human prostate cancer
-
Wu Z., He B., He J., et al. Upregulation of miR-153 promotes cell proliferation via downregulation of the PTEN tumor suppressor gene in human prostate cancer. Prostate 2013, 73:596-604.
-
(2013)
Prostate
, vol.73
, pp. 596-604
-
-
Wu, Z.1
He, B.2
He, J.3
-
143
-
-
79957900919
-
Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice
-
Trang P., Wiggins J.F., Daige C.L., et al. Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol Ther 2011, 19:1116-1122.
-
(2011)
Mol Ther
, vol.19
, pp. 1116-1122
-
-
Trang, P.1
Wiggins, J.F.2
Daige, C.L.3
-
144
-
-
34247589595
-
Control of stress-dependent cardiac growth and gene expression by a microRNA
-
van Rooij E., Sutherland L.B., Qi X., et al. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 2007, 316:575-579.
-
(2007)
Science
, vol.316
, pp. 575-579
-
-
van Rooij, E.1
Sutherland, L.B.2
Qi, X.3
-
145
-
-
74249112787
-
Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection
-
Lanford R.E., Hildebrandt-Eriksen E.S., Petri A., et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 2010, 327:198-201.
-
(2010)
Science
, vol.327
, pp. 198-201
-
-
Lanford, R.E.1
Hildebrandt-Eriksen, E.S.2
Petri, A.3
-
146
-
-
84918830062
-
Serum-based miRNAs in the prediction and detection of recurrence in melanoma patients
-
Fleming N.H., Zhong J., da Silva I.P., et al. Serum-based miRNAs in the prediction and detection of recurrence in melanoma patients. Cancer 2015, 121:51-59.
-
(2015)
Cancer
, vol.121
, pp. 51-59
-
-
Fleming, N.H.1
Zhong, J.2
da Silva, I.P.3
-
147
-
-
84987617508
-
Identification of 9 serum micro-RNAs as potential noninvasive biomarkers of human astrocytoma
-
Zhi F., Shao N., Wang R., et al. Identification of 9 serum micro-RNAs as potential noninvasive biomarkers of human astrocytoma. Neuro Oncol 2015, 17:383-391.
-
(2015)
Neuro Oncol
, vol.17
, pp. 383-391
-
-
Zhi, F.1
Shao, N.2
Wang, R.3
-
148
-
-
84856812332
-
Changes in circulating microRNA levels associated with prostate cancer
-
Bryant R.J., Pawlowski T., Catto J.W.F., et al. Changes in circulating microRNA levels associated with prostate cancer. Br J Cancer 2012, 106:768-774.
-
(2012)
Br J Cancer
, vol.106
, pp. 768-774
-
-
Bryant, R.J.1
Pawlowski, T.2
Catto, J.W.F.3
-
149
-
-
84864877949
-
Apanel of five circulating microRNAs as potential biomarkers for prostate cancer
-
Chen Z.H., Zhang G.L., Li H.R., et al. Apanel of five circulating microRNAs as potential biomarkers for prostate cancer. Prostate 2012, 72:1443-1452.
-
(2012)
Prostate
, vol.72
, pp. 1443-1452
-
-
Chen, Z.H.1
Zhang, G.L.2
Li, H.R.3
-
150
-
-
84873250716
-
Up-regulated microRNA-143 in cancer stem cells differentiation promotes prostate cancer cells metastasis by modulating FNDC3B expression
-
Fan X., Chen X., Deng W., et al. Up-regulated microRNA-143 in cancer stem cells differentiation promotes prostate cancer cells metastasis by modulating FNDC3B expression. BMC Cancer 2013, 13:61.
-
(2013)
BMC Cancer
, vol.13
, pp. 61
-
-
Fan, X.1
Chen, X.2
Deng, W.3
|