메뉴 건너뛰기




Volumn , Issue , 2014, Pages 263-282

In Vivo Techniques and Strategies for Enhanced Vascularization of Engineered Bone

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84939980407     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1201/b16777-17     Document Type: Chapter
Times cited : (1)

References (82)
  • 1
    • 70349446443 scopus 로고    scopus 로고
    • In vivo analysis of biocompatibility and vascularization of the synthetic bone grafting substitute nanobone
    • Abshagen, K. et al., 2009. In vivo analysis of biocompatibility and vascularization of the synthetic bone grafting substitute nanobone. Journal of Biomedical Materials Research. Part A, 91(2), 557-566.
    • (2009) Journal of Biomedical Materials Research. Part A , vol.91 , Issue.2 , pp. 557-566
    • Abshagen, K.1
  • 3
    • 84866415693 scopus 로고    scopus 로고
    • Recent advances in bone tissue engineering scaffolds
    • Bose, S., Roy, M., and Bandyopadhyay, A., 2012. Recent advances in bone tissue engineering scaffolds. Trends in Biotechnology, 30(10), 546-554.
    • (2012) Trends in Biotechnology , vol.30 , Issue.10 , pp. 546-554
    • Bose, S.1    Roy, M.2    Bandyopadhyay, A.3
  • 4
    • 84865446591 scopus 로고    scopus 로고
    • Tissue engineered bone grafts based on biomimetic nanocomposite PLGA/amorphous calcium phosphate scaffold and human adipose-derived stem cells
    • Buschmann, J. et al., 2012. Tissue engineered bone grafts based on biomimetic nanocomposite PLGA/amorphous calcium phosphate scaffold and human adipose-derived stem cells. Injury, 43(10), 1689-1697.
    • (2012) Injury , vol.43 , Issue.10 , pp. 1689-1697
    • Buschmann, J.1
  • 5
    • 34249882809 scopus 로고    scopus 로고
    • Engineering tubular bone constructs
    • Chen, F. et al., 2007. Engineering tubular bone constructs. Journal of Biomechanics, 40 Suppl 1(null), S73-S79.
    • (2007) Journal of Biomechanics , vol.40 , pp. S73-S79
    • Chen, F.1
  • 7
    • 82555178429 scopus 로고    scopus 로고
    • In vitro model of vascularized bone: Synergizing vascular development and osteogenesis
    • R. Goncalves
    • Correia, C. et al., 2011. In vitro model of vascularized bone: Synergizing vascular development and osteogenesis. R. Goncalves, ed. PloS One, 6(12), e28352.
    • (2011) PloS One , vol.6 , Issue.12
    • Correia, C.1
  • 8
    • 1842632667 scopus 로고    scopus 로고
    • Endothelial cell-cell junctions: Happy together
    • Dejana, E., 2004. Endothelial cell-cell junctions: Happy together. Nature Reviews. Molecular Cell Biology, 5(4), 261-270.
    • (2004) Nature Reviews. Molecular Cell Biology , vol.5 , Issue.4 , pp. 261-270
    • Dejana, E.1
  • 9
    • 84868575262 scopus 로고    scopus 로고
    • Efficient engineering of vascularized ectopic bone from human embryonic stem cell-derived mesenchymal stem cells
    • Domev, H. et al., 2012. Efficient engineering of vascularized ectopic bone from human embryonic stem cell-derived mesenchymal stem cells. Tissue Engineering. Part A, 18(21-22), 2290-2302.
    • (2012) Tissue Engineering. Part A , vol.18 , Issue.21-22 , pp. 2290-2302
    • Domev, H.1
  • 10
    • 84861905988 scopus 로고    scopus 로고
    • Prefabrication of axial vascularized tissue engineering coral bone by an arteriovenous loop: A better model
    • Dong, Q. et al., 2012. Prefabrication of axial vascularized tissue engineering coral bone by an arteriovenous loop: A better model. Material Science and Engineering: C, 32(6), 1536-1541.
    • (2012) Material Science and Engineering: C , vol.32 , Issue.6 , pp. 1536-1541
    • Dong, Q.1
  • 11
    • 0346335854 scopus 로고    scopus 로고
    • Neovascularization of poly(ether ester) block-copolymer scaffolds in vivo: Long-term investigations using intravital fluorescent microscopy
    • Druecke, D. et al., 2004. Neovascularization of poly(ether ester) block-copolymer scaffolds in vivo: Long-term investigations using intravital fluorescent microscopy. Journal of Biomedical Materials Research. Part A, 68(1), 10-18.
    • (2004) Journal of Biomedical Materials Research. Part A , vol.68 , Issue.1 , pp. 10-18
    • Druecke, D.1
  • 12
    • 67249129599 scopus 로고    scopus 로고
    • Mural cell associated VEGF is required for organotypic vessel formation
    • Y. Cao, ed
    • Evensen, L. et al., 2009. Mural cell associated VEGF is required for organotypic vessel formation. Y. Cao, ed. PloS One, 4(6), e5798.
    • (2009) PloS One , vol.4 , Issue.6
    • Evensen, L.1
  • 13
    • 77954525028 scopus 로고    scopus 로고
    • The role of endothelial progenitor cells in prevascularized bone tissue engineering: Development of heterogeneous constructs
    • Fedorovich, N.E. et al., 2010. The role of endothelial progenitor cells in prevascularized bone tissue engineering: Development of heterogeneous constructs. Tissue Engineering. Part A, 16(7), 2355-2367.
    • (2010) Tissue Engineering. Part A , vol.16 , Issue.7 , pp. 2355-2367
    • Fedorovich, N.E.1
  • 14
    • 76149090479 scopus 로고    scopus 로고
    • Imaging and quantitative assessment of long bone vascularization in the adult rat using microcomputed tomography
    • Fei, J. et al., 2010. Imaging and quantitative assessment of long bone vascularization in the adult rat using microcomputed tomography. Anatomical Record (Hoboken, NJ: 2007), 293(2), 215-224.
    • (2010) Anatomical Record (Hoboken, NJ: 2007) , vol.293 , Issue.2 , pp. 215-224
    • Fei, J.1
  • 15
    • 78149238538 scopus 로고    scopus 로고
    • Mechanical loading affects angiogenesis and osteogenesis in an in vivo bone chamber: A modeling study
    • Geris, L. et al., 2010. Mechanical loading affects angiogenesis and osteogenesis in an in vivo bone chamber: A modeling study. Tissue Engineering. Part A, 16(11), 3353-3361.
    • (2010) Tissue Engineering. Part A , vol.16 , Issue.11 , pp. 3353-3361
    • Geris, L.1
  • 16
    • 84867025157 scopus 로고    scopus 로고
    • A differential effect of bone morphogenetic protein-2 and vascular endothelial growth factor release timing on osteogenesis at ectopic and orthotopic sites in a large-animal model
    • Geuze, R.E. et al., 2012. A differential effect of bone morphogenetic protein-2 and vascular endothelial growth factor release timing on osteogenesis at ectopic and orthotopic sites in a large-animal model. Tissue Engineering. Part A, 18(19-20), 2052-2062.
    • (2012) Tissue Engineering. Part A , vol.18 , Issue.19-20 , pp. 2052-2062
    • Geuze, R.E.1
  • 17
    • 80052348347 scopus 로고    scopus 로고
    • Scaffold vascularization in vivo driven by primary human osteoblasts in concert with host inflammatory cells
    • Ghanaati, S. et al., 2011. Scaffold vascularization in vivo driven by primary human osteoblasts in concert with host inflammatory cells. Biomaterials, 32(32), 8150-8160.
    • (2011) Biomaterials , vol.32 , Issue.32 , pp. 8150-8160
    • Ghanaati, S.1
  • 18
    • 77957665863 scopus 로고    scopus 로고
    • A preexisting microvascular network benefits in vivo revascularization of a microvascularized tissue-engineered skin substitute
    • Gibot, L. et al., 2010. A preexisting microvascular network benefits in vivo revascularization of a microvascularized tissue-engineered skin substitute. Tissue Engineering. Part A, 16(10), 3199-3206.
    • (2010) Tissue Engineering. Part A , vol.16 , Issue.10 , pp. 3199-3206
    • Gibot, L.1
  • 19
    • 0036291225 scopus 로고    scopus 로고
    • Tissue engineering: Functional assessment and clinical outcome
    • Goldstein, S.A., 2002. Tissue engineering: Functional assessment and clinical outcome. Annals of the New York Academy of Sciences, 961, 183-192.
    • (2002) Annals of the New York Academy of Sciences , vol.961 , pp. 183-192
    • Goldstein, S.A.1
  • 20
    • 67349213598 scopus 로고    scopus 로고
    • The effect of the co-immobilization of human osteoprogenitors and endothelial cells within alginate microspheres on mineralization in a bone defect
    • Grellier, M. et al., 2009. The effect of the co-immobilization of human osteoprogenitors and endothelial cells within alginate microspheres on mineralization in a bone defect. Biomaterials, 30(19), 3271-3278.
    • (2009) Biomaterials , vol.30 , Issue.19 , pp. 3271-3278
    • Grellier, M.1
  • 21
    • 79952757061 scopus 로고    scopus 로고
    • Efficient in vivo vascularization of tissue-engineering scaffolds
    • Hegen, A. et al., 2011. Efficient in vivo vascularization of tissue-engineering scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 5(4), e52-e62.
    • (2011) Journal of Tissue Engineering and Regenerative Medicine , vol.5 , Issue.4 , pp. e52-e62
    • Hegen, A.1
  • 22
    • 10644279947 scopus 로고    scopus 로고
    • Vascular endothelial growth factor and angiogenesis
    • Hoeben, A. et al., 2004. Vascular endothelial growth factor and angiogenesis. Pharmacological Reviews, 56(4), 549-580.
    • (2004) Pharmacological Reviews , vol.56 , Issue.4 , pp. 549-580
    • Hoeben, A.1
  • 24
    • 77955281178 scopus 로고    scopus 로고
    • Modulating osteogenesis of mesenchymal stem cells by modifying growth factor availability
    • Huang, Z. et al., 2010. Modulating osteogenesis of mesenchymal stem cells by modifying growth factor availability. Cytokine, 51(3), 305-310.
    • (2010) Cytokine , vol.51 , Issue.3 , pp. 305-310
    • Huang, Z.1
  • 25
    • 3042782581 scopus 로고    scopus 로고
    • Scaffold-based tissue engineering: Rationale for computer-aided design and solid free-form fabrication systems
    • Hutmacher, D.W., Sittinger, M., and Risbud, M.V., 2004. Scaffold-based tissue engineering: Rationale for computer-aided design and solid free-form fabrication systems. Trends in Biotechnology, 22(7), 354-362.
    • (2004) Trends in Biotechnology , vol.22 , Issue.7 , pp. 354-362
    • Hutmacher, D.W.1    Sittinger, M.2    Risbud, M.V.3
  • 26
    • 70350509174 scopus 로고    scopus 로고
    • Human osteoblast-derived factors induce early osteogenic markers in human mesenchymal stem cells
    • Ilmer, M. et al., 2009. Human osteoblast-derived factors induce early osteogenic markers in human mesenchymal stem cells. Tissue Engineering. Part A, 15(9), 2397-2409.
    • (2009) Tissue Engineering. Part A , vol.15 , Issue.9 , pp. 2397-2409
    • Ilmer, M.1
  • 27
    • 24944569212 scopus 로고    scopus 로고
    • Engineering vascularized tissue
    • Jain, R.K. et al., 2005. Engineering vascularized tissue. Nature Biotechnology, 23(7), 821-823.
    • (2005) Nature Biotechnology , vol.23 , Issue.7 , pp. 821-823
    • Jain, R.K.1
  • 28
    • 84860623107 scopus 로고    scopus 로고
    • Progress in the tissue engineering and stem cell industry “are we there yet?"
    • Jaklenec, A. et al., 2012. Progress in the tissue engineering and stem cell industry “are we there yet?". Tissue Engineering. Part B, Reviews, 18(3), 155-166.
    • (2012) Tissue Engineering. Part B, Reviews , vol.18 , Issue.3 , pp. 155-166
    • Jaklenec, A.1
  • 29
    • 34547686265 scopus 로고    scopus 로고
    • Dynamic sealing of lung air leaks by the transplantation of tissue engineered cell sheets
    • Kanzaki, M. et al., 2007. Dynamic sealing of lung air leaks by the transplantation of tissue engineered cell sheets. Biomaterials, 28(29), 4294-4302.
    • (2007) Biomaterials , vol.28 , Issue.29 , pp. 4294-4302
    • Kanzaki, M.1
  • 30
    • 0032404328 scopus 로고    scopus 로고
    • Development of biocompatible synthetic extracellular matrices for tissue engineering
    • Kim, B.-S. and Mooney, D.J., 1998. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends in Biotechnology, 16(5), 224-230.
    • (1998) Trends in Biotechnology , vol.16 , Issue.5 , pp. 224-230
    • Kim, B.-S.1    Mooney, D.J.2
  • 31
    • 79957747188 scopus 로고    scopus 로고
    • Co-culture systems for vascularization-Learning from nature
    • Kirkpatrick, C.J., Fuchs, S., and Unger, R.E., 2011. Co-culture systems for vascularization-Learning from nature. Advanced Drug Delivery Reviews, 63(4-5), 291-299.
    • (2011) Advanced Drug Delivery Reviews , vol.63 , Issue.4-5 , pp. 291-299
    • Kirkpatrick, C.J.1    Fuchs, S.2    Unger, R.E.3
  • 32
    • 33746745292 scopus 로고    scopus 로고
    • Engineering of vascularized transplantable bone tissues: Induction of axial vascularization in an osteoconductive matrix using an arteriovenous loop
    • Kneser, U. et al., 2006. Engineering of vascularized transplantable bone tissues: Induction of axial vascularization in an osteoconductive matrix using an arteriovenous loop. Tissue Engineering, 12(7), 1721-1731.
    • (2006) Tissue Engineering , vol.12 , Issue.7 , pp. 1721-1731
    • Kneser, U.1
  • 36
    • 33750939285 scopus 로고    scopus 로고
    • Angiogenesis in tissue engineering: Breathing life into constructed tissue substitutes
    • Laschke, M.W. et al., 2006. Angiogenesis in tissue engineering: Breathing life into constructed tissue substitutes. Tissue Engineering, 12(8), 2093-2104.
    • (2006) Tissue Engineering , vol.12 , Issue.8 , pp. 2093-2104
    • Laschke, M.W.1
  • 37
    • 77956621556 scopus 로고    scopus 로고
    • In vitro and in vivo evaluation of a novel nanosize hydroxyapatite particles/poly(ester-urethane) composite scaffold for bone tissue engineering
    • Laschke, M.W. et al., 2010. In vitro and in vivo evaluation of a novel nanosize hydroxyapatite particles/poly(ester-urethane) composite scaffold for bone tissue engineering. Acta Biomaterialia, 6(6), 2020-2027.
    • (2010) Acta Biomaterialia , vol.6 , Issue.6 , pp. 2020-2027
    • Laschke, M.W.1
  • 38
    • 67349245858 scopus 로고    scopus 로고
    • In vivo biocompatibility and vascularization of biodegradable porous polyurethane scaffolds for tissue engineering
    • Laschke, M.W. et al., 2009. In vivo biocompatibility and vascularization of biodegradable porous polyurethane scaffolds for tissue engineering. Acta Biomaterialia, 5(6), 1991-2001.
    • (2009) Acta Biomaterialia , vol.5 , Issue.6 , pp. 1991-2001
    • Laschke, M.W.1
  • 39
    • 9544247847 scopus 로고    scopus 로고
    • Comparative effects of basic fibroblast growth factor and vascular endothelial growth factor on coronary collateral development and the arterial response to injury
    • Lazarous, D.F. et al., 1996. Comparative effects of basic fibroblast growth factor and vascular endothelial growth factor on coronary collateral development and the arterial response to injury. Circulation, 94(5), 1074-1082.
    • (1996) Circulation , vol.94 , Issue.5 , pp. 1074-1082
    • Lazarous, D.F.1
  • 40
    • 0027857106 scopus 로고
    • Dorsal skinfold chamber technique for intravital microscopy in nude mice
    • Lehr, H.A. et al., 1993. Dorsal skinfold chamber technique for intravital microscopy in nude mice. The American Journal of Pathology, 143(4), 1055-1062.
    • (1993) The American Journal of Pathology , vol.143 , Issue.4 , pp. 1055-1062
    • Lehr, H.A.1
  • 42
    • 79960152550 scopus 로고    scopus 로고
    • Hydrogels for cardiac tissue engineering
    • Li, Z. and Guan, J., 2011. Hydrogels for cardiac tissue engineering. Polymers, 3, 740-761.
    • (2011) Polymers , vol.3 , pp. 740-761
    • Li, Z.1    Guan, J.2
  • 43
    • 0033989026 scopus 로고    scopus 로고
    • Origins of circulating endothelial cells and endothelial outgrowth from blood
    • Lin, Y. et al. 2000. Origins of circulating endothelial cells and endothelial outgrowth from blood. The Journal of Clinical Investigation, 105(1), 71-77.
    • (2000) The Journal of Clinical Investigation , vol.105 , Issue.1 , pp. 71-77
    • Lin, Y.1
  • 44
    • 84863755129 scopus 로고    scopus 로고
    • Functionalized synthetic biodegradable polymer scaffolds for tissue engineering
    • Liu, X., Holzwarth, J.M., and Ma, P.X., 2012. Functionalized synthetic biodegradable polymer scaffolds for tissue engineering. Macromolecular Bioscience, 12(7), 911-919.
    • (2012) Macromolecular Bioscience , vol.12 , Issue.7 , pp. 911-919
    • Liu, X.1    Holzwarth, J.M.2    Ma, P.X.3
  • 45
    • 69949152311 scopus 로고    scopus 로고
    • Vascularization strategies for tissue engineering
    • Lovett, M. et al., 2009. Vascularization strategies for tissue engineering. Tissue Engineering. Part B, Reviews, 15(3), 353-370.
    • (2009) Tissue Engineering. Part B, Reviews , vol.15 , Issue.3 , pp. 353-370
    • Lovett, M.1
  • 46
    • 79952149042 scopus 로고    scopus 로고
    • Coculture of osteoblasts and endothelial cells: Optimization of culture medium and cell ratio
    • Ma, J. et al., 2011. Coculture of osteoblasts and endothelial cells: Optimization of culture medium and cell ratio. Tissue Engineering. Part C, Methods, 17(3), 349-357.
    • (2011) Tissue Engineering. Part C, Methods , vol.17 , Issue.3 , pp. 349-357
    • Ma, J.1
  • 48
    • 2942588974 scopus 로고    scopus 로고
    • Bone tissue engineering using human mesenchymal stem cells: Effects of scaffold material and medium flow
    • Meinel, L. et al., 2004. Bone tissue engineering using human mesenchymal stem cells: Effects of scaffold material and medium flow. Annals of Biomedical Engineering, 32(1), 112-122.
    • (2004) Annals of Biomedical Engineering , vol.32 , Issue.1 , pp. 112-122
    • Meinel, L.1
  • 49
    • 77649273800 scopus 로고    scopus 로고
    • Biomimetic hydrogels with pro-angiogenic properties
    • Moon, J.J. et al., 2010. Biomimetic hydrogels with pro-angiogenic properties. Biomaterials, 31(14), 3840-3847.
    • (2010) Biomaterials , vol.31 , Issue.14 , pp. 3840-3847
    • Moon, J.J.1
  • 50
    • 33745779713 scopus 로고    scopus 로고
    • Tissue engineering: The hope, the hype, and the future
    • Nerem, R.M., 2006. Tissue engineering: The hope, the hype, and the future. Tissue Engineering, 12(5), 1143-1150.
    • (2006) Tissue Engineering , vol.12 , Issue.5 , pp. 1143-1150
    • Nerem, R.M.1
  • 51
    • 84872687662 scopus 로고    scopus 로고
    • Engineered bone tissue associated with vascularization utilizing a rotating wall vessel bioreactor
    • Nishi, M. et al., 2013. Engineered bone tissue associated with vascularization utilizing a rotating wall vessel bioreactor. Journal of Biomedical Materials Research. Part A, 101(2), 421-427.
    • (2013) Journal of Biomedical Materials Research. Part A , vol.101 , Issue.2 , pp. 421-427
    • Nishi, M.1
  • 52
    • 4544368036 scopus 로고    scopus 로고
    • Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium-NEJM
    • Nishida, K., 2004. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium-NEJM. New England Journal of Medicine, 351(12), 1187-1196.
    • (2004) New England Journal of Medicine , vol.351 , Issue.12 , pp. 1187-1196
    • Nishida, K.1
  • 53
    • 0035044632 scopus 로고    scopus 로고
    • Engineering and characterization of functional human microvessels in immunodeficient mice
    • Nör, J.E. et al., 2001. Engineering and characterization of functional human microvessels in immunodeficient mice. Laboratory Investigation, 81(4), 453-463.
    • (2001) Laboratory Investigation , vol.81 , Issue.4 , pp. 453-463
    • Nör, J.E.1
  • 54
    • 34447117478 scopus 로고    scopus 로고
    • Engineering functional two- and three-dimensional liver systems in vivo using hepatic tissue sheets
    • Ohashi, K. et al., 2007. Engineering functional two- and three-dimensional liver systems in vivo using hepatic tissue sheets. Nature Medicine, 13(7), 880-885.
    • (2007) Nature Medicine , vol.13 , Issue.7 , pp. 880-885
    • Ohashi, K.1
  • 55
    • 0027686384 scopus 로고
    • A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide)
    • Okano, T. et al., 1993. A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide). Journal of Biomedical Materials Research, 27(10), 1243-1251.
    • (1993) Journal of Biomedical Materials Research , vol.27 , Issue.10 , pp. 1243-1251
    • Okano, T.1
  • 56
    • 85047694677 scopus 로고    scopus 로고
    • Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis
    • Ozawa, C.R. et al., 2004. Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis. The Journal of Clinical Investigation, 113(4), 516-527.
    • (2004) The Journal of Clinical Investigation , vol.113 , Issue.4 , pp. 516-527
    • Ozawa, C.R.1
  • 59
    • 77957353309 scopus 로고    scopus 로고
    • Engineering more than a cell: Vascularization strategies in tissue engineering
    • Phelps, E.A. and García, A.J., 2010. Engineering more than a cell: Vascularization strategies in tissue engineering. Current Opinion in Biotechnology, 21(5), 704-709.
    • (2010) Current Opinion in Biotechnology , vol.21 , Issue.5 , pp. 704-709
    • Phelps, E.A.1    García, A.J.2
  • 60
    • 79957615144 scopus 로고    scopus 로고
    • Development of osteogenic cell sheets for bone tissue engineering applications
    • Pirraco, R.P. et al., 2011. Development of osteogenic cell sheets for bone tissue engineering applications. Tissue Engineering. Part A, 17(11-12), 1507-1515.
    • (2011) Tissue Engineering. Part A , vol.17 , Issue.11-12 , pp. 1507-1515
    • Pirraco, R.P.1
  • 61
    • 0033515827 scopus 로고    scopus 로고
    • Multilineage potential of adult human mesenchymal stem cells
    • Pittenger, M.F., 1999. Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143-147.
    • (1999) Science , vol.284 , Issue.5411 , pp. 143-147
    • Pittenger, M.F.1
  • 63
    • 13444261932 scopus 로고    scopus 로고
    • The crucial role of vascular permeability factor/vascular endothelial growth factor in angiogenesis: A historical review
    • Ribatti, D., 2005. The crucial role of vascular permeability factor/vascular endothelial growth factor in angiogenesis: A historical review. British Journal of Haematology, 128(3), 303-309.
    • (2005) British Journal of Haematology , vol.128 , Issue.3 , pp. 303-309
    • Ribatti, D.1
  • 64
    • 84455205646 scopus 로고    scopus 로고
    • Structure and quantification of microvascularisation within mouse long bones: What and how should we measure?
    • Roche, B. et al., 2012. Structure and quantification of microvascularisation within mouse long bones: What and how should we measure? Bone, 50(1), 390-399.
    • (2012) Bone , vol.50 , Issue.1 , pp. 390-399
    • Roche, B.1
  • 65
    • 33750610353 scopus 로고    scopus 로고
    • Endothelial cells assemble into a 3-dimensional prevascular network in a bone tissue engineering construct
    • Rouwkema, J., De Boer, J., and Van Blitterswijk, C.A., 2006. Endothelial cells assemble into a 3-dimensional prevascular network in a bone tissue engineering construct. Tissue Engineering, 12(9), 2685-2693.
    • (2006) Tissue Engineering , vol.12 , Issue.9 , pp. 2685-2693
    • Rouwkema, J.1    De Boer, J.2    Van Blitterswijk, C.A.3
  • 67
    • 12944315083 scopus 로고    scopus 로고
    • In vivo formation of complex microvessels lined by human endothelial cells in an immunodeficient mouse
    • Schechner, J.S. et al., 2000. In vivo formation of complex microvessels lined by human endothelial cells in an immunodeficient mouse. Proceedings of the National Academy of Sciences of the United States of America, 97(16), 9191-9196.
    • (2000) Proceedings of the National Academy of Sciences of the United States of America , vol.97 , Issue.16 , pp. 9191-9196
    • Schechner, J.S.1
  • 68
    • 42249104208 scopus 로고    scopus 로고
    • Sustained release of sphingosine 1-phosphate for therapeutic arteriogenesis and bone tissue engineering
    • Sefcik, L.S. et al., 2008. Sustained release of sphingosine 1-phosphate for therapeutic arteriogenesis and bone tissue engineering. Biomaterials, 29(19), 2869-2877.
    • (2008) Biomaterials , vol.29 , Issue.19 , pp. 2869-2877
    • Sefcik, L.S.1
  • 69
    • 0037409862 scopus 로고    scopus 로고
    • Cell sheet engineering for myocardial tissue reconstruction
    • Shimizu, T. et al., 2003. Cell sheet engineering for myocardial tissue reconstruction. Biomaterials, 24(13), 2309-2316.
    • (2003) Biomaterials , vol.24 , Issue.13 , pp. 2309-2316
    • Shimizu, T.1
  • 70
    • 1042301245 scopus 로고    scopus 로고
    • In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold
    • Shin, M., Yoshimoto, H., and Vacanti, J.P., 2004. In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold. Tissue Engineering, 10(1-2), 33-41.
    • (2004) Tissue Engineering , vol.10 , Issue.1-2 , pp. 33-41
    • Shin, M.1    Yoshimoto, H.2    Vacanti, J.P.3
  • 71
    • 0348015827 scopus 로고    scopus 로고
    • Influence of the in vitro culture period on the in vivo performance of cell/titanium bone tissue-engineered constructs using a rat cranial critical size defect model
    • Sikavitsas, V.I. et al., 2003. Influence of the in vitro culture period on the in vivo performance of cell/titanium bone tissue-engineered constructs using a rat cranial critical size defect model. Journal of Biomedical Materials Research. Part A, 67(3), 944-951.
    • (2003) Journal of Biomedical Materials Research. Part A , vol.67 , Issue.3 , pp. 944-951
    • Sikavitsas, V.I.1
  • 72
    • 77957158635 scopus 로고    scopus 로고
    • Short bouts of mechanical loading are as effective as dexamethasone at inducing matrix production by human bone marrow mesenchymal stem cells
    • Sittichokechaiwut, A. et al., 2010. Short bouts of mechanical loading are as effective as dexamethasone at inducing matrix production by human bone marrow mesenchymal stem cells. European Cells and Materials, 20, 45-57.
    • (2010) European Cells and Materials , vol.20 , pp. 45-57
    • Sittichokechaiwut, A.1
  • 73
    • 34547979075 scopus 로고    scopus 로고
    • Effects of culture conditions on osteogenic differentiation in human mesenchymal stem cells
    • Song, S.J. et al., 2007. Effects of culture conditions on osteogenic differentiation in human mesenchymal stem cells. Journal of Microbiology and Biotechnology, 17(7), 1113-1119.
    • (2007) Journal of Microbiology and Biotechnology , vol.17 , Issue.7 , pp. 1113-1119
    • Song, S.J.1
  • 74
    • 72649087696 scopus 로고    scopus 로고
    • In vivo engineering of a human vasculature for bone tissue engineering applications
    • Steffens, L. et al., 2009. In vivo engineering of a human vasculature for bone tissue engineering applications. Journal of Cellular and Molecular Medicine, 13(9B), 3380-3386.
    • (2009) Journal of Cellular and Molecular Medicine , vol.13 , Issue.9B , pp. 3380-3386
    • Steffens, L.1
  • 75
    • 49749090064 scopus 로고    scopus 로고
    • Combination of bone tissue engineering and BMP-2 gene transfection promotes bone healing in osteoporotic rats
    • Tang, Y. et al., 2008. Combination of bone tissue engineering and BMP-2 gene transfection promotes bone healing in osteoporotic rats. Cell Biology International, 32(9), 1150-1157.
    • (2008) Cell Biology International , vol.32 , Issue.9 , pp. 1150-1157
    • Tang, Y.1
  • 77
    • 0033793647 scopus 로고    scopus 로고
    • Effect of human endothelial cells on human bone marrow stromal cell phenotype: Role of VEGF?
    • Villars, F. et al., 2000. Effect of human endothelial cells on human bone marrow stromal cell phenotype: Role of VEGF? Journal of Cellular Biochemistry, 79(4), 672-685.
    • (2000) Journal of Cellular Biochemistry , vol.79 , Issue.4 , pp. 672-685
    • Villars, F.1
  • 78
    • 34247521795 scopus 로고    scopus 로고
    • Comparison of hydrogels in the in vivo formation of tissue-engineered bone using mesenchymal stem cells and beta-tricalcium phosphate
    • Weinand, C. et al., 2007. Comparison of hydrogels in the in vivo formation of tissue-engineered bone using mesenchymal stem cells and beta-tricalcium phosphate. Tissue Engineering, 13(4), 757-765.
    • (2007) Tissue Engineering , vol.13 , Issue.4 , pp. 757-765
    • Weinand, C.1
  • 79
    • 77950654906 scopus 로고    scopus 로고
    • VEGF incorporated into calcium phosphate ceramics promotes vascularisation and bone formation in vivo
    • Wernike, E., Montjovent, M.O., and Liu, Y., 2010. VEGF incorporated into calcium phosphate ceramics promotes vascularisation and bone formation in vivo. European Cells and Materials, 19, 30-40.
    • (2010) European Cells and Materials , vol.19 , pp. 30-40
    • Wernike, E.1    Montjovent, M.O.2    Liu, Y.3
  • 80
    • 67349136033 scopus 로고    scopus 로고
    • Incorporation of sequential BMP-2/BMP-7 delivery system into chitosan-based scaffolds for bone tissue engineering
    • Yilgor, P., 2009. Incorporation of sequential BMP-2/BMP-7 delivery system into chitosan-based scaffolds for bone tissue engineering. Biomaterials, 30(21), 3551-3559.
    • (2009) Biomaterials , vol.30 , Issue.21 , pp. 3551-3559
    • Yilgor, P.1
  • 81
    • 84862899040 scopus 로고    scopus 로고
    • Insulin-like growth factor 1 enhances the proliferation and osteogenic differentiation of human periodontal ligament stem cells via ERK and JNK MAPK pathways
    • Yu, Y. et al., 2012. Insulin-like growth factor 1 enhances the proliferation and osteogenic differentiation of human periodontal ligament stem cells via ERK and JNK MAPK pathways. Histochemistry and Cell Biology, 137(4), 513-525.
    • (2012) Histochemistry and Cell Biology , vol.137 , Issue.4 , pp. 513-525
    • Yu, Y.1
  • 82
    • 75549083844 scopus 로고    scopus 로고
    • Neo-vascularization and bone formation mediated by fetal mesenchymal stem cell tissue-engineered bone grafts in critical-size femoral defects
    • Zhang, Z.-Y. et al., 2010. Neo-vascularization and bone formation mediated by fetal mesenchymal stem cell tissue-engineered bone grafts in critical-size femoral defects. Biomaterials, 31(4), 608-620.
    • (2010) Biomaterials , vol.31 , Issue.4 , pp. 608-620
    • Zhang, Z.-Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.