-
1
-
-
0029819936
-
Metabolic effects of metformin on glucose and lactate metabolism in noninsulin-dependent diabetes mellitus
-
Cusi K, Consoli A, DeFronzo RA. Metabolic effects of metformin on glucose and lactate metabolism in noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 1996; 81: 4059-67.
-
(1996)
J Clin Endocrinol Metab
, vol.81
, pp. 4059-4067
-
-
Cusi, K.1
Consoli, A.2
DeFronzo, R.A.3
-
2
-
-
0033673203
-
Mechanism by which metformin reduces glucose production in type 2 diabetes
-
Hundal RS, Krssak M, Dufour S, et al. Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes 2000; 49: 2063-9.
-
(2000)
Diabetes
, vol.49
, pp. 2063-2069
-
-
Hundal, R.S.1
Krssak, M.2
Dufour, S.3
-
3
-
-
0030749042
-
Effects of metformin on lactate uptake and gluconeogenesis in the perfused rat liver
-
Radziuk J, Zhang Z, Wiernsperger N, Pye S. Effects of metformin on lactate uptake and gluconeogenesis in the perfused rat liver. Diabetes 1997; 46: 1406-13.
-
(1997)
Diabetes
, vol.46
, pp. 1406-1413
-
-
Radziuk, J.1
Zhang, Z.2
Wiernsperger, N.3
Pye, S.4
-
4
-
-
84903524608
-
Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase
-
Madiraju AK, Erion DM, Rahimi Y, et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 2014; 510: 542-6.
-
(2014)
Nature
, vol.510
, pp. 542-546
-
-
Madiraju, A.K.1
Erion, D.M.2
Rahimi, Y.3
-
5
-
-
84873707522
-
Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP
-
Miller RA, Chu Q, Xie J, Foretz M, Viollet B, Birnbaum MJ. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature 2013; 494: 256-60.
-
(2013)
Nature
, vol.494
, pp. 256-260
-
-
Miller, R.A.1
Chu, Q.2
Xie, J.3
Foretz, M.4
Viollet, B.5
Birnbaum, M.J.6
-
6
-
-
77954933558
-
Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state
-
Foretz M, Hebrard S, Leclerc J, et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J Clin Invest 2010; 120: 2355-69.
-
(2010)
J Clin Invest
, vol.120
, pp. 2355-2369
-
-
Foretz, M.1
Hebrard, S.2
Leclerc, J.3
-
7
-
-
84931829591
-
-
2015
-
American Diabetes Association. Standards of Medical care in Diabetes 2015; 2015; 38: (suppl 1) S41-S48.
-
(2015)
Standards of Medical care in Diabetes
, vol.38
, pp. 41-48
-
-
-
8
-
-
84885220015
-
Lifestyle and metformin treatment favorably influence lipoprotein subfraction distribution in the Diabetes Prevention Program
-
Goldberg R, Temprosa M, Otvos J, et al. Lifestyle and metformin treatment favorably influence lipoprotein subfraction distribution in the Diabetes Prevention Program. J Clin Endocrinol Metab 2013; 98: 3989-98.
-
(2013)
J Clin Endocrinol Metab
, vol.98
, pp. 3989-3998
-
-
Goldberg, R.1
Temprosa, M.2
Otvos, J.3
-
9
-
-
0032511566
-
Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34)
-
UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 1998; 352: 854-65.
-
(1998)
Lancet
, vol.352
, pp. 854-865
-
-
-
10
-
-
53749091595
-
10-year follow-up of intensive glucose control in type 2 diabetes
-
Holman RC, Paul SK, Bethel MA. Matthews DR, Neil H. 10-year follow-up of intensive glucose control in type 2 diabetes. N. Engl J Med 2008; 359: 1577-89.
-
(2008)
N. Engl J Med
, vol.359
, pp. 1577-1589
-
-
Holman, R.C.1
Paul, S.K.2
Bethel, M.A.3
Matthews, D.R.4
Neil, H.5
-
11
-
-
85027943540
-
Effects of lifestyle modification and metformin on atherosclerotic indices among HIV-infected patients with the metabolic syndrome
-
Fitch K, Abbara S, Lee H, Stavrou E, Sacks R, Michel T, Hemphill L, Torriani M, Grinspoon S. Effects of lifestyle modification and metformin on atherosclerotic indices among HIV-infected patients with the metabolic syndrome. AIDS 2012; 26: 587-97.
-
(2012)
AIDS
, vol.26
, pp. 587-597
-
-
Fitch, K.1
Abbara, S.2
Lee, H.3
Stavrou, E.4
Sacks, R.5
Michel, T.6
Hemphill, L.7
Torriani, M.8
Grinspoon, S.9
-
12
-
-
79959554252
-
The role of insulin-sensitizing agents in the treatment of nonalcoholic steatohepatitis
-
Van Wagner L,B, Rinnela ME. The role of insulin-sensitizing agents in the treatment of nonalcoholic steatohepatitis. Therap Adv Gastroenterol 2011; 4: 249-63.
-
(2011)
Therap Adv Gastroenterol
, vol.4
, pp. 249-263
-
-
Van Wagner, L.B.1
Rinnela, M.E.2
-
14
-
-
0042168646
-
Effects of withdrawal from metformin on the development of diabetes in the diabetes prevention program
-
Diabetes Prevention Program Research Group. Effects of withdrawal from metformin on the development of diabetes in the diabetes prevention program. Diabetes Care. 2003; 26: 977-80.
-
(2003)
Diabetes Care
, vol.26
, pp. 977-980
-
-
-
15
-
-
84887429519
-
Metformin, an antidiabetic molecule with anticancer properties
-
Beck E, Scheen A. Metformin, an antidiabetic molecule with anticancer properties. Rev Med Lieg. 2013; 68: 444-9.
-
(2013)
Rev Med Lieg
, vol.68
, pp. 444-449
-
-
Beck, E.1
Scheen, A.2
-
16
-
-
84881614717
-
Sakamoto K:Molecular mechanism of action of metformin: Old or new insights?
-
Rena G, Pearson ER, Sakamoto K:Molecular mechanism of action of metformin: old or new insights? Diabetologia 2013; 56: 1898- 906.
-
(2013)
Diabetologia
, vol.56
, pp. 1898-1906
-
-
Rena, G.1
Pearson, E.R.2
-
17
-
-
34248156160
-
Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action
-
Shu Y, Sheardown SA, Brown C, et al. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J Clin Invest 2007; 117: 1422-31.
-
(2007)
J Clin Invest
, vol.117
, pp. 1422-1431
-
-
Shu, Y.1
Sheardown, S.A.2
Brown, C.3
-
18
-
-
78649646556
-
Organic cation transporters (OCTs, MATEs), in vitro and in vivo evidence for the importance in drug therapy
-
Nies A., Koepsell H., Damme K., Schwab M. Organic cation transporters (OCTs, MATEs), in vitro and in vivo evidence for the importance in drug therapy. Handb Exp Pharmacol 2011; 201: 105-67
-
(2011)
Handb Exp Pharmacol
, vol.201
, pp. 105-167
-
-
Nies, A.1
Koepsell, H.2
Damme, K.3
Schwab, M.4
-
19
-
-
0028158709
-
Accumulation of metformin by tissues of the normal and diabetic mouse
-
Wilcock C, Bailey CJ. Accumulation of metformin by tissues of the normal and diabetic mouse. Xenobiotica 1994; 24: 49-57.
-
(1994)
Xenobiotica
, vol.24
, pp. 49-57
-
-
Wilcock, C.1
Bailey, C.J.2
-
20
-
-
84907370814
-
Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria
-
Bridges HR, Jones AJ, Pollak MN, Hirst J. Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria. Biochem J 2014; 462: 475-87.
-
(2014)
Biochem J
, vol.462
, pp. 475-487
-
-
Bridges, H.R.1
Jones, A.J.2
Pollak, M.N.3
Hirst, J.4
-
21
-
-
0034659785
-
Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain
-
Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 2000; 348: 607-14.
-
(2000)
Biochem J
, vol.348
, pp. 607-614
-
-
Owen, M.R.1
Doran, E.2
Halestrap, A.P.3
-
22
-
-
0020608149
-
Photoaffinity cross-linking of oligomycin-sensitive ATPase from beef heart mitochondria by 3ʹ-arylazido-8-azido ATP
-
Schafer HJ, Mainka L, Rathgeber G, Zimmer G. Photoaffinity cross-linking of oligomycin-sensitive ATPase from beef heart mitochondria by 3ʹ-arylazido-8-azido ATP. Biochem Biophys Res Commun 1983; 111: 732-9.
-
(1983)
Biochem Biophys Res Commun
, vol.111
, pp. 732-739
-
-
Schafer, H.J.1
Mainka, L.2
Rathgeber, G.3
Zimmer, G.4
-
23
-
-
33744801418
-
Novel localization of OCTN1, an organic cation/carnitine transporter, to mammalian mitochondria
-
Lamhonwah AM, Tein I. Novel localization of OCTN1, an organic cation/carnitine transporter, to mammalian mitochondria. Biochem Biophys Res Commun 2006; 345: 1315-25.
-
(2006)
Biochem Biophys Res Commun
, vol.345
, pp. 1315-1325
-
-
Lamhonwah, A.M.1
Tein, I.2
-
24
-
-
84876488863
-
Role of organic cation/carnitine transporter 1 in uptake of phenformin and inhibitory effect on complex I respiration in mitochondria
-
Shitara Y, Nakamichi N, Norioka M, Shima H, Kato Y, Horie T. Role of organic cation/carnitine transporter 1 in uptake of phenformin and inhibitory effect on complex I respiration in mitochondria. Toxicol Sci 2013; 132: 32-42.
-
(2013)
Toxicol Sci
, vol.132
, pp. 32-42
-
-
Shitara, Y.1
Nakamichi, N.2
Norioka, M.3
Shima, H.4
Kato, Y.5
Horie, T.6
-
25
-
-
77954964776
-
An energetic tale of AMPK-independent effects of metformin
-
Miller RA, Birnbaum MJ. An energetic tale of AMPK-independent effects of metformin. J Clin Invest. 2010; 120: 2267-70.
-
(2010)
J Clin Invest
, vol.120
, pp. 2267-2270
-
-
Miller, R.A.1
Birnbaum, M.J.2
-
27
-
-
33746102508
-
The ROS production induced by a reverseelectron flux at respiratory-chain complex 1 is hampered by metformin
-
Batandier C, Guigas B, Detaille D, El-Mir MY, Fontaine E, Rigoulet M, Leverve XM. The ROS production induced by a reverseelectron flux at respiratory-chain complex 1 is hampered by metformin. J Bioenerg Biomembr 2006; 38: 33-42.
-
(2006)
J Bioenerg Biomembr
, vol.38
, pp. 33-42
-
-
Batandier, C.1
Guigas, B.2
Detaille, D.3
El-Mir, M.Y.4
Fontaine, E.5
Rigoulet, M.6
Leverve, X.M.7
-
28
-
-
0016607004
-
Regulation of pyruvate dehydrogenase in isolated rat liver mitochondria
-
Taylor SI, Mukherjee C, Jungas RL. Regulation of pyruvate dehydrogenase in isolated rat liver mitochondria. Effects of octanoate, oxidation-reduction state, and adenosine triphosphate to adenosine diphosphate ratio. J Biol Chem 1975; 250: 2028-35.
-
(1975)
Effects of octanoate, oxidation-reduction state, and adenosine triphosphate to adenosine diphosphate ratio. J Biol Chem
, vol.250
, pp. 2028-2035
-
-
Taylor, S.I.1
Mukherjee, C.2
Jungas, R.L.3
-
29
-
-
84855603512
-
Cellular and molecular mechanisms of metformin: An overview
-
Viollet B, Guigas B, Sanz Garcia N, Leclerc J, Foretz M, Andreelli F. Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond) 2012; 122: 253-70.
-
(2012)
Clin Sci (Lond)
, vol.122
, pp. 253-270
-
-
Viollet, B.1
Guigas, B.2
Sanz Garcia, N.3
Leclerc, J.4
Foretz, M.5
Andreelli, F.6
-
30
-
-
84861887451
-
Cellular responses to the metalbinding properties of metformin
-
Logie L, Harthill J, Patel K, et al. Cellular responses to the metalbinding properties of metformin. Diabetes 2012; 61: 1423-33.
-
(2012)
Diabetes
, vol.61
, pp. 1423-1433
-
-
Logie, L.1
Harthill, J.2
Patel, K.3
-
31
-
-
84856743909
-
Metformin-treated patients with type 2 diabetes have normal mitochondrial complex I respiration
-
Larsen S, Rabøl R, Hansen CN, Madsbad S, Helge JW, Dela F. Metformin-treated patients with type 2 diabetes have normal mitochondrial complex I respiration. Diabetologia 2012; 55: 443-9.
-
(2012)
Diabetologia
, vol.55
, pp. 443-449
-
-
Larsen, S.1
Rabøl, R.2
Hansen, C.N.3
Madsbad, S.4
Helge, J.W.5
Dela, F.6
-
33
-
-
84905404389
-
Low concentrations of metformin suppress glucose production in hepatocytes through AMP-activated protein kinase (AMPK)
-
Cao J, Meng S, Chang E, et al. Low concentrations of metformin suppress glucose production in hepatocytes through AMP-activated protein kinase (AMPK). J Biol Chem 2014; 289: 20435-46.
-
(2014)
J Biol Chem
, vol.289
, pp. 20435-20446
-
-
Cao, J.1
Meng, S.2
Chang, E.3
-
34
-
-
0034773404
-
Role of AMP-activated protein kinase in mechanism of metformin action
-
Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001; 108: 1167-74.
-
(2001)
J Clin Invest
, vol.108
, pp. 1167-1174
-
-
Zhou, G.1
Myers, R.2
Li, Y.3
-
35
-
-
84858782079
-
AMPK: A nutrient and energy sensor that maintains energy homeostasis
-
Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 2012; 13: 251-62.
-
(2012)
Nat Rev Mol Cell Biol
, vol.13
, pp. 251-262
-
-
Hardie, D.G.1
Ross, F.A.2
Hawley, S.A.3
-
36
-
-
55949132861
-
AMP-activated protein kinase: Structure and regulation
-
Sanz P. AMP-activated protein kinase: structure and regulation. Curr Protein Pept Sci 2008; 9: 478-92.
-
(2008)
Curr Protein Pept Sci
, vol.9
, pp. 478-492
-
-
Sanz, P.1
-
37
-
-
63849206613
-
AMP-activated protein kinase in the regulation of hepatic energy metabolism: From physiology to therapeutic perspectives
-
Viollet B, Guigas B, Leclerc J, et al. AMP-activated protein kinase in the regulation of hepatic energy metabolism: from physiology to therapeutic perspectives. Acta Physiol (Oxf) 2009; 196: 81-98.
-
(2009)
Acta Physiol (Oxf)
, vol.196
, pp. 81-98
-
-
Viollet, B.1
Guigas, B.2
Leclerc, J.3
-
38
-
-
79959338922
-
AMPK is a direct adenylate charge-regulated protein kinase
-
Oakhill JS, Steel R, Chen ZP, et al. AMPK is a direct adenylate charge-regulated protein kinase. Science 2011; 332: 1433-5.
-
(2011)
Science
, vol.332
, pp. 1433-1435
-
-
Oakhill, J.S.1
Steel, R.2
Chen, Z.P.3
-
39
-
-
28844433635
-
The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin
-
Shaw RJ, Lamia KA, Vasquez D, et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 2005; 310: 1642-6.
-
(2005)
Science
, vol.310
, pp. 1642-1646
-
-
Shaw, R.J.1
Lamia, K.A.2
Vasquez, D.3
-
40
-
-
84922359822
-
Metformin Activates AMP-activated Protein Kinase by Promoting Formation of the αβγ Heterotrimeric Complex
-
Meng S, Cao J, He Q, et al. Metformin Activates AMP-activated Protein Kinase by Promoting Formation of the αβγ Heterotrimeric Complex. J Biol Chem 2015; 290: 3793-802.
-
(2015)
J Biol Chem
, vol.290
, pp. 3793-3802
-
-
Meng, S.1
Cao, J.2
He, Q.3
-
41
-
-
79954517977
-
Structure of mammalian AMPK and its regulation by ADP
-
Xiao B, Sanders MJ, Underwood E, et al. Structure of mammalian AMPK and its regulation by ADP. Nature 2011; 472: 230-3.
-
(2011)
Nature
, vol.472
, pp. 230-233
-
-
Xiao, B.1
Sanders, M.J.2
Underwood, E.3
-
42
-
-
33845949733
-
Dissecting the role of 5'-AMP for allosteric stimulation, activation, and deactivation of AMP-activated protein kinase
-
Suter M, Riek U, Tuerk R, Schlattner U, Wallimann T, Neumann D. Dissecting the role of 5'-AMP for allosteric stimulation, activation, and deactivation of AMP-activated protein kinase. J Biol Chem 2006; 281: 32207-16.
-
(2006)
J Biol Chem
, vol.281
, pp. 32207-32216
-
-
Suter, M.1
Riek, U.2
Tuerk, R.3
Schlattner, U.4
Wallimann, T.5
Neumann, D.6
-
43
-
-
79951962147
-
CREB and the CRTC co-activators: Sensors for hormonal and metabolic signals
-
Altarejos JY, Montminy M. CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol 2011; 12: 141-51.
-
(2011)
Nat Rev Mol Cell Biol
, vol.12
, pp. 141-151
-
-
Altarejos, J.Y.1
Montminy, M.2
-
44
-
-
27144506185
-
The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism
-
Koo SH, Flechner L, Qi L, et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 2005; 437: 1109-11.
-
(2005)
Nature
, vol.437
, pp. 1109-1111
-
-
Koo, S.H.1
Flechner, L.2
Qi, L.3
-
45
-
-
34548831102
-
Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2
-
Dentin R, Liu Y, Koo SH, et al. 3rd, Montminy M. Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2. Nature 2007; 449: 366-9.
-
(2007)
Nature
, vol.449
, pp. 366-369
-
-
Dentin, R.1
Liu, Y.2
Koo, S.H.3
Montminy, M.4
-
46
-
-
40449128605
-
Hepatic glucose sensing via the CREB coactivator CRTC2
-
Dentin R, Hedrick S, Xie J, Yates J, 3rd, Montminy M. Hepatic glucose sensing via the CREB coactivator CRTC2. Science 2008; 319: 1402-5.
-
(2008)
Science
, vol.319
, pp. 1402-1405
-
-
Dentin, R.1
Hedrick, S.2
Xie, J.3
Yates, J.4
Montminy, M.5
-
47
-
-
77949493599
-
Metformin suppresses hepatic gluconeogenesis through induction of SIRT1 and GCN5
-
Caton PW, Nayuni NK, Kieswich J, Khan NQ, Yaqoob MM, Corder R. Metformin suppresses hepatic gluconeogenesis through induction of SIRT1 and GCN5. J Endocrinol 2010; 205: 97-106.
-
(2010)
J Endocrinol
, vol.205
, pp. 97-106
-
-
Caton, P.W.1
Nayuni, N.K.2
Kieswich, J.3
Khan, N.Q.4
Yaqoob, M.M.5
Corder, R.6
-
48
-
-
56249100986
-
A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange
-
Liu Y, Dentin R, Chen D, et al. 3rd, Olefsky J, Guarente L, Montminy M. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature 2008; 456: 269-73.
-
(2008)
Nature
, vol.456
, pp. 269-273
-
-
Liu, Y.1
Dentin, R.2
Chen, D.3
Olefsky, J.4
Guarente, L.5
Montminy, M.6
-
49
-
-
65549136655
-
Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein
-
He L, Sabet A, Djedjos S, et al. Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. Cell 2009; 137: 635-46.
-
(2009)
Cell
, vol.137
, pp. 635-646
-
-
He, L.1
Sabet, A.2
Djedjos, S.3
-
50
-
-
40749116561
-
Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase-dependent regulation of the orphan nuclear receptor SHP
-
Kim YD, Park KG, Lee YS, et al. Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase-dependent regulation of the orphan nuclear receptor SHP. Diabetes 2008; 57: 306-14.
-
(2008)
Diabetes
, vol.57
, pp. 306-314
-
-
Kim, Y.D.1
Park, K.G.2
Lee, Y.S.3
-
52
-
-
77954282799
-
Role of KLF15 in regulation of hepatic gluconeogenesis and metformin action
-
Takashima M, Ogawa W, Hayashi K, et al. Role of KLF15 in regulation of hepatic gluconeogenesis and metformin action. Diabetes 2010; 59: 1608-15.
-
(2010)
Diabetes
, vol.59
, pp. 1608-1615
-
-
Takashima, M.1
Ogawa, W.2
Hayashi, K.3
-
53
-
-
0036324142
-
The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism
-
Hawley SA, Gadalla AE, Olsen GS, Hardie DG. The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism. Diabetes 2002; 51: 2420-5.
-
(2002)
Diabetes
, vol.51
, pp. 2420-2425
-
-
Hawley, S.A.1
Gadalla, A.E.2
Olsen, G.S.3
Hardie, D.G.4
-
54
-
-
84866656158
-
Glucagon and cyclic AMP: Time to turn the page?
-
Rodgers RL. Glucagon and cyclic AMP: time to turn the page? Curr Diabetes Rev 2012; 8: 362-81.
-
(2012)
Curr Diabetes Rev
, vol.8
, pp. 362-381
-
-
Rodgers, R.L.1
-
55
-
-
0023041534
-
Activation of two signal-transduction systems in hepatocytes by glucagon
-
Wakelam M, Murphy GJ, Hruby VJ, Houslay MD. Activation of two signal-transduction systems in hepatocytes by glucagon. Nature 1986; 323: 68-71.
-
(1986)
Nature
, vol.323
, pp. 68-71
-
-
Wakelam, M.1
Murphy, G.J.2
Hruby, V.J.3
Houslay, M.D.4
-
57
-
-
0029133235
-
Metabolic effects of metformin in non-insulin-dependent diabetes mellitus
-
Stumvoll M, Nurjhan N, Perriello G, Dailey G, Gerich JE. Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. N Engl J Med 1995; 333: 550-4.
-
(1995)
N Engl J Med
, vol.333
, pp. 550-554
-
-
Stumvoll, M.1
Nurjhan, N.2
Perriello, G.3
Dailey, G.4
Gerich, J.E.5
-
58
-
-
84920568734
-
Evidence for organic cation transporter-mediated metformin transport and 5'-adenosine monophosphate- activated protein kinase activation in rat skeletal muscles
-
Oshima R, Yamada M, Kurogi E, et al. Evidence for organic cation transporter-mediated metformin transport and 5'-adenosine monophosphate- activated protein kinase activation in rat skeletal muscles. Metabolism 2015; 64: 296-304.
-
(2015)
Metabolism
, vol.64
, pp. 296-304
-
-
Oshima, R.1
Yamada, M.2
Kurogi, E.3
-
59
-
-
0036299982
-
Metformin increases AMPactivated protein kinase activity in skeletal muscle of subjects with type 2 diabetes
-
Musi N, Hirshman MF, Nygren J, et al. Metformin increases AMPactivated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes 2002; 51: 2074-81.
-
(2002)
Diabetes
, vol.51
, pp. 2074-2081
-
-
Musi, N.1
Hirshman, M.F.2
Nygren, J.3
-
60
-
-
84898859036
-
Metformin ameliorates insulin resistance in L6 rat skeletal muscle cells through upregulation of SIRT3
-
Song Y, Shi J, Wu Y, et al. Metformin ameliorates insulin resistance in L6 rat skeletal muscle cells through upregulation of SIRT3. Chin Med J (Engl) 2014; 127: 1523-9.
-
(2014)
Chin Med J (Engl)
, vol.127
, pp. 1523-1529
-
-
Song, Y.1
Shi, J.2
Wu, Y.3
-
61
-
-
0027303172
-
In vivo metformin treatment ameliorates insulin resistance: Evidence for potentiation of insulin- induced translocation and increased functional activity of glucose transporters in obese (fa/fa) Zucker rat adipocytes
-
Matthaei S, Reibold JP, Hamann A, et al. In vivo metformin treatment ameliorates insulin resistance: evidence for potentiation of insulin- induced translocation and increased functional activity of glucose transporters in obese (fa/fa) Zucker rat adipocytes. Endocrinology 1993; 133: 304-11.
-
(1993)
Endocrinology
, vol.133
, pp. 304-311
-
-
Matthaei, S.1
Reibold, J.P.2
Hamann, A.3
-
62
-
-
0018859690
-
The effect of metformin treatment on gastric acid secretion and gastrointestinal hormone levels in normal subjects
-
Molloy AM, Ardill J, Tomkin GH.The effect of metformin treatment on gastric acid secretion and gastrointestinal hormone levels in normal subjects. Diabetologia 1980; 19: 93-6.
-
(1980)
Diabetologia
, vol.19
, pp. 93-96
-
-
Molloy, A.M.1
Ardill, J.2
Tomkin, G.H.3
-
63
-
-
0035097211
-
Effect of metformin on glucagon-like peptide 1 (GLP-1) and leptin levels in obese nondiabetic subjects
-
Mannucci E, Ognibene A, Cremasco F, et al. Effect of metformin on glucagon-like peptide 1 (GLP-1) and leptin levels in obese nondiabetic subjects. Diabetes Care 2001; 24: 489-94.
-
(2001)
Diabetes Care
, vol.24
, pp. 489-494
-
-
Mannucci, E.1
Ognibene, A.2
Cremasco, F.3
-
64
-
-
22344448987
-
Effects of metformin on glucagon-like peptide-1 levels in obese patients with and without type 2 diabetes
-
Mannucci E, Tesi F, Bardini G, et al. Effects of metformin on glucagon-like peptide-1 levels in obese patients with and without type 2 diabetes. Diabetes Nutr Metab 2004; 17: 336-42.
-
(2004)
Diabetes Nutr Metab
, vol.17
, pp. 336-342
-
-
Mannucci, E.1
Tesi, F.2
Bardini, G.3
-
65
-
-
17844374375
-
Inhibition of dipeptidyl peptidase IV activity by oral metformin in Type 2 diabetes
-
Lindsay JR, Duffy NA, McKillop AM, Ardill J, O'Harte FP, Flatt PR, Bell PM. Inhibition of dipeptidyl peptidase IV activity by oral metformin in Type 2 diabetes. Diabet Med 2005; 22: 654-7.
-
(2005)
Diabet Med
, vol.22
, pp. 654-657
-
-
Lindsay, J.R.1
Duffy, N.A.2
McKillop, A.M.3
Ardill, J.4
O'Harte, F.P.5
Flatt, P.R.6
Bell, P.M.7
-
66
-
-
66449129517
-
Investigation of the effect of oral metformin on dipeptidylpeptidase-4 (DPP-4) activity in type 2 diabetes
-
Cuthbertson J, Patterson S, O'Harte FP, Bell PM. Investigation of the effect of oral metformin on dipeptidylpeptidase-4 (DPP-4) activity in type 2 diabetes. Diabet Med 2009; 26: 649-54.
-
(2009)
Diabet Med
, vol.26
, pp. 649-654
-
-
Cuthbertson, J.1
Patterson, S.2
O'Harte, F.P.3
Bell, P.M.4
-
67
-
-
33748531290
-
Inhibition of dipeptidyl peptidase-IV activity by metformin enhances the antidiabetic effects of glucagon-like peptide-1
-
Green BD, Irwin N, Duffy NA, Gault VA, O'harte FP, Flatt PR. Inhibition of dipeptidyl peptidase-IV activity by metformin enhances the antidiabetic effects of glucagon-like peptide-1. Eur J Pharmacol 2006; 547: 192-9.
-
(2006)
Eur J Pharmacol
, vol.547
, pp. 192-199
-
-
Green, B.D.1
Irwin, N.2
Duffy, N.A.3
Gault, V.A.4
O'harte, F.P.5
Flatt, P.R.6
-
68
-
-
0036298693
-
Metformin effects on dipeptidylpeptidase IV degradation of glucagon-like peptide-1
-
Hinke SA, Kühn-Wache K, Hoffmann T, Pederson RA, McIntosh CH, Demuth HU Metformin effects on dipeptidylpeptidase IV degradation of glucagon-like peptide-1. Biochem Biophys Res Commun 2002; 291: 1302-8.
-
(2002)
Biochem Biophys Res Commun
, vol.291
, pp. 1302-1308
-
-
Hinke, S.A.1
Kühn-Wache, K.2
Hoffmann, T.3
Pederson, R.A.4
McIntosh, C.H.5
Demuth, H.U.6
-
69
-
-
0036435607
-
Enhanced secretion of glucagon- like peptide 1 by biguanide compounds
-
Yasuda N, Inoue T, Nagakura T, et al. Enhanced secretion of glucagon- like peptide 1 by biguanide compounds. Biochem Biophys Res Commun 2002; 298: 779-84.
-
(2002)
Biochem Biophys Res Commun
, vol.298
, pp. 779-784
-
-
Yasuda, N.1
Inoue, T.2
Nagakura, T.3
-
70
-
-
82355165097
-
Mechanisms underlying metformin-induced secretion of glucagonlike peptide-1 from the intestinal L cell
-
Mulherin AJ, Oh AH, Kim H, Grieco A, Lauffer LM, Brubaker PL. Mechanisms underlying metformin-induced secretion of glucagonlike peptide-1 from the intestinal L cell. Endocrinology 2011; 152: 4610-9.
-
(2011)
Endocrinology
, vol.152
, pp. 4610-4619
-
-
Mulherin, A.J.1
Oh, A.H.2
Kim, H.3
Grieco, A.4
Lauffer, L.M.5
Brubaker, P.L.6
-
71
-
-
17844368938
-
Short-term overexpression of a constitutively active form of AMP-activated protein kinase in the liver leads to mild hypoglycemia and fatty liver
-
Foretz M, Ancellin N, Andreelli F, et al. Short-term overexpression of a constitutively active form of AMP-activated protein kinase in the liver leads to mild hypoglycemia and fatty liver. Diabetes 2005; 54: 1331-9.
-
(2005)
Diabetes
, vol.54
, pp. 1331-1339
-
-
Foretz, M.1
Ancellin, N.2
Andreelli, F.3
-
72
-
-
0035914324
-
Regulation of transcription by AMP-activated protein kinase: Phosphorylation of p300 blocks its interaction with nuclear receptors
-
Yang W, Hong YH, Shen XQ, Frankowski C, Camp HS, Leff T. Regulation of transcription by AMP-activated protein kinase: phosphorylation of p300 blocks its interaction with nuclear receptors. J Biol Chem 2001; 276: 38341-4.
-
(2001)
J Biol Chem
, vol.276
, pp. 38341-38344
-
-
Yang, W.1
Hong, Y.H.2
Shen, X.Q.3
Frankowski, C.4
Camp, H.S.5
Leff, T.6
-
73
-
-
9144271181
-
AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulinresistant human HepG2 cells
-
Zang M, Zuccollo A, Hou X, et al. AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulinresistant human HepG2 cells. J Biol Chem 2004; 279: 47898-905.
-
(2004)
J Biol Chem
, vol.279
, pp. 47898-47905
-
-
Zang, M.1
Zuccollo, A.2
Hou, X.3
-
74
-
-
84889887123
-
Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulinsensitizing effects of metformin
-
Fullerton MD, Galic S, Marcinko K, et al. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulinsensitizing effects of metformin. Nat Med 2013; 19: 1649-54.
-
(2013)
Nat Med
, vol.19
, pp. 1649-1654
-
-
Fullerton, M.D.1
Galic, S.2
Marcinko, K.3
-
75
-
-
79959459359
-
Metformin inhibits nuclear receptor TR4-mediated hepatic stearoyl-CoA desaturase 1 gene expression with altered insulin sensitivity
-
Kim E, Liu NC, Yu IC, et al. Metformin inhibits nuclear receptor TR4-mediated hepatic stearoyl-CoA desaturase 1 gene expression with altered insulin sensitivity. Diabetes 2011; 60: 1493-503.
-
(2011)
Diabetes
, vol.60
, pp. 1493-1503
-
-
Kim, E.1
Liu, N.C.2
Yu, I.C.3
|