-
1
-
-
0034783579
-
The blooming of the french lilac
-
Witters, L. A. (2001) The blooming of the French lilac. J. Clin. Invest. 108, 1105-1107.
-
(2001)
J. Clin. Invest.
, vol.108
, pp. 1105-1107
-
-
Witters, L.A.1
-
2
-
-
0033673203
-
Mechanism by which metformin reduces glucose production in type 2 diabetes
-
Hundal, R. S., Krssak, M., Dufour, S., Laurent, D., Lebon, V., Chandramouli, V., Inzucchi, S. E., Schumann, W. C., Petersen, K. F., Landau, B. R., and Shulman, G. I. (2000) Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes 49, 2063-2069.
-
(2000)
Diabetes
, vol.49
, pp. 2063-2069
-
-
Hundal, R.S.1
Krssak, M.2
Dufour, S.3
Laurent, D.4
Lebon, V.5
Chandramouli, V.6
Inzucchi, S.E.7
Schumann, W.C.8
Petersen, K.F.9
Landau, B.R.10
Shulman, G.I.11
-
3
-
-
77954282799
-
Role of KLF15 in regulation of hepatic gluconeogenesis and metformin action
-
Takashima, M., Ogawa, W., Hayashi, K., Inoue, H., Kinoshita, S., Okamoto, Y., Sakaue, H., Wataoka, Y., Emi, A., Senga, Y., Matsuki, Y., Watanabe, E., Hiramatsu, R., and Kasuga, M. (2010) Role of KLF15 in regulation of hepatic gluconeogenesis and metformin action. Diabetes 59, 1608-1615.
-
(2010)
Diabetes
, vol.59
, pp. 1608-1615
-
-
Takashima, M.1
Ogawa, W.2
Hayashi, K.3
Inoue, H.4
Kinoshita, S.5
Okamoto, Y.6
Sakaue, H.7
Wataoka, Y.8
Emi, A.9
Senga, Y.10
Matsuki, Y.11
Watanabe, E.12
Hiramatsu, R.13
Kasuga, M.14
-
4
-
-
0034773404
-
Role of amp-activated protein kinase in mechanism of metformin action
-
Zhou, G., Myers, R., Li, Y., Chen, Y., Shen, X., Fenyk-Melody, J., Wu, M., Ventre, J., Doebber, T., Fujii, N., Musi, N., Hirshman, M. F., Goodyear, L. J., and Moller, D. E. (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108, 1167-1174.
-
(2001)
J. Clin. Invest.
, vol.108
, pp. 1167-1174
-
-
Zhou, G.1
Myers, R.2
Li, Y.3
Chen, Y.4
Shen, X.5
Fenyk-Melody, J.6
Wu, M.7
Ventre, J.8
Doebber, T.9
Fujii, N.10
Musi, N.11
Hirshman, M.F.12
Goodyear, L.J.13
Moller, D.E.14
-
5
-
-
0034659785
-
Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain
-
Owen M. R., Doran E., and Halestrap A. P. (2000) Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Bio chem. J. 348, 607-614.
-
(2000)
Bio Chem. J.
, vol.348
, pp. 607-614
-
-
Owen, M.R.1
Doran, E.2
Halestrap, A.P.3
-
6
-
-
0034614420
-
Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex i
-
El-Mir, M. Y., Nogueira, V., Fontaine, E., Avéret, N., Rigoulet, M., and Leverve, X. (2000) Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J. Biol. Chem. 275, 223-228.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 223-228
-
-
El-Mir, M.Y.1
Nogueira, V.2
Fontaine, E.3
Avéret, N.4
Rigoulet, M.5
Leverve, X.6
-
7
-
-
84905404389
-
Low concentrations of metformin suppress glucose production in hepatocytes through ampk
-
Cao, J., Meng, S., Chang, E., Beckwith-Fickas, K., Xiong, L., Cole, R. N., Radovick, S., Wondisford, F. E., and He, L. (2014) Low concentrations of metformin suppress glucose production in hepatocytes through AMPK. J. Biol. Chem. 289, 20435-20446.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 20435-20446
-
-
Cao, J.1
Meng, S.2
Chang, E.3
Beckwith-Fickas, K.4
Xiong, L.5
Cole, R.N.6
Radovick, S.7
Wondisford, F.E.8
He, L.9
-
8
-
-
0028092988
-
Critical phosphorylation sites for acetyl-COA carboxylase activity
-
Ha, J., Daniel, S., Broyles, S. S., Kim, K. H. (1994) Critical phosphorylation sites for acetyl-CoA carboxylase activity. J. Biol. Chem. 269, 22162-22168.
-
(1994)
J. Biol. Chem
, vol.269
, pp. 22162-22168
-
-
Ha, J.1
Daniel, S.2
Broyles, S.S.3
Kim, K.H.4
-
9
-
-
0000903683
-
Phosphorylation control of cardiac acetyl-coa carboxylase by camp-dependent protein kinase and 5-amp activated protein kinase
-
Dyck, J. R. B., Kudo, N., Barr, A. J., Davies, S. P., Hardie, D. G., and Lopaschuk, G. D. (1999) Phosphorylation control of cardiac acetyl-CoA carboxylase by cAMP-dependent protein kinase and 5-AMP activated protein kinase. Eur. J. Bio chem. 262, 184-190.
-
(1999)
Eur. J. Bio Chem.
, vol.262
, pp. 184-190
-
-
Dyck, J.R.B.1
Kudo, N.2
Barr, A.J.3
Davies, S.P.4
Hardie, D.G.5
Lopaschuk, G.D.6
-
10
-
-
84858782079
-
AMPK: A nutrient and energy sensor that maintains energy homeostasis
-
Hardie, D. G., Ross, F. A., and Hawley, S. A. (2012) AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 13, 251-262.
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, pp. 251-262
-
-
Hardie, D.G.1
Ross, F.A.2
Hawley, S.A.3
-
11
-
-
12144287284
-
LKB1 is a master kinase that activates 13 kinases of the ampk subfamily, including MARK/PAR-1
-
Lizcano, J. M., Göransson, O., Toth, R., Deak, M., Morrice, N. A., Boudeau, J., Hawley, S. A., Udd, L., Mäkelä, T. P., Hardie, D. G., Alessi, D. R. (2004) LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J. 23, 833-843.
-
(2004)
EMBO J.
, vol.23
, pp. 833-843
-
-
Lizcano, J.M.1
Göransson, O.2
Toth, R.3
Deak, M.4
Morrice, N.A.5
Boudeau, J.6
Hawley, S.A.7
Udd, L.8
Mäkelä, T.P.9
Hardie, D.G.10
Alessi, D.R.11
-
12
-
-
10744230065
-
LKB1 is the upstream kinase in the amp-activated protein kinase cascade
-
Woods, A., Johnstone, S. R., Dickerson, K., Leiper, F. C., Fryer, L. G., Neumann, D., Schlattner, U., Wallimann, T., Carlson, M., Carling, D. (2003) LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr. Biol. 13, 2004-2008.
-
(2003)
Curr. Biol.
, vol.13
, pp. 2004-2008
-
-
Woods, A.1
Johnstone, S.R.2
Dickerson, K.3
Leiper, F.C.4
Fryer, L.G.5
Neumann, D.6
Schlattner, U.7
Wallimann, T.8
Carlson, M.9
Carling, D.10
-
13
-
-
75049085233
-
Pka phosphorylates and inactivates amp kalpha to promote efficient lipolysis
-
Djouder, N., Tuerk, R. D., Suter, M., Salvioni, P., Thali, R. F., Scholz, R., Vaahtomeri, K., Auchli, Y., Rechsteiner, H., Brunisholz, R. A., Viollet, B., Mäkelä, T. P., Wallimann, T., Neumann, D., and Krek, W. (2010) PKA phosphorylates and inactivates AMP Kalpha to promote efficient lipolysis. EMBO J. 29, 469-481.
-
(2010)
EMBO J.
, vol.29
, pp. 469-481
-
-
Djouder, N.1
Tuerk, R.D.2
Suter, M.3
Salvioni, P.4
Thali, R.F.5
Scholz, R.6
Vaahtomeri, K.7
Auchli, Y.8
Rechsteiner, H.9
Brunisholz, R.A.10
Viollet, B.11
Mäkelä, T.P.12
Wallimann, T.13
Neumann, D.14
Krek, W.15
-
14
-
-
33845972272
-
Regulation of AMP-activated protein kinase by multisite phosphorylation in response to agents that elevate cellular CAMP
-
Hurley, R. L., Barré, L. K., Wood, S. D., Anderson, K. A., Kemp, B. E., Means, A. R., and Witters, L. A. (2006) Regulation of AMP-activated protein kinase by multisite phosphorylation in response to agents that elevate cellular cAMP. J. Biol. Chem. 281, 36662-36672.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 36662-36672
-
-
Hurley, R.L.1
Barré, L.K.2
Wood, S.D.3
Anderson, K.A.4
Kemp, B.E.5
Means, A.R.6
Witters, L.A.7
-
15
-
-
79960746886
-
Suppression of AMPK activation via s485 phosphorylation by IGF-I during hyperglycemia is mediated by AKT activation in vascular smooth muscle cells
-
Ning, J., Xi, G., and Clemmons, D. R. (2011) Suppression of AMPK activation via S485 phosphorylation by IGF-I during hyperglycemia is mediated by AKT activation in vascular smooth muscle cells. Endocrinology 152, 3143-3154.
-
(2011)
Endocrinology
, vol.152
, pp. 3143-3154
-
-
Ning, J.1
Xi, G.2
Clemmons, D.R.3
-
16
-
-
34848840368
-
Structural basis for AMP binding to mammalian ampactivated protein kinase
-
Xiao, B., Heath, R., Saiu, P., Leiper, F. C., Leone, P., Jing, C., Walker, P. A., Haire, L., Eccleston, J. F., Davis, C. T., Martin, S. R., Carling, D., and Gamblin, S. J. (2007) Structural basis for AMP binding to mammalian AMPactivated protein kinase. Nature 449, 496-500.
-
(2007)
Nature
, vol.449
, pp. 496-500
-
-
Xiao, B.1
Heath, R.2
Saiu, P.3
Leiper, F.C.4
Leone, P.5
Jing, C.6
Walker, P.A.7
Haire, L.8
Eccleston, J.F.9
Davis, C.T.10
Martin, S.R.11
Carling, D.12
Gamblin, S.J.13
-
17
-
-
0029561919
-
5-Amp inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2c- and native bovine protein phosphatase-2ac
-
Davies, S. P., Helps, N. R., Cohen, P. T., Hardie, D. G. (1995) 5-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2C- and native bovine protein phosphatase-2AC. FEBS Lett. 377, 421-425.
-
(1995)
FEBS Lett.
, vol.377
, pp. 421-425
-
-
Davies, S.P.1
Helps, N.R.2
Cohen, P.T.3
Hardie, D.G.4
-
18
-
-
28844433635
-
The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin
-
Shaw, R. J., Lamia, K. A., Vasquez, D., Koo, S. H., Bardeesy, N., Depinho, R. A., Montminy, M., and Cantley, L. C. (2005) The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 1642-1646.
-
(2005)
Science
, vol.310
, pp. 1642-1646
-
-
Shaw, R.J.1
Lamia, K.A.2
Vasquez, D.3
Koo, S.H.4
Bardeesy, N.5
Depinho, R.A.6
Montminy, M.7
Cantley, L.C.8
-
19
-
-
65549136655
-
Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein
-
He, L., Sabet, A., Djedjos, S., Miller, R., Sun, X., Hussain, M. A., Radovick, S., Wondisford, F. E. (2009) Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. Cell 137, 635-646.
-
(2009)
Cell
, vol.137
, pp. 635-646
-
-
He, L.1
Sabet, A.2
Djedjos, S.3
Miller, R.4
Sun, X.5
Hussain, M.A.6
Radovick, S.7
Wondisford, F.E.8
-
20
-
-
84881347302
-
Metformin improves healthspan and lifespan in mice
-
Martin-Montalvo, A., Mercken, E. M., Mitchell, S. J., Palacios, H. H., Mote, P. L., Scheibye-Knudsen, M., Gomes, A. P., Ward, T. M., Minor, R. K., Blouin, M. J., Schwab, M., Pollak, M., Zhang, Y., Yu, Y., Becker, K. G., Bohr, V. A., Ingram, D. K., Sinclair, D. A., Wolf, N. S., Spindler, S. R., Bernier, M., and de Cabo, R. (2013) Metformin improves healthspan and lifespan in mice. Nat. Commun. 4, 1-7.
-
(2013)
Nat. Commun.
, vol.4
, pp. 1-7
-
-
Martin-Montalvo, A.1
Mercken, E.M.2
Mitchell, S.J.3
Palacios, H.H.4
Mote, P.L.5
Scheibye-Knudsen, M.6
Gomes, A.P.7
Ward, T.M.8
Minor, R.K.9
Blouin, M.J.10
Schwab, M.11
Pollak, M.12
Zhang, Y.13
Yu, Y.14
Becker, K.G.15
Bohr, V.A.16
Ingram, D.K.17
Sinclair, D.A.18
Wolf, N.S.19
Spindler, S.R.20
Bernier, M.21
De Cabo, R.22
more..
-
21
-
-
48849108755
-
Comparison of gene expression changes induced by biguanides in db/db mice liver
-
Heishi, M., Hayashi, K., Ichihara, J., Ishikawa, H., Kawamura, T., Kanaoka, M., Taiji, M., Kimura, T. (2008) Comparison of gene expression changes induced by biguanides in db/db mice liver. J. Toxicol. Sci. 33, 339-347.
-
(2008)
J. Toxicol. Sci.
, vol.33
, pp. 339-347
-
-
Heishi, M.1
Hayashi, K.2
Ichihara, J.3
Ishikawa, H.4
Kawamura, T.5
Kanaoka, M.6
Taiji, M.7
Kimura, T.8
-
22
-
-
84898655755
-
Metformin induces pgc-1- expression and selectively affects hepatic PGC-1- functions
-
Aatsinki, S. M., Buler, M., Salomäki, H., Koulu, M., Pavek, P., Hakkola, J. (2014) Metformin induces PGC-1- expression and selectively affects hepatic PGC-1- functions. Br. J. Pharmacol. 171, 2351-2363.
-
(2014)
Br. J. Pharmacol.
, vol.171
, pp. 2351-2363
-
-
Aatsinki, S.M.1
Buler, M.2
Salomäki, H.3
Koulu, M.4
Pavek, P.5
Hakkola, J.6
-
23
-
-
84868249301
-
Orphan nuclear receptor small heterodimer partner negatively regulates growth hormone- mediated induction of hepatic gluconeogenesis through inhibition of signal transducer and activator of transcription 5 (STAT5) transactivation
-
Kim, Y. D., Li, T., Ahn, S. W., Kim, D. K., Lee, J. M., Hwang, S. L., Kim, Y. H., Lee, C. H., Lee, I. K., Chiang, J. Y., Choi, H. S. (2012) Orphan nuclear receptor small heterodimer partner negatively regulates growth hormone- mediated induction of hepatic gluconeogenesis through inhibition of signal transducer and activator of transcription 5 (STAT5) transactivation. J. Biol. Chem. 287, 37098-37108.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 37098-37108
-
-
Kim, Y.D.1
Li, T.2
Ahn, S.W.3
Kim, D.K.4
Lee, J.M.5
Hwang, S.L.6
Kim, Y.H.7
Lee, C.H.8
Lee, I.K.9
Chiang, J.Y.10
Choi, H.S.11
-
24
-
-
33644767124
-
Novel mechanism for plasma glucose-lowering action of metformin in streptozotocin- induced diabetic rats
-
Cheng, J. T., Huang, C. C., Liu, I. M., Tzeng, T. F., Chang, C. J. (2006) Novel mechanism for plasma glucose-lowering action of metformin in streptozotocin- induced diabetic rats. Diabetes 55, 819-825.
-
(2006)
Diabetes
, vol.55
, pp. 819-825
-
-
Cheng, J.T.1
Huang, C.C.2
Liu, I.M.3
Tzeng, T.F.4
Chang, C.J.5
-
25
-
-
84901620396
-
Potential biomarker of metformin action
-
He, L., Meng, S., Germain-Lee, E. L., Radovick, S., Wondisford, F. E. (2014) Potential biomarker of metformin action. J. Endocrinol. 221, 363-369.
-
(2014)
J. Endocrinol.
, vol.221
, pp. 363-369
-
-
He, L.1
Meng, S.2
Germain-Lee, E.L.3
Radovick, S.4
Wondisford, F.E.5
-
26
-
-
27144506185
-
The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism
-
Koo, S. H., Flechner, L., Qi, L., Zhang, X., Screaton, R. A., Jeffries, S., Hedrick, S., Xu, W., Boussouar, F., Brindle, P., Takemori, H., and Montminy, M. (2005) The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437, 1109-1111.
-
(2005)
Nature
, vol.437
, pp. 1109-1111
-
-
Koo, S.H.1
Flechner, L.2
Qi, L.3
Zhang, X.4
Screaton, R.A.5
Jeffries, S.6
Hedrick, S.7
Xu, W.8
Boussouar, F.9
Brindle, P.10
Takemori, H.11
Montminy, M.12
-
27
-
-
84866415671
-
Transcriptional co-activator p300 maintains basal hepatic gluconeogenesis
-
He, L., Naik, K., Meng, S., Cao, J., Sidhaye, A. R., Ma, A., Radovick, S., and Wondisford, F. E. (2012) Transcriptional co-activator p300 maintains basal hepatic gluconeogenesis. J. Biol. Chem. 287, 32069-32077.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 32069-32077
-
-
He, L.1
Naik, K.2
Meng, S.3
Cao, J.4
Sidhaye, A.R.5
Ma, A.6
Radovick, S.7
Wondisford, F.E.8
-
28
-
-
84894192032
-
Control of foxo1 gene expression by co-activator p300
-
Wondisford, A. R., Xiong, L., Chang, E., Meng, S., Meyers, D. J., Li, M., Cole, P. A., He, L. (2014) Control of Foxo1 gene expression by co-activator p300. J. Biol. Chem. 289, 4326-4333.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 4326-4333
-
-
Wondisford, A.R.1
Xiong, L.2
Chang, E.3
Meng, S.4
Meyers, D.J.5
Li, M.6
Cole, P.A.7
He, L.8
-
29
-
-
84880842199
-
Activation of basal gluconeogenesis by co-activator p300 maintains hepatic glycogen storage
-
He, L., Cao, J., Meng, S., Ma, A., Radovick, S., and Wondisford, F. E. (2013) Activation of basal gluconeogenesis by co-activator p300 maintains hepatic glycogen storage. Mol. Endo. 27, 1322-1332.
-
(2013)
Mol. Endo.
, vol.27
, pp. 1322-1332
-
-
He, L.1
Cao, J.2
Meng, S.3
Ma, A.4
Radovick, S.5
Wondisford, F.E.6
-
30
-
-
0028068882
-
Purification of the amp-activated protein kinase on ATP-sepharose and analysis of its subunit structure
-
Davies, S. P., Hawley, S. A., Woods, A., Carling, D., Haystead, T. A. J., and Hardie, D. G. (1994) Purification of the AMP-activated protein kinase on ATP-Sepharose and analysis of its subunit structure. Eur. J. Biochem. 223, 351-357.
-
(1994)
Eur. J. Bio Chem.
, vol.223
, pp. 351-357
-
-
Davies, S.P.1
Hawley, S.A.2
Woods, A.3
Carling, D.4
Haystead, T.A.J.5
Hardie, D.G.6
-
31
-
-
13344285343
-
Mammalian amp-activated protein kinase subfamily
-
Stapleton, D., Mitchelhill, K., Gao, G., Widmer, J., Michell, B., Teh, T., House, C. M., Fernandez, C. S., Cox, T., Witters, L. A., and Kemp, B. E. (1996) Mammalian AMP-activated protein kinase subfamily. J. Biol. Chem. 271, 611-614.
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 611-614
-
-
Stapleton, D.1
Mitchelhill, K.2
Gao, G.3
Widmer, J.4
Michell, B.5
Teh, T.6
House, C.M.7
Fernandez, C.S.8
Cox, T.9
Witters, L.A.10
Kemp, B.E.11
-
32
-
-
0036324142
-
The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism
-
Hawley, S. A., Gadalla, A. E., Olsen, G. S., Hardie, D. G. (2002) The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism. Diabetes 51, 2420-2425.
-
(2002)
Diabetes
, vol.51
, pp. 2420-2425
-
-
Hawley, S.A.1
Gadalla, A.E.2
Olsen, G.S.3
Hardie, D.G.4
-
33
-
-
0031425839
-
Aica riboside increases amp-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle
-
Merrill, G. F., Kurth, E. J., Hardie, D. G., and Winder, W. W. (1997) AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am. J. Physiol. 273, E1107-E1112.
-
(1997)
Am. J. Physiol.
, vol.273
, pp. E1107-E1112
-
-
Merrill, G.F.1
Kurth, E.J.2
Hardie, D.G.3
Winder, W.W.4
-
34
-
-
34147152841
-
Investigating the mechanism for amp activation of the amp activated protein kinase cascade
-
Sanders, M. J., Grondin, P. O., Hegarty, B. D., Snowden, M. A., and Carling, D. (2007) Investigating the mechanism for AMP activation of the AMP activated protein kinase cascade. Biochem. J. 403, 139-148.
-
(2007)
Biochem. J.
, vol.403
, pp. 139-148
-
-
Sanders, M.J.1
Grondin, P.O.2
Hegarty, B.D.3
Snowden, M.A.4
Carling, D.5
-
35
-
-
80052385397
-
Amp-activated protein kinase: Also regulated by ADP?
-
Hardie, D. G., Carling, D., and Gamblin, S. J. (2011) AMP-activated protein kinase: Also regulated by ADP? Trends Bio chem. Sci. 36, 470-477.
-
(2011)
Trends Bio Chem. Sci.
, vol.36
, pp. 470-477
-
-
Hardie, D.G.1
Carling, D.2
Gamblin, S.J.3
-
36
-
-
0027932717
-
Mammalian amp-activated protein kinase shares structural and functional homology with the catalytic domain of yeast snf1 protein kinase
-
Mitchelhill, K. I., Stapleton, D., Gao, G., House, C., Michell, B., Katsis, F., Witters, L. A., and Kemp, B. E. (1994) Mammalian AMP-activated protein kinase shares structural and functional homology with the catalytic domain of yeast Snf1 protein kinase. J. Biol. Chem. 269, 2361-2364.
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 2361-2364
-
-
Mitchelhill, K.I.1
Stapleton, D.2
Gao, G.3
House, C.4
Michell, B.5
Katsis, F.6
Witters, L.A.7
Kemp, B.E.8
-
37
-
-
0028126820
-
Mammalian 5-ampactivated protein kinase non-catalytic subunits are homologs of proteins that interact with yeast snf1 protein kinase
-
Stapleton, D., Gao, G., Michell, B. J., Widmer, J., Mitchelhill, K. I., The, T., House, C. M., Witters, L. A., and Kemp, B. E. (1994) Mammalian 5-AMPactivated protein kinase non-catalytic subunits are homologs of proteins that interact with yeast Snf1 protein kinase. J. Biol. Chem. 269, 29343-29346.
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 29343-29346
-
-
Stapleton, D.1
Gao, G.2
Michell, B.J.3
Widmer, J.4
Mitchelhill, K.I.5
The, T.6
House, C.M.7
Witters, L.A.8
Kemp, B.E.9
-
38
-
-
77955287742
-
Metformin, independent of AMPK, inhibits MTORC1 in a rag Gtpase-dependent manner
-
Kalender, A., Selvaraj, A., Kim, S. Y., Gulati, P., Brûlé, S., Viollet, B., Kemp, B. E., Bardeesy, N., Dennis, P., Schlager, J. J., Marette, A., Kozma, S. C., and Thomas, G. (2010) Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab. 11, 390-401.
-
(2010)
Cell Metab.
, vol.11
, pp. 390-401
-
-
Kalender, A.1
Selvaraj, A.2
Kim, S.Y.3
Gulati, P.4
Brûlé, S.5
Viollet, B.6
Kemp, B.E.7
Bardeesy, N.8
Dennis, P.9
Schlager, J.J.10
Marette, A.11
Kozma, S.C.12
Thomas, G.13
|