메뉴 건너뛰기




Volumn 9781461487722, Issue , 2014, Pages 1-22

Cellular and molecular mechanisms of O2 sensing

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84929665015     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1007/978-1-4614-8772-2_1     Document Type: Chapter
Times cited : (4)

References (117)
  • 1
    • 0024818355 scopus 로고
    • Vascular endothelial growth factor is a secreted angiogenic mitogen
    • Leung DW, Cachianes G, Kuang WJ, et al. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science. 1989;246(4935):1306-9.
    • (1989) Science , vol.246 , Issue.4935 , pp. 1306-1309
    • Leung, D.W.1    Cachianes, G.2    Kuang, W.J.3
  • 2
    • 38349138807 scopus 로고    scopus 로고
    • Transgenic system for conditional induction and rescue of chronic myocardial hibernation provides insights into genomic programs of hibernation
    • May D, Gilon D, Djonov V, et al. Transgenic system for conditional induction and rescue of chronic myocardial hibernation provides insights into genomic programs of hibernation. Proc Natl Acad Sci USA. 2008;105(1):282-7.
    • (2008) Proc Natl Acad Sci USA , vol.105 , Issue.1 , pp. 282-287
    • May, D.1    Gilon, D.2    Djonov, V.3
  • 3
    • 0030004485 scopus 로고    scopus 로고
    • Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene
    • Ferrara N, Carver-Moore K, Chen H, et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature. 1996;380(6573):439-42.
    • (1996) Nature , vol.380 , Issue.6573 , pp. 439-442
    • Ferrara, N.1    Carver-Moore, K.2    Chen, H.3
  • 4
    • 33745225026 scopus 로고    scopus 로고
    • AMP-activated protein kinase-development of the energy sensor concept
    • Hardie DG, Hawley SA, Scott JW. AMP-activated protein kinase-development of the energy sensor concept. J Physiol. 2006;574(Pt 1):7-15.
    • (2006) J Physiol , vol.574 , Issue.PART 1 , pp. 7-15
    • Hardie, D.G.1    Hawley, S.A.2    Scott, J.W.3
  • 5
    • 30144441692 scopus 로고    scopus 로고
    • Involvement of hypoxia-inducible factor 1 in pulmonary pathophysiology
    • Semenza GL. Involvement of hypoxia-inducible factor 1 in pulmonary pathophysiology. Chest. 2005;128(6):592S-4.
    • (2005) Chest , vol.128 , Issue.6 , pp. 592S-4
    • Semenza, G.L.1
  • 6
    • 0028892395 scopus 로고
    • Determination of myoglobin saturation of frozen specimens using a reflecting cryospectrophotometer
    • Voter WA, Gayeski TE. Determination of myoglobin saturation of frozen specimens using a reflecting cryospectrophotometer. Am J Physiol. 1995;269 (4 Pt 2):H1328-41.
    • (1995) Am J Physiol , vol.269 , Issue.4 PART 2 , pp. H1328-H1341
    • Voter, W.A.1    Gayeski, T.E.2
  • 7
    • 0026113250 scopus 로고
    • Intracellular PO2 in individual cardiac myocytes in dogs, cats, rabbits, ferrets, and rats
    • Gayeski TE, Honig CR. Intracellular PO2 in individual cardiac myocytes in dogs, cats, rabbits, ferrets, and rats. Am J Physiol. 1991;260:H522-31.
    • (1991) Am J Physiol , vol.260 , pp. H522-H531
    • Gayeski, T.E.1    Honig, C.R.2
  • 8
    • 18244419261 scopus 로고
    • Intracellular PO2 in long axis of individual fibers in working dog gracilis muscle
    • Gayeski TE, Honig CR. Intracellular PO2 in long axis of individual fibers in working dog gracilis muscle. Am J Physiol. 1988;254:H1179-86.
    • (1988) Am J Physiol , vol.254 , pp. H1179-H1186
    • Gayeski, T.E.1    Honig, C.R.2
  • 9
    • 0023003401 scopus 로고
    • O2 gradients from sarcolemma to cell interior in red muscle at maximal VO2
    • Gayeski TE, Honig CR. O2 gradients from sarcolemma to cell interior in red muscle at maximal VO2. Am J Physiol. 1986;251:H789-99.
    • (1986) Am J Physiol , vol.251 , pp. H789-H799
    • Gayeski, T.E.1    Honig, C.R.2
  • 10
    • 0023087899 scopus 로고
    • Comparison of intracellular PO2 and conditions for blood-tissue O2 transport in heart and working red skeletal muscle
    • Honig CR, Gayeski TE. Comparison of intracellular PO2 and conditions for blood-tissue O2 transport in heart and working red skeletal muscle. Adv Exp Med Biol. 1987;215:309-21.
    • (1987) Adv Exp Med Biol , vol.215 , pp. 309-321
    • Honig, C.R.1    Gayeski, T.E.2
  • 11
    • 0023275848 scopus 로고
    • Minimum intracellular PO2 for maximum cytochrome turnover in red muscle in situ
    • Gayeski TE, Connett RJ, Honig CR. Minimum intracellular PO2 for maximum cytochrome turnover in red muscle in situ. Am J Physiol. 1987;252:H906-15.
    • (1987) Am J Physiol , vol.252 , pp. H906-H915
    • Gayeski, T.E.1    Connett, R.J.2    Honig, C.R.3
  • 12
    • 0023187244 scopus 로고
    • How large is the drop in PO2 between cytosol and mitochondrion?
    • Clark Jr A, Clark PA, Connett RJ, et al. How large is the drop in PO2 between cytosol and mitochondrion? Am J Physiol. 1987;252:C583-7.
    • (1987) Am J Physiol , vol.252 , pp. C583-C587
    • Clark, A.1    Clark, P.A.2    Connett, R.J.3
  • 13
    • 0032446224 scopus 로고    scopus 로고
    • Direct estimation of intracellular PO2 gradients in a single cardiomyocyte of the rat
    • Takahashi E, Endoh H, Xu ZL, et al. Direct estimation of intracellular PO2 gradients in a single cardiomyocyte of the rat. Adv Exp Med Biol. 1998;454: 409-13.
    • (1998) Adv Exp Med Biol , vol.454 , pp. 409-413
    • Takahashi, E.1    Endoh, H.2    Xu, Z.L.3
  • 14
    • 33750865405 scopus 로고    scopus 로고
    • Direct observation of radial intracellular PO2 gradients in a single cardiomyocyte of the rat
    • Takahashi E, Sato K, Endoh H, et al. Direct observation of radial intracellular PO2 gradients in a single cardiomyocyte of the rat. Am J Physiol. 1998;275 (1 Pt 2):H225-33.
    • (1998) Am J Physiol , vol.275 , Issue.1 PART 2 , pp. H225-H233
    • Takahashi, E.1    Sato, K.2    Endoh, H.3
  • 15
    • 0017902898 scopus 로고
    • Gradients of O 2 concentration in hepatocytes
    • Jones DP, Mason HS. Gradients of O 2 concentration in hepatocytes. J Biol Chem. 1978;253:4874-80.
    • (1978) J Biol Chem , vol.253 , pp. 4874-4880
    • Jones, D.P.1    Mason, H.S.2
  • 16
    • 0002226997 scopus 로고
    • Studies on erythropoiesis. V. The effect of cobalt on the production of erythropoietin
    • Goldwasser E, Jacobson LO, Fried W, et al. Studies on erythropoiesis. V. The effect of cobalt on the production of erythropoietin. Blood. 1958;13:55-60.
    • (1958) Blood , vol.13 , pp. 55-60
    • Goldwasser, E.1    Jacobson, L.O.2    Fried, W.3
  • 17
    • 0242408897 scopus 로고
    • The regulated expression of erythropoietin by two human hepatoma cell lines
    • Goldberg MA, Glass GA, Cunningham JM, et al. The regulated expression of erythropoietin by two human hepatoma cell lines. Proc Natl Acad Sci USA. 1987;84(22):7972-6.
    • (1987) Proc Natl Acad Sci USA , vol.84 , Issue.22 , pp. 7972-7976
    • Goldberg, M.A.1    Glass, G.A.2    Cunningham, J.M.3
  • 18
    • 0024273450 scopus 로고
    • Regulation of the erythropoietin gene: Evidence that the oxygen sensor is a heme protein
    • Goldberg MA, Dunning SP, Bunn HF. Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science. 1988;242: 1412-5.
    • (1988) Science , vol.242 , pp. 1412-1415
    • Goldberg, M.A.1    Dunning, S.P.2    Bunn, H.F.3
  • 19
    • 0027458517 scopus 로고
    • Vivo and in vitro regulation of erythropoietin mRNA: Measurement by competitive polymerase chain reaction
    • Fandrey J, Bunn HF. In vivo and in vitro regulation of erythropoietin mRNA: measurement by competitive polymerase chain reaction. Blood. 1993;81(3): 617-23.
    • (1993) Blood , vol.81 , Issue.3 , pp. 617-623
    • Fandrey, J.1    Bunn, H.F.2
  • 20
    • 0343938889 scopus 로고    scopus 로고
    • Erythropoietin induction in Hep3B cells is not affected by inhibition of heme biosynthesis
    • Horiguchi H, Bunn HF. Erythropoietin induction in Hep3B cells is not affected by inhibition of heme biosynthesis. Biochim Biophys Acta Mol Cell Res. 2000;1495(3):231-6.
    • (2000) Biochim Biophys Acta Mol Cell Res , vol.1495 , Issue.3 , pp. 231-236
    • Horiguchi, H.1    Bunn, H.F.2
  • 21
    • 0036830796 scopus 로고    scopus 로고
    • The leukocyte NADPH oxidase
    • Babior BM. The leukocyte NADPH oxidase. Isr Med Assoc J. 2002;4(11):1023-4.
    • (2002) Isr Med Assoc J , vol.4 , Issue.11 , pp. 1023-1024
    • Babior, B.M.1
  • 23
    • 34249101218 scopus 로고    scopus 로고
    • Cytosolic NAD(P)H regulation of redox signaling and vascular oxygen sensing
    • Wolin MS, Ahmad M, Gao Q, et al. Cytosolic NAD(P)H regulation of redox signaling and vascular oxygen sensing. Antioxid Redox Signal. 2007;9(6): 671-8.
    • (2007) Antioxid Redox Signal , vol.9 , Issue.6 , pp. 671-678
    • Wolin, M.S.1    Ahmad, M.2    Gao, Q.3
  • 24
    • 63649119791 scopus 로고    scopus 로고
    • NAD(P)H oxidase and endothelial dysfunction
    • Muller G, Morawietz H. NAD(P)H oxidase and endothelial dysfunction. Horm Metab Res. 2009;41(2): 152-8.
    • (2009) Horm Metab Res , vol.41 , Issue.2 , pp. 152-158
    • Muller, G.1    Morawietz, H.2
  • 25
    • 0029040451 scopus 로고
    • Immunohistochemical demonstration of four subunits of neutrophil NAD(P)H oxidase in type i cells of carotid body
    • Kummer W, Acker H. Immunohistochemical demonstration of four subunits of neutrophil NAD(P)H oxidase in type I cells of carotid body. J Appl Physiol. 1995;78(5):1904-9.
    • (1995) J Appl Physiol , vol.78 , Issue.5 , pp. 1904-1909
    • Kummer, W.1    Acker, H.2
  • 26
    • 0034677947 scopus 로고    scopus 로고
    • NAD(P) H oxidase-role in cardiovascular biology and disease
    • Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P) H oxidase-role in cardiovascular biology and disease. Circ Res. 2000;86(5):494-501.
    • (2000) Circ Res , vol.86 , Issue.5 , pp. 494-501
    • Griendling, K.K.1    Sorescu, D.2    Ushio-Fukai, M.3
  • 27
    • 0034458228 scopus 로고    scopus 로고
    • The NADPH oxidase of endothelial cells
    • Babior BM. The NADPH oxidase of endothelial cells. IUBMB Life. 2000;50(4-5):267-9.
    • (2000) IUBMB Life , vol.50 , Issue.4-5 , pp. 267-269
    • Babior, B.M.1
  • 28
    • 0033529173 scopus 로고    scopus 로고
    • O 2 sensing is preserved in mice lacking the gp91 phox subunit of NADPH oxidase
    • Archer SL, Reeve HL, Michelakis E, et al. O 2 sensing is preserved in mice lacking the gp91 phox subunit of NADPH oxidase. Proc Natl Acad Sci USA. 1999;96:7944-9.
    • (1999) Proc Natl Acad Sci USA , vol.96 , pp. 7944-7949
    • Archer, S.L.1    Reeve, H.L.2    Michelakis, E.3
  • 29
    • 33645678826 scopus 로고    scopus 로고
    • Impact of mitochondria and NADPH oxidases on acute and sustained hypoxic pulmonary vasoconstriction
    • Weissmann N, Zeller S, Schafer RU, et al. Impact of mitochondria and NADPH oxidases on acute and sustained hypoxic pulmonary vasoconstriction. Am J Respir Cell Mol Biol. 2006;34(4):505-13.
    • (2006) Am J Respir Cell Mol Biol , vol.34 , Issue.4 , pp. 505-513
    • Weissmann, N.1    Zeller, S.2    Schafer, R.U.3
  • 30
    • 0025802645 scopus 로고
    • Single K + channels in membrane patches of arterial chemoreceptor cells are modulated by O 2 tension
    • Ganfornina MD, Lopez-Barneo J. Single K + channels in membrane patches of arterial chemoreceptor cells are modulated by O 2 tension. Proc Natl Acad Sci USA. 1991;88(7):2927-30.
    • (1991) Proc Natl Acad Sci USA , vol.88 , Issue.7 , pp. 2927-2930
    • Ganfornina, M.D.1    Lopez-Barneo, J.2
  • 31
    • 0026744619 scopus 로고
    • Potassium channel types in arterial chemoreceptor cells and their selective modulation by oxygen
    • Ganfornina MD, Lopez-Barneo J. Potassium channel types in arterial chemoreceptor cells and their selective modulation by oxygen. J Gen Physiol. 1992;100(3):401-26.
    • (1992) J Gen Physiol , vol.100 , Issue.3 , pp. 401-426
    • Ganfornina, M.D.1    Lopez-Barneo, J.2
  • 32
    • 0025000175 scopus 로고
    • Hypoxic suppression of K+ currents in type i carotid body cells: Selective effect on the Ca2(+)- activated K+ current
    • Peers C. Hypoxic suppression of K+ currents in type I carotid body cells: selective effect on the Ca2(+)- activated K+ current. Neurosci Lett. 1990;119(2): 253-6.
    • (1990) Neurosci Lett , vol.119 , Issue.2 , pp. 253-256
    • Peers, C.1
  • 33
    • 0028988372 scopus 로고
    • Ca(2+)-activated K+ channels in isolated type i cells of the neonatal rat carotid body
    • Wyatt CN, Peers C. Ca(2+)-activated K+ channels in isolated type I cells of the neonatal rat carotid body. J Physiol. 1995;483(Pt 3):559-65.
    • (1995) J Physiol , vol.483 , Issue.PART 3 , pp. 559-565
    • Wyatt, C.N.1    Peers, C.2
  • 34
    • 3042637605 scopus 로고    scopus 로고
    • Characterization of the Kv channels of mouse carotid body chemoreceptor cells and their role in oxygen sensing
    • Perez-Garcia MT, Colinas O, Miguel-Velado E, et al. Characterization of the Kv channels of mouse carotid body chemoreceptor cells and their role in oxygen sensing. J Physiol (Lond ). 2004;557(2):457-71.
    • (2004) J Physiol (Lond ) , vol.557 , Issue.2 , pp. 457-471
    • Perez-Garcia, M.T.1    Colinas, O.2    Miguel-Velado, E.3
  • 35
    • 27744529463 scopus 로고    scopus 로고
    • Mechanisms of disease-acute oxygen-sensing mechanisms
    • Weir EK, Lopez-Barneo J, Buckler KJ, et al. Mechanisms of disease-acute oxygen-sensing mechanisms. N Engl J Med. 2005;353(19):2042-55.
    • (2005) N Engl J Med , vol.353 , Issue.19 , pp. 2042-2055
    • Weir, E.K.1    Lopez-Barneo, J.2    Buckler, K.J.3
  • 36
    • 10844248490 scopus 로고    scopus 로고
    • Hemoxygenase-2 is an oxygen sensor for a calciumsensitive potassium channel
    • Williams SEJ, Wootton P, Mason HS, et al. Hemoxygenase-2 is an oxygen sensor for a calciumsensitive potassium channel. Science. 2004;306 (5704):2093-7.
    • (2004) Science , vol.306 , Issue.5704 , pp. 2093-2097
    • Williams, S.E.J.1    Wootton, P.2    Mason, H.S.3
  • 37
    • 33749039222 scopus 로고    scopus 로고
    • Acute oxygen sensing in heme oxygenase-2 null mice
    • Ortega-Saenz P, Pascual A, Gomez-Diaz R, et al. Acute oxygen sensing in heme oxygenase-2 null mice. J Gen Physiol. 2006;128(4):405-11.
    • (2006) J Gen Physiol , vol.128 , Issue.4 , pp. 405-411
    • Ortega-Saenz, P.1    Pascual, A.2    Gomez-Diaz, R.3
  • 38
    • 0028068606 scopus 로고
    • Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1
    • Semenza GL, Roth PH, Fang H-M, et al. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem. 1994;269:23757-63.
    • (1994) J Biol Chem , vol.269 , pp. 23757-23763
    • Semenza, G.L.1    Roth, P.H.2    Fang, H.-M.3
  • 39
    • 0026468180 scopus 로고
    • A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation
    • Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol. 1992;12(12):5447-54.
    • (1992) Mol Cell Biol , vol.12 , Issue.12 , pp. 5447-5454
    • Semenza, G.L.1    Wang, G.L.2
  • 40
    • 0026075610 scopus 로고
    • Hypoxiainducible nuclear factors bind to an enhancer element located 3' to the human erythropoietin gene
    • Semenza GL, Nejfelt MK, Chi SM, et al. Hypoxiainducible nuclear factors bind to an enhancer element located 3' to the human erythropoietin gene. Proc Natl Acad Sci USA. 1991;88(13):5680-4.
    • (1991) Proc Natl Acad Sci USA , vol.88 , Issue.13 , pp. 5680-5684
    • Semenza, G.L.1    Nejfelt, M.K.2    Chi, S.M.3
  • 41
    • 0027461553 scopus 로고
    • Inducible operation of the erythropoietin 3' enhancer in multiple cell lines: Evidence for a widespread oxygen-sensing mechanism
    • Maxwell PH, Pugh CW, Ratcliffe PJ. Inducible operation of the erythropoietin 3' enhancer in multiple cell lines: evidence for a widespread oxygen-sensing mechanism. Proc Natl Acad Sci USA. 1993;90:2423-7.
    • (1993) Proc Natl Acad Sci USA , vol.90 , pp. 2423-2427
    • Maxwell, P.H.1    Pugh, C.W.2    Ratcliffe, P.J.3
  • 42
    • 1642391064 scopus 로고    scopus 로고
    • How cells endure low oxygen
    • Marx J. How cells endure low oxygen. Science. 2004;303:1454-6.
    • (2004) Science , vol.303 , pp. 1454-1456
    • Marx, J.1
  • 43
    • 15444342958 scopus 로고    scopus 로고
    • Cellular and developmental control of O2 homeostasis by hypoxia- inducible factor 1 alpha
    • Iyer NV, Kotch LE, Agani F, et al. Cellular and developmental control of O2 homeostasis by hypoxia- inducible factor 1 alpha. Genes Dev. 1998;12(2):149-62.
    • (1998) Genes Dev , vol.12 , Issue.2 , pp. 149-162
    • Iyer, N.V.1    Kotch, L.E.2    Agani, F.3
  • 44
    • 0030943461 scopus 로고    scopus 로고
    • Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT
    • Maltepe E, Schmidt JV, Baunoch D, et al. Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature. 1997;386(6623):403-7.
    • (1997) Nature , vol.386 , Issue.6623 , pp. 403-407
    • Maltepe, E.1    Schmidt, J.V.2    Baunoch, D.3
  • 45
    • 0031969557 scopus 로고    scopus 로고
    • Oxygen, genes, and development: An analysis of the role of hypoxic gene regulation during murine vascular development
    • Maltepe E, Simon MC. Oxygen, genes, and development: an analysis of the role of hypoxic gene regulation during murine vascular development. J Mol Med. 1998;76(6):391-401.
    • (1998) J Mol Med , vol.76 , Issue.6 , pp. 391-401
    • Maltepe, E.1    Simon, M.C.2
  • 46
    • 0029051439 scopus 로고
    • Hypoxiainducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O 2 tension
    • Wang GL, Jiang B-H, Rue EA, et al. Hypoxiainducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O 2 tension. Proc Natl Acad Sci USA. 1995;92:5510-4.
    • (1995) Proc Natl Acad Sci USA , vol.92 , pp. 5510-5514
    • Wang, G.L.1    Jiang, B.-H.2    Rue, E.A.3
  • 47
    • 0029859510 scopus 로고    scopus 로고
    • Hypoxiainducible factor 1 levels vary exponentially over a physiologically relevant range of O 2 tension
    • Jiang BH, Semenza GL, Bauer C, et al. Hypoxiainducible factor 1 levels vary exponentially over a physiologically relevant range of O 2 tension. Am J Physiol. 1996;271(4 Pt 1):C1172-80.
    • (1996) Am J Physiol , vol.271 , Issue.4 PART 1 , pp. C1172-C1180
    • Jiang, B.H.1    Semenza, G.L.2    Bauer, C.3
  • 48
    • 0032493368 scopus 로고    scopus 로고
    • Regulation of hypoxia-inducible factor 1α is mediated by an O 2 - Dependent degradation domain via the ubiquitinproteasome pathway
    • Huang LE, Gu J, Schau M, et al. Regulation of hypoxia-inducible factor 1α is mediated by an O 2 - dependent degradation domain via the ubiquitinproteasome pathway. Proc Natl Acad Sci USA. 1998;95(14):7987-92.
    • (1998) Proc Natl Acad Sci USA , vol.95 , Issue.14 , pp. 7987-7992
    • Huang, L.E.1    Gu, J.2    Schau, M.3
  • 49
    • 0033587146 scopus 로고    scopus 로고
    • The tumour suppressor protein VHL targets hypoxiainducible factors for oxygen-dependent proteolysis
    • Maxwell PH, Wiesener MS, Chang GW, et al. The tumour suppressor protein VHL targets hypoxiainducible factors for oxygen-dependent proteolysis. Nature. 1999;399(6733):271-5.
    • (1999) Nature , vol.399 , Issue.6733 , pp. 271-275
    • Maxwell, P.H.1    Wiesener, M.S.2    Chang, G.W.3
  • 50
    • 0035812772 scopus 로고    scopus 로고
    • HIF-1, O2, and the 3 PHDs: How animal cells signal hypoxia to the nucleus
    • Semenza GL. HIF-1, O2, and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell. 2001;107(1):1-3.
    • (2001) Cell , vol.107 , Issue.1 , pp. 1-3
    • Semenza, G.L.1
  • 51
    • 33750976389 scopus 로고    scopus 로고
    • Placental but not heart defects are associated with elevated hypoxiainducible factor alpha levels in mice lacking prolyl hydroxylase domain protein
    • Takeda K, Ho VC, Takeda H, et al. Placental but not heart defects are associated with elevated hypoxiainducible factor alpha levels in mice lacking prolyl hydroxylase domain protein. Mol Cell Biol. 2006;26(22):8336-46.
    • (2006) Mol Cell Biol , vol.26 , Issue.22 , pp. 8336-8346
    • Takeda, K.1    Ho, V.C.2    Takeda, H.3
  • 52
    • 0035917808 scopus 로고    scopus 로고
    • Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation
    • Jaakkola P, Mole DR, Tian YM, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;292(5516):468-72.
    • (2001) Science , vol.292 , Issue.5516 , pp. 468-472
    • Jaakkola, P.1    Mole, D.R.2    Tian, Y.M.3
  • 53
    • 0035917313 scopus 로고    scopus 로고
    • HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: Implications for O2 sensing
    • Ivan M, Kondo K, Yang H, et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001; 292(5516):464-8.
    • (2001) Science , vol.292 , Issue.5516 , pp. 464-468
    • Ivan, M.1    Kondo, K.2    Yang, H.3
  • 54
    • 0032581277 scopus 로고    scopus 로고
    • Role of HIF- 1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis
    • Carmeliet P, Dor Y, Herbert JM, et al. Role of HIF- 1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature. 1998;394(6692):485-90.
    • (1998) Nature , vol.394 , Issue.6692 , pp. 485-490
    • Carmeliet, P.1    Dor, Y.2    Herbert, J.M.3
  • 55
    • 0036138398 scopus 로고    scopus 로고
    • Regulation of HIF by the von Hippel-Lindau tumour suppressor: Implications for cellular oxygen sensing
    • Mole DR, Maxwell PH, Pugh CW, et al. Regulation of HIF by the von Hippel-Lindau tumour suppressor: implications for cellular oxygen sensing. IUBMB Life. 2001;52(1-2):43-7.
    • (2001) IUBMB Life , vol.52 , Issue.1-2 , pp. 43-47
    • Mole, D.R.1    Maxwell, P.H.2    Pugh, C.W.3
  • 56
    • 0036469038 scopus 로고    scopus 로고
    • Asparagine hydroxylation of the HIF transactivation domain: A hypoxic switch
    • Lando D, Peet DJ, Whelan DA, et al. Asparagine hydroxylation of the HIF transactivation domain: a hypoxic switch. Science. 2002;295(5556):858-61.
    • (2002) Science , vol.295 , Issue.5556 , pp. 858-861
    • Lando, D.1    Peet, D.J.2    Whelan, D.A.3
  • 57
    • 0037097861 scopus 로고    scopus 로고
    • FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor
    • Lando D, Peet DJ, Gorman JJ, et al. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev. 2002;16(12):1466-71.
    • (2002) Genes Dev , vol.16 , Issue.12 , pp. 1466-1471
    • Lando, D.1    Peet, D.J.2    Gorman, J.J.3
  • 58
    • 84857789085 scopus 로고    scopus 로고
    • The FIH hydroxylase is a cellular peroxide sensor that modulates HIF transcriptional activity
    • Masson N, Singleton RS, Sekirnik R, et al. The FIH hydroxylase is a cellular peroxide sensor that modulates HIF transcriptional activity. EMBO Rep. 2012;13(3):251-7.
    • (2012) EMBO Rep , vol.13 , Issue.3 , pp. 251-257
    • Masson, N.1    Singleton, R.S.2    Sekirnik, R.3
  • 59
    • 0348134741 scopus 로고    scopus 로고
    • Redistribution of intracellular oxygen in hypoxia by nitric oxide: Effect on HIF1alpha
    • Hagen T, Taylor CT, Lam F, et al. Redistribution of intracellular oxygen in hypoxia by nitric oxide: effect on HIF1alpha. Science. 2003;302(5652):1975-8.
    • (2003) Science , vol.302 , Issue.5652 , pp. 1975-1978
    • Hagen, T.1    Taylor, C.T.2    Lam, F.3
  • 60
    • 0029998238 scopus 로고    scopus 로고
    • Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport
    • Cassina A, Radi R. Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys. 1996;328(2):309-16.
    • (1996) Arch Biochem Biophys , vol.328 , Issue.2 , pp. 309-316
    • Cassina, A.1    Radi, R.2
  • 61
    • 33645560710 scopus 로고    scopus 로고
    • Mitochondrial cytochrome oxidase produces nitric oxide under hypoxic conditions: Implications for oxygen sensing and hypoxic signaling in eukaryotes
    • Castello PR, David PS, McClure T, et al. Mitochondrial cytochrome oxidase produces nitric oxide under hypoxic conditions: implications for oxygen sensing and hypoxic signaling in eukaryotes. Cell Metab. 2006;3(4):277-87.
    • (2006) Cell Metab , vol.3 , Issue.4 , pp. 277-287
    • Castello, P.R.1    David, P.S.2    McClure, T.3
  • 62
    • 70350353654 scopus 로고    scopus 로고
    • Mitochondria and hypoxic signaling: A new view
    • Poyton RO, Castello PR, Ball KA, et al. Mitochondria and hypoxic signaling: a new view. Ann N Y Acad Sci. 2009;1177:48-56.
    • (2009) Ann N y Acad Sci , vol.1177 , pp. 48-56
    • Poyton, R.O.1    Castello, P.R.2    Ball, K.A.3
  • 63
    • 0029007930 scopus 로고
    • Regulation of mitochondrial energy generation in health and disease
    • Kadenbach B, Barth J, Akgun R, et al. Regulation of mitochondrial energy generation in health and disease. Biochim Biophys Acta. 1995;1271:103-9.
    • (1995) Biochim Biophys Acta , vol.1271 , pp. 103-109
    • Kadenbach, B.1    Barth, J.2    Akgun, R.3
  • 64
    • 0022554086 scopus 로고
    • Isozymes of cytochrome-c oxidase: Characterization and isolation from different tissues
    • Kadenbach B, Stroh A, Ungibauer M, et al. Isozymes of cytochrome-c oxidase: characterization and isolation from different tissues. Methods Enzymol. 1986;126:32-45.
    • (1986) Methods Enzymol , vol.126 , pp. 32-45
    • Kadenbach, B.1    Stroh, A.2    Ungibauer, M.3
  • 65
    • 0035804655 scopus 로고    scopus 로고
    • Mammalian subunit IV isoforms of cytochrome c oxidase
    • Huttemann M, Kadenbach B, Grossman LI. Mammalian subunit IV isoforms of cytochrome c oxidase. Gene. 2001;267(1):111-23.
    • (2001) Gene , vol.267 , Issue.1 , pp. 111-123
    • Huttemann, M.1    Kadenbach, B.2    Grossman, L.I.3
  • 66
    • 0028853547 scopus 로고
    • Electron transfer and proton pumping in cytochrome oxidase
    • Brunori M, Wilson MT. Electron transfer and proton pumping in cytochrome oxidase. Biochimie. 1995;77:668-76.
    • (1995) Biochimie , vol.77 , pp. 668-676
    • Brunori, M.1    Wilson, M.T.2
  • 67
    • 0015369803 scopus 로고
    • Mitochondrial respiratory chain of carotid body and chemoreceptor response to changes in oxygen tension
    • Mills E, Jobsis FF. Mitochondrial respiratory chain of carotid body and chemoreceptor response to changes in oxygen tension. J Neurophysiol. 1972;35(4):405-28.
    • (1972) J Neurophysiol , vol.35 , Issue.4 , pp. 405-428
    • Mills, E.1    Jobsis, F.F.2
  • 68
    • 0022963778 scopus 로고
    • Two cytochrome oxygen consumption model and mechanism for carotid body chemoreception
    • Nair PK, Buerk DG, Whalen WJ, et al. Two cytochrome oxygen consumption model and mechanism for carotid body chemoreception. Adv Exp Med Biol. 1986;200:293-300.
    • (1986) Adv Exp Med Biol , vol.200 , pp. 293-300
    • Nair, P.K.1    Buerk, D.G.2    Whalen, W.J.3
  • 69
    • 0022470629 scopus 로고
    • Cat carotid body oxygen metabolism and chemoreception described by a two-cytochrome model
    • Nair PK, Buerk DG, Whalen WJ. Cat carotid body oxygen metabolism and chemoreception described by a two-cytochrome model. Am J Physiol. 1986;250(2 Pt 2):H202-7.
    • (1986) Am J Physiol , vol.250 , Issue.2 PART 2 , pp. H202-H207
    • Nair, P.K.1    Buerk, D.G.2    Whalen, W.J.3
  • 70
    • 0024311747 scopus 로고
    • Two-cytochrome metabolic model for carotid body PtiO2 and chemosensitivity changes after hemorrhage
    • Buerk DG, Nair PK, Whalen WJ. Two-cytochrome metabolic model for carotid body PtiO2 and chemosensitivity changes after hemorrhage. J Appl Physiol. 1989;67(1):60-8.
    • (1989) J Appl Physiol , vol.67 , Issue.1 , pp. 60-68
    • Buerk, D.G.1    Nair, P.K.2    Whalen, W.J.3
  • 71
    • 0021741596 scopus 로고
    • Perspectives in carotid body research
    • Eyzaguirre C, Zapata P. Perspectives in carotid body research. J Appl Physiol. 1984;57(4):931-57.
    • (1984) J Appl Physiol , vol.57 , Issue.4 , pp. 931-957
    • Eyzaguirre, C.1    Zapata, P.2
  • 72
    • 0025338815 scopus 로고
    • The steady-state kinetics of cytochrome c oxidation by cytochrome oxidase
    • Cooper CE. The steady-state kinetics of cytochrome c oxidation by cytochrome oxidase. Biochim Biophys Acta. 1990;1017:187-203.
    • (1990) Biochim Biophys Acta , vol.1017 , pp. 187-203
    • Cooper, C.E.1
  • 73
    • 0001185122 scopus 로고
    • The action of high tensions of carbon monoxide on the carotid chemoreceptors
    • Joels N, Neil E. The action of high tensions of carbon monoxide on the carotid chemoreceptors. Arch Int Pharm Ther. 1962;130:528-34.
    • (1962) Arch Int Pharm Ther , vol.130 , pp. 528-534
    • Joels, N.1    Neil, E.2
  • 74
    • 0027445058 scopus 로고
    • CO reveals dual mechanisms of O2 chemoreception in the cat carotid body
    • Lahiri S, Iturriaga R, Mokashi A, et al. CO reveals dual mechanisms of O2 chemoreception in the cat carotid body. Respir Physiol. 1993;94(2):227-40.
    • (1993) Respir Physiol , vol.94 , Issue.2 , pp. 227-240
    • Lahiri, S.1    Iturriaga, R.2    Mokashi, A.3
  • 75
    • 21844497112 scopus 로고
    • Chromophores in O2 chemoreception: The carotid body model
    • Lahiri S. Chromophores in O2 chemoreception: the carotid body model. News Physiol Sci. 1994;9: 161-5.
    • (1994) News Physiol Sci , vol.9 , pp. 161-165
    • Lahiri, S.1
  • 76
    • 0014010888 scopus 로고
    • Antimycin-insensitive oxidation of succinate and reduced nicotinamide-adenine dinucleotide in electron-tranport particles
    • Jensen PK. Antimycin-insensitive oxidation of succinate and reduced nicotinamide-adenine dinucleotide in electron-tranport particles. Biochim Biophys Acta. 1966;122:157-66.
    • (1966) Biochim Biophys Acta , vol.122 , pp. 157-166
    • Jensen, P.K.1
  • 77
    • 0015363173 scopus 로고
    • The cellular production of hydrogen peroxide
    • Boveris A, Oshino N, Chance B. The cellular production of hydrogen peroxide. Biochem J. 1972;128(3):617-30.
    • (1972) Biochem J , vol.128 , Issue.3 , pp. 617-630
    • Boveris, A.1    Oshino, N.2    Chance, B.3
  • 78
    • 0027181186 scopus 로고
    • Evidence that mitochondrial respiration is a source of potentially toxic oxygen free radicals in intact rabbit hearts subjected to ischemia and reflow
    • Ambrosio G, Zweier JL, Duilio C, et al. Evidence that mitochondrial respiration is a source of potentially toxic oxygen free radicals in intact rabbit hearts subjected to ischemia and reflow. J Biol Chem. 1993;268(25):18532-41.
    • (1993) J Biol Chem , vol.268 , Issue.25 , pp. 18532-18541
    • Ambrosio, G.1    Zweier, J.L.2    Duilio, C.3
  • 79
    • 0033379022 scopus 로고    scopus 로고
    • Generation of superoxide in cardiomyocytes during ischemia before reperfusion
    • Becker LB, Vanden Hoek TL, Shao ZH, et al. Generation of superoxide in cardiomyocytes during ischemia before reperfusion. Am J Physiol. 1999;277(6 Pt 2):H2240-6.
    • (1999) Am J Physiol , vol.277 , Issue.6 PART 2 , pp. H2240-H2246
    • Becker, L.B.1    Vanden Hoek, T.L.2    Shao, Z.H.3
  • 80
    • 0032504639 scopus 로고    scopus 로고
    • The role of mitochondria in the salvage and the injury of the ischemic myocardium
    • Di Lisa F, Menabo R, Canton M, et al. The role of mitochondria in the salvage and the injury of the ischemic myocardium. Biochim Biophys Acta. 1998;1366(1-2):69-78.
    • (1998) Biochim Biophys Acta , vol.1366 , Issue.1-2 , pp. 69-78
    • Di Lisa, F.1    Menabo, R.2    Canton, M.3
  • 81
    • 0029788601 scopus 로고    scopus 로고
    • The role of mitochondria in ischemic heart disease
    • Ferrari R. The role of mitochondria in ischemic heart disease. J Cardiovasc Pharmacol. 1996;28 Suppl 1:S1-10.
    • (1996) J Cardiovasc Pharmacol , vol.28 , pp. S1-10
    • Ferrari, R.1
  • 82
    • 84907037809 scopus 로고
    • Mitochondrial generation of oxygen radicals during reoxygenation of ischemic tissues
    • Turrens JF, Beconi M, Barilla J, et al. Mitochondrial generation of oxygen radicals during reoxygenation of ischemic tissues. Free Radic Res Commun. 1991;12-13(Pt 2):681-9.
    • (1991) Free Radic Res Commun , vol.12-13 , Issue.PART 2 , pp. 681-689
    • Turrens, J.F.1    Beconi, M.2    Barilla, J.3
  • 83
    • 0031239737 scopus 로고    scopus 로고
    • Significant levels of oxidants are generated by isolated cardiomyocytes during ischemia prior to reperfusion
    • Vanden Hoek TL, Li C, Shao Z, et al. Significant levels of oxidants are generated by isolated cardiomyocytes during ischemia prior to reperfusion. J Mol Cell Cardiol. 1997;29:2571-83.
    • (1997) J Mol Cell Cardiol , vol.29 , pp. 2571-2583
    • Vanden Hoek, T.L.1    Li, C.2    Shao, Z.3
  • 84
    • 0019848340 scopus 로고
    • Hyperoxia increases oxygen radical production in rat lungs and lung mitochondria
    • Freeman BA, Crapo JD. Hyperoxia increases oxygen radical production in rat lungs and lung mitochondria. J Biol Chem. 1981;256(21):10986-92.
    • (1981) J Biol Chem , vol.256 , Issue.21 , pp. 10986-10992
    • Freeman, B.A.1    Crapo, J.D.2
  • 85
    • 0032030445 scopus 로고    scopus 로고
    • Mitochondrial NADH-quinone oxidoreductase of the outer membrane is responsible for paraquat cytotoxicity in rat livers
    • Shimada H, Hirai K, Simamura E, et al. Mitochondrial NADH-quinone oxidoreductase of the outer membrane is responsible for paraquat cytotoxicity in rat livers. Arch Biochem Biophys. 1998;351(1):75-81.
    • (1998) Arch Biochem Biophys , vol.351 , Issue.1 , pp. 75-81
    • Shimada, H.1    Hirai, K.2    Simamura, E.3
  • 86
    • 0034456720 scopus 로고    scopus 로고
    • Mitochondrial production of hydrogen peroxide regulation by nitric oxide and the role of ubisemiquinone
    • Boveris A, Cadenas E. Mitochondrial production of hydrogen peroxide regulation by nitric oxide and the role of ubisemiquinone. IUBMB Life. 2000;50(4-5): 245-50.
    • (2000) IUBMB Life , vol.50 , Issue.4-5 , pp. 245-250
    • Boveris, A.1    Cadenas, E.2
  • 87
    • 0032578458 scopus 로고    scopus 로고
    • Mitochondrial reactive oxygen species trigger hypoxia-induced transcription
    • Chandel NS, Maltepe E, Goldwasser E, et al. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci USA. 1998;95:11715-20.
    • (1998) Proc Natl Acad Sci USA , vol.95 , pp. 11715-11720
    • Chandel, N.S.1    Maltepe, E.2    Goldwasser, E.3
  • 88
    • 0034082278 scopus 로고    scopus 로고
    • Cellular oxygen sensing by mitochondria: Old questions, new insight
    • Chandel NS, Schumacker PT. Cellular oxygen sensing by mitochondria: old questions, new insight. J Appl Physiol. 2000;88(5):1880-9.
    • (2000) J Appl Physiol , vol.88 , Issue.5 , pp. 1880-1889
    • Chandel, N.S.1    Schumacker, P.T.2
  • 89
    • 0026780292 scopus 로고
    • Coordinated multisite regulation of cellular energy metabolism
    • Jones DP, Shan X, Park Y. Coordinated multisite regulation of cellular energy metabolism. Annu Rev Nutr. 1992;12:327-43.
    • (1992) Annu Rev Nutr , vol.12 , pp. 327-343
    • Jones, D.P.1    Shan, X.2    Park, Y.3
  • 90
    • 0019083215 scopus 로고
    • Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria
    • Turrens JF, Boveris A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J. 1980;191:421-7.
    • (1980) Biochem J , vol.191 , pp. 421-427
    • Turrens, J.F.1    Boveris, A.2
  • 91
    • 0034740585 scopus 로고    scopus 로고
    • DeltaPsi(m)-Dependent and -independent production of reactive oxygen species by rat brain mitochondria
    • Votyakova TV, Reynolds IJ. DeltaPsi(m)-Dependent and -independent production of reactive oxygen species by rat brain mitochondria. J Neurochem. 2001;79(2):266-77.
    • (2001) J Neurochem , vol.79 , Issue.2 , pp. 266-277
    • Votyakova, T.V.1    Reynolds, I.J.2
  • 92
    • 0035929367 scopus 로고    scopus 로고
    • The site of production of superoxide radical in mitochondrial Complex i is not a bound ubisemiquinone but presumably iron-sulfur cluster N2
    • Genova ML, Ventura B, Giuliano G, et al. The site of production of superoxide radical in mitochondrial Complex I is not a bound ubisemiquinone but presumably iron-sulfur cluster N2. FEBS Lett. 2001;505(3):364-8.
    • (2001) FEBS Lett , vol.505 , Issue.3 , pp. 364-368
    • Genova, M.L.1    Ventura, B.2    Giuliano, G.3
  • 93
    • 0032545445 scopus 로고    scopus 로고
    • Diphenyleneiodonium, an NAD(P) H oxidase inhibitor, also potently inhibits mitochondrial reactive oxygen species production
    • Li Y, Trush MA. Diphenyleneiodonium, an NAD(P) H oxidase inhibitor, also potently inhibits mitochondrial reactive oxygen species production. Biochem Biophys Res Commun. 1998;253(2):295-9.
    • (1998) Biochem Biophys Res Commun , vol.253 , Issue.2 , pp. 295-299
    • Li, Y.1    Trush, M.A.2
  • 94
    • 0015499932 scopus 로고
    • The univalent reduction of oxygen by reduced flavins and quinones
    • Misra HP, Fridovich I. The univalent reduction of oxygen by reduced flavins and quinones. J Biol Chem. 1972;247:188-92.
    • (1972) J Biol Chem , vol.247 , pp. 188-192
    • Misra, H.P.1    Fridovich, I.2
  • 95
    • 0021996572 scopus 로고
    • Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria
    • Turrens JF, Alexandre A, Lehninger AL. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys. 1985;237:408-14.
    • (1985) Arch Biochem Biophys , vol.237 , pp. 408-414
    • Turrens, J.F.1    Alexandre, A.2    Lehninger, A.L.3
  • 96
    • 0028788763 scopus 로고
    • Role of oxidative stress generated from the mitochondrial electron transport chain and mitochondrial glutathione status in loss of mitochondrial function and activation of transcription factor nuclear factor-kappa B: Studies with isolated mitochondria and rat hepatocytes
    • Garcia-Ruiz C, Colell A, Morales A, et al. Role of oxidative stress generated from the mitochondrial electron transport chain and mitochondrial glutathione status in loss of mitochondrial function and activation of transcription factor nuclear factor-kappa B: studies with isolated mitochondria and rat hepatocytes. Mol Pharmacol. 1995;48(5):825-34.
    • (1995) Mol Pharmacol , vol.48 , Issue.5 , pp. 825-834
    • Garcia-Ruiz, C.1    Colell, A.2    Morales, A.3
  • 97
    • 0031853099 scopus 로고    scopus 로고
    • Substrate and site specificity of hydrogen peroxide generation in mouse mitochondria
    • Kwong LK, Sohal RS. Substrate and site specificity of hydrogen peroxide generation in mouse mitochondria. Arch Biochem Biophys. 1998;350:118-26.
    • (1998) Arch Biochem Biophys , vol.350 , pp. 118-126
    • Kwong, L.K.1    Sohal, R.S.2
  • 98
    • 1842330849 scopus 로고    scopus 로고
    • Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione
    • Garcia-Ruiz C, Colell A, Mari M, et al. Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione. J Biol Chem. 1997;272(17):11369-77.
    • (1997) J Biol Chem , vol.272 , Issue.17 , pp. 11369-11377
    • Garcia-Ruiz, C.1    Colell, A.2    Mari, M.3
  • 99
    • 1842375100 scopus 로고    scopus 로고
    • Implication of mitochondrial hydrogen peroxide generation in ceramide-induced apoptosis
    • Quillet-Mary A, Jaffrezou JP, Mansat V, et al. Implication of mitochondrial hydrogen peroxide generation in ceramide-induced apoptosis. J Biol Chem. 1997;272(34):21388-95.
    • (1997) J Biol Chem , vol.272 , Issue.34 , pp. 21388-21395
    • Quillet-Mary, A.1    Jaffrezou, J.P.2    Mansat, V.3
  • 100
    • 0035297517 scopus 로고    scopus 로고
    • The ubiquinol/bc1 redox couple regulates mitochondrial oxygen radical formation
    • Gille L, Nohl H. The ubiquinol/bc1 redox couple regulates mitochondrial oxygen radical formation. Arch Biochem Biophys. 2001;388(1):34-8.
    • (2001) Arch Biochem Biophys , vol.388 , Issue.1 , pp. 34-38
    • Gille, L.1    Nohl, H.2
  • 101
    • 0032545269 scopus 로고    scopus 로고
    • Generation of superoxide anion by succinate-cytochrome c reductase from bovine heart mitochondria
    • Zhang L, Yu LD, Yu CA. Generation of superoxide anion by succinate-cytochrome c reductase from bovine heart mitochondria. J Biol Chem. 1998;273(51):33972-6.
    • (1998) J Biol Chem , vol.273 , Issue.51 , pp. 33972-33976
    • Zhang, L.1    Yu, L.D.2    Yu, C.A.3
  • 102
    • 24144493814 scopus 로고    scopus 로고
    • Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing
    • Guzy RD, Hoyos B, Robin E, et al. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 2005;1(6):401-8.
    • (2005) Cell Metab , vol.1 , Issue.6 , pp. 401-408
    • Guzy, R.D.1    Hoyos, B.2    Robin, E.3
  • 103
    • 24144447915 scopus 로고    scopus 로고
    • Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIFalpha activation
    • Mansfield KD, Guzy RD, Pan Y, et al. Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIFalpha activation. Cell Metab. 2005;1(6):393-9.
    • (2005) Cell Metab , vol.1 , Issue.6 , pp. 393-399
    • Mansfield, K.D.1    Guzy, R.D.2    Pan, Y.3
  • 104
    • 77649112162 scopus 로고    scopus 로고
    • Hypoxia triggers subcellular compartmental redox signaling in vascular smooth muscle cells
    • Waypa GB, Marks JD, Guzy R, et al. Hypoxia triggers subcellular compartmental redox signaling in vascular smooth muscle cells. Circ Res. 2010;106(3): 526-35.
    • (2010) Circ Res , vol.106 , Issue.3 , pp. 526-535
    • Waypa, G.B.1    Marks, J.D.2    Guzy, R.3
  • 105
    • 34547448862 scopus 로고    scopus 로고
    • Fluorescent proteins: Maturation, photochemistry and photophysics
    • Remington SJ. Fluorescent proteins: maturation, photochemistry and photophysics. Curr Opin Struct Biol. 2006;16(6):714-21.
    • (2006) Curr Opin Struct Biol , vol.16 , Issue.6 , pp. 714-721
    • Remington, S.J.1
  • 106
    • 0842344106 scopus 로고    scopus 로고
    • Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators
    • Hanson GT, Aggeler R, Oglesbee D, et al. Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J Biol Chem. 2004;279(13):13044-53.
    • (2004) J Biol Chem , vol.279 , Issue.13 , pp. 13044-13053
    • Hanson, G.T.1    Aggeler, R.2    Oglesbee, D.3
  • 107
    • 33750449016 scopus 로고    scopus 로고
    • Increases in mitochondrial reactive oxygen species trigger hypoxia-induced calcium responses in pulmonary artery smooth muscle cells
    • Waypa GB, Guzy R, Mungai PT, et al. Increases in mitochondrial reactive oxygen species trigger hypoxia-induced calcium responses in pulmonary artery smooth muscle cells. Circ Res. 2006;99(9): 970-8.
    • (2006) Circ Res , vol.99 , Issue.9 , pp. 970-978
    • Waypa, G.B.1    Guzy, R.2    Mungai, P.T.3
  • 108
    • 0037131391 scopus 로고    scopus 로고
    • Mitochondrial reactive oxygen species trigger calcium increases during hypoxia in pulmonary arterial myocytes
    • Waypa GB, Marks JD, Mack MM, et al. Mitochondrial reactive oxygen species trigger calcium increases during hypoxia in pulmonary arterial myocytes. Circ Res. 2002;91(8):719-26.
    • (2002) Circ Res , vol.91 , Issue.8 , pp. 719-726
    • Waypa, G.B.1    Marks, J.D.2    Mack, M.M.3
  • 109
    • 0035933388 scopus 로고    scopus 로고
    • Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing
    • Waypa GB, Chandel NS, Schumacker PT. Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing. Circ Res. 2001; 88(12):1259-66.
    • (2001) Circ Res , vol.88 , Issue.12 , pp. 1259-1266
    • Waypa, G.B.1    Chandel, N.S.2    Schumacker, P.T.3
  • 110
    • 77951241278 scopus 로고    scopus 로고
    • Terpestacin inhibits tumor angiogenesis by targeting UQCRB of mitochondrial complex III and suppressing hypoxiainduced reactive oxygen species production and cellular oxygen sensing
    • Jung HJ, Shim JS, Lee J, et al. Terpestacin inhibits tumor angiogenesis by targeting UQCRB of mitochondrial complex III and suppressing hypoxiainduced reactive oxygen species production and cellular oxygen sensing. J Biol Chem. 2010;285(15):11584-95.
    • (2010) J Biol Chem , vol.285 , Issue.15 , pp. 11584-11595
    • Jung, H.J.1    Shim, J.S.2    Lee, J.3
  • 111
    • 0024448458 scopus 로고
    • Human cells lacking mtDNA: Repopulation with exogenous mitochondria by complementation
    • King MP, Attardi G. Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science. 1989;246:500-3.
    • (1989) Science , vol.246 , pp. 500-503
    • King, M.P.1    Attardi, G.2
  • 112
    • 0035880239 scopus 로고    scopus 로고
    • Regulation of hypoxia-inducible factor is preserved in the absence of a functioning mitochondrial respiratory chain
    • Vaux EC, Metzen E, Yeates KM, et al. Regulation of hypoxia-inducible factor is preserved in the absence of a functioning mitochondrial respiratory chain. Blood. 2001;98(2):296-302.
    • (2001) Blood , vol.98 , Issue.2 , pp. 296-302
    • Vaux, E.C.1    Metzen, E.2    Yeates, K.M.3
  • 113
    • 0034682786 scopus 로고    scopus 로고
    • Reactive oxygen species generated at mitochondrial Complex III stabilize HIF-1-alpha during hypoxia: A mechanism of O2 sensing
    • Chandel NS, McClintock DS, Feliciano CE, et al. Reactive oxygen species generated at mitochondrial Complex III stabilize HIF-1-alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem. 2000;275:25130-8.
    • (2000) J Biol Chem , vol.275 , pp. 25130-25138
    • Chandel, N.S.1    McClintock, D.S.2    Feliciano, C.E.3
  • 114
    • 67650032833 scopus 로고    scopus 로고
    • Alpha1- AMP- activated protein kinase regulates hypoxiainduced Na, K-ATPase endocytosis via direct phosphorylation of protein kinase C zeta
    • Gusarova GA, Dada LA, Kelly AM, et al. Alpha1- AMP- activated protein kinase regulates hypoxiainduced Na, K-ATPase endocytosis via direct phosphorylation of protein kinase C zeta. Mol Cell Biol. 2009;29(13):3455-64.
    • (2009) Mol Cell Biol , vol.29 , Issue.13 , pp. 3455-3464
    • Gusarova, G.A.1    Dada, L.A.2    Kelly, A.M.3
  • 115
    • 64449087671 scopus 로고    scopus 로고
    • Hypoxic activation of AMPK is dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio
    • Emerling BM, Weinberg F, Snyder C, et al. Hypoxic activation of AMPK is dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio. Free Radic Biol Med. 2009;46(10):1386-91.
    • (2009) Free Radic Biol Med , vol.46 , Issue.10 , pp. 1386-1391
    • Emerling, B.M.1    Weinberg, F.2    Snyder, C.3
  • 116
    • 80052317552 scopus 로고    scopus 로고
    • Hypoxia triggers AMPK activation through ROS-mediated activation of CRAC channels
    • Mungai PT, Waypa GB, Jairaman A, et al. Hypoxia triggers AMPK activation through ROS-mediated activation of CRAC channels. Mol Cell Biol. 2011;31(17):3531-45.
    • (2011) Mol Cell Biol , vol.31 , Issue.17 , pp. 3531-3545
    • Mungai, P.T.1    Waypa, G.B.2    Jairaman, A.3
  • 117
    • 33747596652 scopus 로고    scopus 로고
    • Oxygen sensing by mitochondria at complex III: The paradox of increased reactive oxygen species during hypoxia
    • Guzy RD, Schumacker PT. Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol. 2006;91(5):807-19.
    • (2006) Exp Physiol , vol.91 , Issue.5 , pp. 807-819
    • Guzy, R.D.1    Schumacker, P.T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.