-
1
-
-
0024818355
-
Vascular endothelial growth factor is a secreted angiogenic mitogen
-
Leung DW, Cachianes G, Kuang WJ, et al. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science. 1989;246(4935):1306-9.
-
(1989)
Science
, vol.246
, Issue.4935
, pp. 1306-1309
-
-
Leung, D.W.1
Cachianes, G.2
Kuang, W.J.3
-
2
-
-
38349138807
-
Transgenic system for conditional induction and rescue of chronic myocardial hibernation provides insights into genomic programs of hibernation
-
May D, Gilon D, Djonov V, et al. Transgenic system for conditional induction and rescue of chronic myocardial hibernation provides insights into genomic programs of hibernation. Proc Natl Acad Sci USA. 2008;105(1):282-7.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, Issue.1
, pp. 282-287
-
-
May, D.1
Gilon, D.2
Djonov, V.3
-
3
-
-
0030004485
-
Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene
-
Ferrara N, Carver-Moore K, Chen H, et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature. 1996;380(6573):439-42.
-
(1996)
Nature
, vol.380
, Issue.6573
, pp. 439-442
-
-
Ferrara, N.1
Carver-Moore, K.2
Chen, H.3
-
4
-
-
33745225026
-
AMP-activated protein kinase-development of the energy sensor concept
-
Hardie DG, Hawley SA, Scott JW. AMP-activated protein kinase-development of the energy sensor concept. J Physiol. 2006;574(Pt 1):7-15.
-
(2006)
J Physiol
, vol.574
, Issue.PART 1
, pp. 7-15
-
-
Hardie, D.G.1
Hawley, S.A.2
Scott, J.W.3
-
5
-
-
30144441692
-
Involvement of hypoxia-inducible factor 1 in pulmonary pathophysiology
-
Semenza GL. Involvement of hypoxia-inducible factor 1 in pulmonary pathophysiology. Chest. 2005;128(6):592S-4.
-
(2005)
Chest
, vol.128
, Issue.6
, pp. 592S-4
-
-
Semenza, G.L.1
-
6
-
-
0028892395
-
Determination of myoglobin saturation of frozen specimens using a reflecting cryospectrophotometer
-
Voter WA, Gayeski TE. Determination of myoglobin saturation of frozen specimens using a reflecting cryospectrophotometer. Am J Physiol. 1995;269 (4 Pt 2):H1328-41.
-
(1995)
Am J Physiol
, vol.269
, Issue.4 PART 2
, pp. H1328-H1341
-
-
Voter, W.A.1
Gayeski, T.E.2
-
7
-
-
0026113250
-
Intracellular PO2 in individual cardiac myocytes in dogs, cats, rabbits, ferrets, and rats
-
Gayeski TE, Honig CR. Intracellular PO2 in individual cardiac myocytes in dogs, cats, rabbits, ferrets, and rats. Am J Physiol. 1991;260:H522-31.
-
(1991)
Am J Physiol
, vol.260
, pp. H522-H531
-
-
Gayeski, T.E.1
Honig, C.R.2
-
8
-
-
18244419261
-
Intracellular PO2 in long axis of individual fibers in working dog gracilis muscle
-
Gayeski TE, Honig CR. Intracellular PO2 in long axis of individual fibers in working dog gracilis muscle. Am J Physiol. 1988;254:H1179-86.
-
(1988)
Am J Physiol
, vol.254
, pp. H1179-H1186
-
-
Gayeski, T.E.1
Honig, C.R.2
-
9
-
-
0023003401
-
O2 gradients from sarcolemma to cell interior in red muscle at maximal VO2
-
Gayeski TE, Honig CR. O2 gradients from sarcolemma to cell interior in red muscle at maximal VO2. Am J Physiol. 1986;251:H789-99.
-
(1986)
Am J Physiol
, vol.251
, pp. H789-H799
-
-
Gayeski, T.E.1
Honig, C.R.2
-
10
-
-
0023087899
-
Comparison of intracellular PO2 and conditions for blood-tissue O2 transport in heart and working red skeletal muscle
-
Honig CR, Gayeski TE. Comparison of intracellular PO2 and conditions for blood-tissue O2 transport in heart and working red skeletal muscle. Adv Exp Med Biol. 1987;215:309-21.
-
(1987)
Adv Exp Med Biol
, vol.215
, pp. 309-321
-
-
Honig, C.R.1
Gayeski, T.E.2
-
11
-
-
0023275848
-
Minimum intracellular PO2 for maximum cytochrome turnover in red muscle in situ
-
Gayeski TE, Connett RJ, Honig CR. Minimum intracellular PO2 for maximum cytochrome turnover in red muscle in situ. Am J Physiol. 1987;252:H906-15.
-
(1987)
Am J Physiol
, vol.252
, pp. H906-H915
-
-
Gayeski, T.E.1
Connett, R.J.2
Honig, C.R.3
-
12
-
-
0023187244
-
How large is the drop in PO2 between cytosol and mitochondrion?
-
Clark Jr A, Clark PA, Connett RJ, et al. How large is the drop in PO2 between cytosol and mitochondrion? Am J Physiol. 1987;252:C583-7.
-
(1987)
Am J Physiol
, vol.252
, pp. C583-C587
-
-
Clark, A.1
Clark, P.A.2
Connett, R.J.3
-
13
-
-
0032446224
-
Direct estimation of intracellular PO2 gradients in a single cardiomyocyte of the rat
-
Takahashi E, Endoh H, Xu ZL, et al. Direct estimation of intracellular PO2 gradients in a single cardiomyocyte of the rat. Adv Exp Med Biol. 1998;454: 409-13.
-
(1998)
Adv Exp Med Biol
, vol.454
, pp. 409-413
-
-
Takahashi, E.1
Endoh, H.2
Xu, Z.L.3
-
14
-
-
33750865405
-
Direct observation of radial intracellular PO2 gradients in a single cardiomyocyte of the rat
-
Takahashi E, Sato K, Endoh H, et al. Direct observation of radial intracellular PO2 gradients in a single cardiomyocyte of the rat. Am J Physiol. 1998;275 (1 Pt 2):H225-33.
-
(1998)
Am J Physiol
, vol.275
, Issue.1 PART 2
, pp. H225-H233
-
-
Takahashi, E.1
Sato, K.2
Endoh, H.3
-
15
-
-
0017902898
-
Gradients of O 2 concentration in hepatocytes
-
Jones DP, Mason HS. Gradients of O 2 concentration in hepatocytes. J Biol Chem. 1978;253:4874-80.
-
(1978)
J Biol Chem
, vol.253
, pp. 4874-4880
-
-
Jones, D.P.1
Mason, H.S.2
-
16
-
-
0002226997
-
Studies on erythropoiesis. V. The effect of cobalt on the production of erythropoietin
-
Goldwasser E, Jacobson LO, Fried W, et al. Studies on erythropoiesis. V. The effect of cobalt on the production of erythropoietin. Blood. 1958;13:55-60.
-
(1958)
Blood
, vol.13
, pp. 55-60
-
-
Goldwasser, E.1
Jacobson, L.O.2
Fried, W.3
-
17
-
-
0242408897
-
The regulated expression of erythropoietin by two human hepatoma cell lines
-
Goldberg MA, Glass GA, Cunningham JM, et al. The regulated expression of erythropoietin by two human hepatoma cell lines. Proc Natl Acad Sci USA. 1987;84(22):7972-6.
-
(1987)
Proc Natl Acad Sci USA
, vol.84
, Issue.22
, pp. 7972-7976
-
-
Goldberg, M.A.1
Glass, G.A.2
Cunningham, J.M.3
-
18
-
-
0024273450
-
Regulation of the erythropoietin gene: Evidence that the oxygen sensor is a heme protein
-
Goldberg MA, Dunning SP, Bunn HF. Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science. 1988;242: 1412-5.
-
(1988)
Science
, vol.242
, pp. 1412-1415
-
-
Goldberg, M.A.1
Dunning, S.P.2
Bunn, H.F.3
-
19
-
-
0027458517
-
Vivo and in vitro regulation of erythropoietin mRNA: Measurement by competitive polymerase chain reaction
-
Fandrey J, Bunn HF. In vivo and in vitro regulation of erythropoietin mRNA: measurement by competitive polymerase chain reaction. Blood. 1993;81(3): 617-23.
-
(1993)
Blood
, vol.81
, Issue.3
, pp. 617-623
-
-
Fandrey, J.1
Bunn, H.F.2
-
20
-
-
0343938889
-
Erythropoietin induction in Hep3B cells is not affected by inhibition of heme biosynthesis
-
Horiguchi H, Bunn HF. Erythropoietin induction in Hep3B cells is not affected by inhibition of heme biosynthesis. Biochim Biophys Acta Mol Cell Res. 2000;1495(3):231-6.
-
(2000)
Biochim Biophys Acta Mol Cell Res
, vol.1495
, Issue.3
, pp. 231-236
-
-
Horiguchi, H.1
Bunn, H.F.2
-
21
-
-
0036830796
-
The leukocyte NADPH oxidase
-
Babior BM. The leukocyte NADPH oxidase. Isr Med Assoc J. 2002;4(11):1023-4.
-
(2002)
Isr Med Assoc J
, vol.4
, Issue.11
, pp. 1023-1024
-
-
Babior, B.M.1
-
23
-
-
34249101218
-
Cytosolic NAD(P)H regulation of redox signaling and vascular oxygen sensing
-
Wolin MS, Ahmad M, Gao Q, et al. Cytosolic NAD(P)H regulation of redox signaling and vascular oxygen sensing. Antioxid Redox Signal. 2007;9(6): 671-8.
-
(2007)
Antioxid Redox Signal
, vol.9
, Issue.6
, pp. 671-678
-
-
Wolin, M.S.1
Ahmad, M.2
Gao, Q.3
-
24
-
-
63649119791
-
NAD(P)H oxidase and endothelial dysfunction
-
Muller G, Morawietz H. NAD(P)H oxidase and endothelial dysfunction. Horm Metab Res. 2009;41(2): 152-8.
-
(2009)
Horm Metab Res
, vol.41
, Issue.2
, pp. 152-158
-
-
Muller, G.1
Morawietz, H.2
-
25
-
-
0029040451
-
Immunohistochemical demonstration of four subunits of neutrophil NAD(P)H oxidase in type i cells of carotid body
-
Kummer W, Acker H. Immunohistochemical demonstration of four subunits of neutrophil NAD(P)H oxidase in type I cells of carotid body. J Appl Physiol. 1995;78(5):1904-9.
-
(1995)
J Appl Physiol
, vol.78
, Issue.5
, pp. 1904-1909
-
-
Kummer, W.1
Acker, H.2
-
26
-
-
0034677947
-
NAD(P) H oxidase-role in cardiovascular biology and disease
-
Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P) H oxidase-role in cardiovascular biology and disease. Circ Res. 2000;86(5):494-501.
-
(2000)
Circ Res
, vol.86
, Issue.5
, pp. 494-501
-
-
Griendling, K.K.1
Sorescu, D.2
Ushio-Fukai, M.3
-
27
-
-
0034458228
-
The NADPH oxidase of endothelial cells
-
Babior BM. The NADPH oxidase of endothelial cells. IUBMB Life. 2000;50(4-5):267-9.
-
(2000)
IUBMB Life
, vol.50
, Issue.4-5
, pp. 267-269
-
-
Babior, B.M.1
-
28
-
-
0033529173
-
O 2 sensing is preserved in mice lacking the gp91 phox subunit of NADPH oxidase
-
Archer SL, Reeve HL, Michelakis E, et al. O 2 sensing is preserved in mice lacking the gp91 phox subunit of NADPH oxidase. Proc Natl Acad Sci USA. 1999;96:7944-9.
-
(1999)
Proc Natl Acad Sci USA
, vol.96
, pp. 7944-7949
-
-
Archer, S.L.1
Reeve, H.L.2
Michelakis, E.3
-
29
-
-
33645678826
-
Impact of mitochondria and NADPH oxidases on acute and sustained hypoxic pulmonary vasoconstriction
-
Weissmann N, Zeller S, Schafer RU, et al. Impact of mitochondria and NADPH oxidases on acute and sustained hypoxic pulmonary vasoconstriction. Am J Respir Cell Mol Biol. 2006;34(4):505-13.
-
(2006)
Am J Respir Cell Mol Biol
, vol.34
, Issue.4
, pp. 505-513
-
-
Weissmann, N.1
Zeller, S.2
Schafer, R.U.3
-
30
-
-
0025802645
-
Single K + channels in membrane patches of arterial chemoreceptor cells are modulated by O 2 tension
-
Ganfornina MD, Lopez-Barneo J. Single K + channels in membrane patches of arterial chemoreceptor cells are modulated by O 2 tension. Proc Natl Acad Sci USA. 1991;88(7):2927-30.
-
(1991)
Proc Natl Acad Sci USA
, vol.88
, Issue.7
, pp. 2927-2930
-
-
Ganfornina, M.D.1
Lopez-Barneo, J.2
-
31
-
-
0026744619
-
Potassium channel types in arterial chemoreceptor cells and their selective modulation by oxygen
-
Ganfornina MD, Lopez-Barneo J. Potassium channel types in arterial chemoreceptor cells and their selective modulation by oxygen. J Gen Physiol. 1992;100(3):401-26.
-
(1992)
J Gen Physiol
, vol.100
, Issue.3
, pp. 401-426
-
-
Ganfornina, M.D.1
Lopez-Barneo, J.2
-
32
-
-
0025000175
-
Hypoxic suppression of K+ currents in type i carotid body cells: Selective effect on the Ca2(+)- activated K+ current
-
Peers C. Hypoxic suppression of K+ currents in type I carotid body cells: selective effect on the Ca2(+)- activated K+ current. Neurosci Lett. 1990;119(2): 253-6.
-
(1990)
Neurosci Lett
, vol.119
, Issue.2
, pp. 253-256
-
-
Peers, C.1
-
33
-
-
0028988372
-
Ca(2+)-activated K+ channels in isolated type i cells of the neonatal rat carotid body
-
Wyatt CN, Peers C. Ca(2+)-activated K+ channels in isolated type I cells of the neonatal rat carotid body. J Physiol. 1995;483(Pt 3):559-65.
-
(1995)
J Physiol
, vol.483
, Issue.PART 3
, pp. 559-565
-
-
Wyatt, C.N.1
Peers, C.2
-
34
-
-
3042637605
-
Characterization of the Kv channels of mouse carotid body chemoreceptor cells and their role in oxygen sensing
-
Perez-Garcia MT, Colinas O, Miguel-Velado E, et al. Characterization of the Kv channels of mouse carotid body chemoreceptor cells and their role in oxygen sensing. J Physiol (Lond ). 2004;557(2):457-71.
-
(2004)
J Physiol (Lond )
, vol.557
, Issue.2
, pp. 457-471
-
-
Perez-Garcia, M.T.1
Colinas, O.2
Miguel-Velado, E.3
-
35
-
-
27744529463
-
Mechanisms of disease-acute oxygen-sensing mechanisms
-
Weir EK, Lopez-Barneo J, Buckler KJ, et al. Mechanisms of disease-acute oxygen-sensing mechanisms. N Engl J Med. 2005;353(19):2042-55.
-
(2005)
N Engl J Med
, vol.353
, Issue.19
, pp. 2042-2055
-
-
Weir, E.K.1
Lopez-Barneo, J.2
Buckler, K.J.3
-
36
-
-
10844248490
-
Hemoxygenase-2 is an oxygen sensor for a calciumsensitive potassium channel
-
Williams SEJ, Wootton P, Mason HS, et al. Hemoxygenase-2 is an oxygen sensor for a calciumsensitive potassium channel. Science. 2004;306 (5704):2093-7.
-
(2004)
Science
, vol.306
, Issue.5704
, pp. 2093-2097
-
-
Williams, S.E.J.1
Wootton, P.2
Mason, H.S.3
-
37
-
-
33749039222
-
Acute oxygen sensing in heme oxygenase-2 null mice
-
Ortega-Saenz P, Pascual A, Gomez-Diaz R, et al. Acute oxygen sensing in heme oxygenase-2 null mice. J Gen Physiol. 2006;128(4):405-11.
-
(2006)
J Gen Physiol
, vol.128
, Issue.4
, pp. 405-411
-
-
Ortega-Saenz, P.1
Pascual, A.2
Gomez-Diaz, R.3
-
38
-
-
0028068606
-
Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1
-
Semenza GL, Roth PH, Fang H-M, et al. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem. 1994;269:23757-63.
-
(1994)
J Biol Chem
, vol.269
, pp. 23757-23763
-
-
Semenza, G.L.1
Roth, P.H.2
Fang, H.-M.3
-
39
-
-
0026468180
-
A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation
-
Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol. 1992;12(12):5447-54.
-
(1992)
Mol Cell Biol
, vol.12
, Issue.12
, pp. 5447-5454
-
-
Semenza, G.L.1
Wang, G.L.2
-
40
-
-
0026075610
-
Hypoxiainducible nuclear factors bind to an enhancer element located 3' to the human erythropoietin gene
-
Semenza GL, Nejfelt MK, Chi SM, et al. Hypoxiainducible nuclear factors bind to an enhancer element located 3' to the human erythropoietin gene. Proc Natl Acad Sci USA. 1991;88(13):5680-4.
-
(1991)
Proc Natl Acad Sci USA
, vol.88
, Issue.13
, pp. 5680-5684
-
-
Semenza, G.L.1
Nejfelt, M.K.2
Chi, S.M.3
-
41
-
-
0027461553
-
Inducible operation of the erythropoietin 3' enhancer in multiple cell lines: Evidence for a widespread oxygen-sensing mechanism
-
Maxwell PH, Pugh CW, Ratcliffe PJ. Inducible operation of the erythropoietin 3' enhancer in multiple cell lines: evidence for a widespread oxygen-sensing mechanism. Proc Natl Acad Sci USA. 1993;90:2423-7.
-
(1993)
Proc Natl Acad Sci USA
, vol.90
, pp. 2423-2427
-
-
Maxwell, P.H.1
Pugh, C.W.2
Ratcliffe, P.J.3
-
42
-
-
1642391064
-
How cells endure low oxygen
-
Marx J. How cells endure low oxygen. Science. 2004;303:1454-6.
-
(2004)
Science
, vol.303
, pp. 1454-1456
-
-
Marx, J.1
-
43
-
-
15444342958
-
Cellular and developmental control of O2 homeostasis by hypoxia- inducible factor 1 alpha
-
Iyer NV, Kotch LE, Agani F, et al. Cellular and developmental control of O2 homeostasis by hypoxia- inducible factor 1 alpha. Genes Dev. 1998;12(2):149-62.
-
(1998)
Genes Dev
, vol.12
, Issue.2
, pp. 149-162
-
-
Iyer, N.V.1
Kotch, L.E.2
Agani, F.3
-
44
-
-
0030943461
-
Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT
-
Maltepe E, Schmidt JV, Baunoch D, et al. Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature. 1997;386(6623):403-7.
-
(1997)
Nature
, vol.386
, Issue.6623
, pp. 403-407
-
-
Maltepe, E.1
Schmidt, J.V.2
Baunoch, D.3
-
45
-
-
0031969557
-
Oxygen, genes, and development: An analysis of the role of hypoxic gene regulation during murine vascular development
-
Maltepe E, Simon MC. Oxygen, genes, and development: an analysis of the role of hypoxic gene regulation during murine vascular development. J Mol Med. 1998;76(6):391-401.
-
(1998)
J Mol Med
, vol.76
, Issue.6
, pp. 391-401
-
-
Maltepe, E.1
Simon, M.C.2
-
46
-
-
0029051439
-
Hypoxiainducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O 2 tension
-
Wang GL, Jiang B-H, Rue EA, et al. Hypoxiainducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O 2 tension. Proc Natl Acad Sci USA. 1995;92:5510-4.
-
(1995)
Proc Natl Acad Sci USA
, vol.92
, pp. 5510-5514
-
-
Wang, G.L.1
Jiang, B.-H.2
Rue, E.A.3
-
47
-
-
0029859510
-
Hypoxiainducible factor 1 levels vary exponentially over a physiologically relevant range of O 2 tension
-
Jiang BH, Semenza GL, Bauer C, et al. Hypoxiainducible factor 1 levels vary exponentially over a physiologically relevant range of O 2 tension. Am J Physiol. 1996;271(4 Pt 1):C1172-80.
-
(1996)
Am J Physiol
, vol.271
, Issue.4 PART 1
, pp. C1172-C1180
-
-
Jiang, B.H.1
Semenza, G.L.2
Bauer, C.3
-
48
-
-
0032493368
-
Regulation of hypoxia-inducible factor 1α is mediated by an O 2 - Dependent degradation domain via the ubiquitinproteasome pathway
-
Huang LE, Gu J, Schau M, et al. Regulation of hypoxia-inducible factor 1α is mediated by an O 2 - dependent degradation domain via the ubiquitinproteasome pathway. Proc Natl Acad Sci USA. 1998;95(14):7987-92.
-
(1998)
Proc Natl Acad Sci USA
, vol.95
, Issue.14
, pp. 7987-7992
-
-
Huang, L.E.1
Gu, J.2
Schau, M.3
-
49
-
-
0033587146
-
The tumour suppressor protein VHL targets hypoxiainducible factors for oxygen-dependent proteolysis
-
Maxwell PH, Wiesener MS, Chang GW, et al. The tumour suppressor protein VHL targets hypoxiainducible factors for oxygen-dependent proteolysis. Nature. 1999;399(6733):271-5.
-
(1999)
Nature
, vol.399
, Issue.6733
, pp. 271-275
-
-
Maxwell, P.H.1
Wiesener, M.S.2
Chang, G.W.3
-
50
-
-
0035812772
-
HIF-1, O2, and the 3 PHDs: How animal cells signal hypoxia to the nucleus
-
Semenza GL. HIF-1, O2, and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell. 2001;107(1):1-3.
-
(2001)
Cell
, vol.107
, Issue.1
, pp. 1-3
-
-
Semenza, G.L.1
-
51
-
-
33750976389
-
Placental but not heart defects are associated with elevated hypoxiainducible factor alpha levels in mice lacking prolyl hydroxylase domain protein
-
Takeda K, Ho VC, Takeda H, et al. Placental but not heart defects are associated with elevated hypoxiainducible factor alpha levels in mice lacking prolyl hydroxylase domain protein. Mol Cell Biol. 2006;26(22):8336-46.
-
(2006)
Mol Cell Biol
, vol.26
, Issue.22
, pp. 8336-8346
-
-
Takeda, K.1
Ho, V.C.2
Takeda, H.3
-
52
-
-
0035917808
-
Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation
-
Jaakkola P, Mole DR, Tian YM, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;292(5516):468-72.
-
(2001)
Science
, vol.292
, Issue.5516
, pp. 468-472
-
-
Jaakkola, P.1
Mole, D.R.2
Tian, Y.M.3
-
53
-
-
0035917313
-
HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: Implications for O2 sensing
-
Ivan M, Kondo K, Yang H, et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001; 292(5516):464-8.
-
(2001)
Science
, vol.292
, Issue.5516
, pp. 464-468
-
-
Ivan, M.1
Kondo, K.2
Yang, H.3
-
54
-
-
0032581277
-
Role of HIF- 1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis
-
Carmeliet P, Dor Y, Herbert JM, et al. Role of HIF- 1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature. 1998;394(6692):485-90.
-
(1998)
Nature
, vol.394
, Issue.6692
, pp. 485-490
-
-
Carmeliet, P.1
Dor, Y.2
Herbert, J.M.3
-
55
-
-
0036138398
-
Regulation of HIF by the von Hippel-Lindau tumour suppressor: Implications for cellular oxygen sensing
-
Mole DR, Maxwell PH, Pugh CW, et al. Regulation of HIF by the von Hippel-Lindau tumour suppressor: implications for cellular oxygen sensing. IUBMB Life. 2001;52(1-2):43-7.
-
(2001)
IUBMB Life
, vol.52
, Issue.1-2
, pp. 43-47
-
-
Mole, D.R.1
Maxwell, P.H.2
Pugh, C.W.3
-
56
-
-
0036469038
-
Asparagine hydroxylation of the HIF transactivation domain: A hypoxic switch
-
Lando D, Peet DJ, Whelan DA, et al. Asparagine hydroxylation of the HIF transactivation domain: a hypoxic switch. Science. 2002;295(5556):858-61.
-
(2002)
Science
, vol.295
, Issue.5556
, pp. 858-861
-
-
Lando, D.1
Peet, D.J.2
Whelan, D.A.3
-
57
-
-
0037097861
-
FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor
-
Lando D, Peet DJ, Gorman JJ, et al. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev. 2002;16(12):1466-71.
-
(2002)
Genes Dev
, vol.16
, Issue.12
, pp. 1466-1471
-
-
Lando, D.1
Peet, D.J.2
Gorman, J.J.3
-
58
-
-
84857789085
-
The FIH hydroxylase is a cellular peroxide sensor that modulates HIF transcriptional activity
-
Masson N, Singleton RS, Sekirnik R, et al. The FIH hydroxylase is a cellular peroxide sensor that modulates HIF transcriptional activity. EMBO Rep. 2012;13(3):251-7.
-
(2012)
EMBO Rep
, vol.13
, Issue.3
, pp. 251-257
-
-
Masson, N.1
Singleton, R.S.2
Sekirnik, R.3
-
59
-
-
0348134741
-
Redistribution of intracellular oxygen in hypoxia by nitric oxide: Effect on HIF1alpha
-
Hagen T, Taylor CT, Lam F, et al. Redistribution of intracellular oxygen in hypoxia by nitric oxide: effect on HIF1alpha. Science. 2003;302(5652):1975-8.
-
(2003)
Science
, vol.302
, Issue.5652
, pp. 1975-1978
-
-
Hagen, T.1
Taylor, C.T.2
Lam, F.3
-
60
-
-
0029998238
-
Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport
-
Cassina A, Radi R. Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys. 1996;328(2):309-16.
-
(1996)
Arch Biochem Biophys
, vol.328
, Issue.2
, pp. 309-316
-
-
Cassina, A.1
Radi, R.2
-
61
-
-
33645560710
-
Mitochondrial cytochrome oxidase produces nitric oxide under hypoxic conditions: Implications for oxygen sensing and hypoxic signaling in eukaryotes
-
Castello PR, David PS, McClure T, et al. Mitochondrial cytochrome oxidase produces nitric oxide under hypoxic conditions: implications for oxygen sensing and hypoxic signaling in eukaryotes. Cell Metab. 2006;3(4):277-87.
-
(2006)
Cell Metab
, vol.3
, Issue.4
, pp. 277-287
-
-
Castello, P.R.1
David, P.S.2
McClure, T.3
-
63
-
-
0029007930
-
Regulation of mitochondrial energy generation in health and disease
-
Kadenbach B, Barth J, Akgun R, et al. Regulation of mitochondrial energy generation in health and disease. Biochim Biophys Acta. 1995;1271:103-9.
-
(1995)
Biochim Biophys Acta
, vol.1271
, pp. 103-109
-
-
Kadenbach, B.1
Barth, J.2
Akgun, R.3
-
64
-
-
0022554086
-
Isozymes of cytochrome-c oxidase: Characterization and isolation from different tissues
-
Kadenbach B, Stroh A, Ungibauer M, et al. Isozymes of cytochrome-c oxidase: characterization and isolation from different tissues. Methods Enzymol. 1986;126:32-45.
-
(1986)
Methods Enzymol
, vol.126
, pp. 32-45
-
-
Kadenbach, B.1
Stroh, A.2
Ungibauer, M.3
-
65
-
-
0035804655
-
Mammalian subunit IV isoforms of cytochrome c oxidase
-
Huttemann M, Kadenbach B, Grossman LI. Mammalian subunit IV isoforms of cytochrome c oxidase. Gene. 2001;267(1):111-23.
-
(2001)
Gene
, vol.267
, Issue.1
, pp. 111-123
-
-
Huttemann, M.1
Kadenbach, B.2
Grossman, L.I.3
-
66
-
-
0028853547
-
Electron transfer and proton pumping in cytochrome oxidase
-
Brunori M, Wilson MT. Electron transfer and proton pumping in cytochrome oxidase. Biochimie. 1995;77:668-76.
-
(1995)
Biochimie
, vol.77
, pp. 668-676
-
-
Brunori, M.1
Wilson, M.T.2
-
67
-
-
0015369803
-
Mitochondrial respiratory chain of carotid body and chemoreceptor response to changes in oxygen tension
-
Mills E, Jobsis FF. Mitochondrial respiratory chain of carotid body and chemoreceptor response to changes in oxygen tension. J Neurophysiol. 1972;35(4):405-28.
-
(1972)
J Neurophysiol
, vol.35
, Issue.4
, pp. 405-428
-
-
Mills, E.1
Jobsis, F.F.2
-
68
-
-
0022963778
-
Two cytochrome oxygen consumption model and mechanism for carotid body chemoreception
-
Nair PK, Buerk DG, Whalen WJ, et al. Two cytochrome oxygen consumption model and mechanism for carotid body chemoreception. Adv Exp Med Biol. 1986;200:293-300.
-
(1986)
Adv Exp Med Biol
, vol.200
, pp. 293-300
-
-
Nair, P.K.1
Buerk, D.G.2
Whalen, W.J.3
-
69
-
-
0022470629
-
Cat carotid body oxygen metabolism and chemoreception described by a two-cytochrome model
-
Nair PK, Buerk DG, Whalen WJ. Cat carotid body oxygen metabolism and chemoreception described by a two-cytochrome model. Am J Physiol. 1986;250(2 Pt 2):H202-7.
-
(1986)
Am J Physiol
, vol.250
, Issue.2 PART 2
, pp. H202-H207
-
-
Nair, P.K.1
Buerk, D.G.2
Whalen, W.J.3
-
70
-
-
0024311747
-
Two-cytochrome metabolic model for carotid body PtiO2 and chemosensitivity changes after hemorrhage
-
Buerk DG, Nair PK, Whalen WJ. Two-cytochrome metabolic model for carotid body PtiO2 and chemosensitivity changes after hemorrhage. J Appl Physiol. 1989;67(1):60-8.
-
(1989)
J Appl Physiol
, vol.67
, Issue.1
, pp. 60-68
-
-
Buerk, D.G.1
Nair, P.K.2
Whalen, W.J.3
-
71
-
-
0021741596
-
Perspectives in carotid body research
-
Eyzaguirre C, Zapata P. Perspectives in carotid body research. J Appl Physiol. 1984;57(4):931-57.
-
(1984)
J Appl Physiol
, vol.57
, Issue.4
, pp. 931-957
-
-
Eyzaguirre, C.1
Zapata, P.2
-
72
-
-
0025338815
-
The steady-state kinetics of cytochrome c oxidation by cytochrome oxidase
-
Cooper CE. The steady-state kinetics of cytochrome c oxidation by cytochrome oxidase. Biochim Biophys Acta. 1990;1017:187-203.
-
(1990)
Biochim Biophys Acta
, vol.1017
, pp. 187-203
-
-
Cooper, C.E.1
-
73
-
-
0001185122
-
The action of high tensions of carbon monoxide on the carotid chemoreceptors
-
Joels N, Neil E. The action of high tensions of carbon monoxide on the carotid chemoreceptors. Arch Int Pharm Ther. 1962;130:528-34.
-
(1962)
Arch Int Pharm Ther
, vol.130
, pp. 528-534
-
-
Joels, N.1
Neil, E.2
-
74
-
-
0027445058
-
CO reveals dual mechanisms of O2 chemoreception in the cat carotid body
-
Lahiri S, Iturriaga R, Mokashi A, et al. CO reveals dual mechanisms of O2 chemoreception in the cat carotid body. Respir Physiol. 1993;94(2):227-40.
-
(1993)
Respir Physiol
, vol.94
, Issue.2
, pp. 227-240
-
-
Lahiri, S.1
Iturriaga, R.2
Mokashi, A.3
-
75
-
-
21844497112
-
Chromophores in O2 chemoreception: The carotid body model
-
Lahiri S. Chromophores in O2 chemoreception: the carotid body model. News Physiol Sci. 1994;9: 161-5.
-
(1994)
News Physiol Sci
, vol.9
, pp. 161-165
-
-
Lahiri, S.1
-
76
-
-
0014010888
-
Antimycin-insensitive oxidation of succinate and reduced nicotinamide-adenine dinucleotide in electron-tranport particles
-
Jensen PK. Antimycin-insensitive oxidation of succinate and reduced nicotinamide-adenine dinucleotide in electron-tranport particles. Biochim Biophys Acta. 1966;122:157-66.
-
(1966)
Biochim Biophys Acta
, vol.122
, pp. 157-166
-
-
Jensen, P.K.1
-
77
-
-
0015363173
-
The cellular production of hydrogen peroxide
-
Boveris A, Oshino N, Chance B. The cellular production of hydrogen peroxide. Biochem J. 1972;128(3):617-30.
-
(1972)
Biochem J
, vol.128
, Issue.3
, pp. 617-630
-
-
Boveris, A.1
Oshino, N.2
Chance, B.3
-
78
-
-
0027181186
-
Evidence that mitochondrial respiration is a source of potentially toxic oxygen free radicals in intact rabbit hearts subjected to ischemia and reflow
-
Ambrosio G, Zweier JL, Duilio C, et al. Evidence that mitochondrial respiration is a source of potentially toxic oxygen free radicals in intact rabbit hearts subjected to ischemia and reflow. J Biol Chem. 1993;268(25):18532-41.
-
(1993)
J Biol Chem
, vol.268
, Issue.25
, pp. 18532-18541
-
-
Ambrosio, G.1
Zweier, J.L.2
Duilio, C.3
-
79
-
-
0033379022
-
Generation of superoxide in cardiomyocytes during ischemia before reperfusion
-
Becker LB, Vanden Hoek TL, Shao ZH, et al. Generation of superoxide in cardiomyocytes during ischemia before reperfusion. Am J Physiol. 1999;277(6 Pt 2):H2240-6.
-
(1999)
Am J Physiol
, vol.277
, Issue.6 PART 2
, pp. H2240-H2246
-
-
Becker, L.B.1
Vanden Hoek, T.L.2
Shao, Z.H.3
-
80
-
-
0032504639
-
The role of mitochondria in the salvage and the injury of the ischemic myocardium
-
Di Lisa F, Menabo R, Canton M, et al. The role of mitochondria in the salvage and the injury of the ischemic myocardium. Biochim Biophys Acta. 1998;1366(1-2):69-78.
-
(1998)
Biochim Biophys Acta
, vol.1366
, Issue.1-2
, pp. 69-78
-
-
Di Lisa, F.1
Menabo, R.2
Canton, M.3
-
81
-
-
0029788601
-
The role of mitochondria in ischemic heart disease
-
Ferrari R. The role of mitochondria in ischemic heart disease. J Cardiovasc Pharmacol. 1996;28 Suppl 1:S1-10.
-
(1996)
J Cardiovasc Pharmacol
, vol.28
, pp. S1-10
-
-
Ferrari, R.1
-
82
-
-
84907037809
-
Mitochondrial generation of oxygen radicals during reoxygenation of ischemic tissues
-
Turrens JF, Beconi M, Barilla J, et al. Mitochondrial generation of oxygen radicals during reoxygenation of ischemic tissues. Free Radic Res Commun. 1991;12-13(Pt 2):681-9.
-
(1991)
Free Radic Res Commun
, vol.12-13
, Issue.PART 2
, pp. 681-689
-
-
Turrens, J.F.1
Beconi, M.2
Barilla, J.3
-
83
-
-
0031239737
-
Significant levels of oxidants are generated by isolated cardiomyocytes during ischemia prior to reperfusion
-
Vanden Hoek TL, Li C, Shao Z, et al. Significant levels of oxidants are generated by isolated cardiomyocytes during ischemia prior to reperfusion. J Mol Cell Cardiol. 1997;29:2571-83.
-
(1997)
J Mol Cell Cardiol
, vol.29
, pp. 2571-2583
-
-
Vanden Hoek, T.L.1
Li, C.2
Shao, Z.3
-
84
-
-
0019848340
-
Hyperoxia increases oxygen radical production in rat lungs and lung mitochondria
-
Freeman BA, Crapo JD. Hyperoxia increases oxygen radical production in rat lungs and lung mitochondria. J Biol Chem. 1981;256(21):10986-92.
-
(1981)
J Biol Chem
, vol.256
, Issue.21
, pp. 10986-10992
-
-
Freeman, B.A.1
Crapo, J.D.2
-
85
-
-
0032030445
-
Mitochondrial NADH-quinone oxidoreductase of the outer membrane is responsible for paraquat cytotoxicity in rat livers
-
Shimada H, Hirai K, Simamura E, et al. Mitochondrial NADH-quinone oxidoreductase of the outer membrane is responsible for paraquat cytotoxicity in rat livers. Arch Biochem Biophys. 1998;351(1):75-81.
-
(1998)
Arch Biochem Biophys
, vol.351
, Issue.1
, pp. 75-81
-
-
Shimada, H.1
Hirai, K.2
Simamura, E.3
-
86
-
-
0034456720
-
Mitochondrial production of hydrogen peroxide regulation by nitric oxide and the role of ubisemiquinone
-
Boveris A, Cadenas E. Mitochondrial production of hydrogen peroxide regulation by nitric oxide and the role of ubisemiquinone. IUBMB Life. 2000;50(4-5): 245-50.
-
(2000)
IUBMB Life
, vol.50
, Issue.4-5
, pp. 245-250
-
-
Boveris, A.1
Cadenas, E.2
-
87
-
-
0032578458
-
Mitochondrial reactive oxygen species trigger hypoxia-induced transcription
-
Chandel NS, Maltepe E, Goldwasser E, et al. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci USA. 1998;95:11715-20.
-
(1998)
Proc Natl Acad Sci USA
, vol.95
, pp. 11715-11720
-
-
Chandel, N.S.1
Maltepe, E.2
Goldwasser, E.3
-
88
-
-
0034082278
-
Cellular oxygen sensing by mitochondria: Old questions, new insight
-
Chandel NS, Schumacker PT. Cellular oxygen sensing by mitochondria: old questions, new insight. J Appl Physiol. 2000;88(5):1880-9.
-
(2000)
J Appl Physiol
, vol.88
, Issue.5
, pp. 1880-1889
-
-
Chandel, N.S.1
Schumacker, P.T.2
-
89
-
-
0026780292
-
Coordinated multisite regulation of cellular energy metabolism
-
Jones DP, Shan X, Park Y. Coordinated multisite regulation of cellular energy metabolism. Annu Rev Nutr. 1992;12:327-43.
-
(1992)
Annu Rev Nutr
, vol.12
, pp. 327-343
-
-
Jones, D.P.1
Shan, X.2
Park, Y.3
-
90
-
-
0019083215
-
Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria
-
Turrens JF, Boveris A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J. 1980;191:421-7.
-
(1980)
Biochem J
, vol.191
, pp. 421-427
-
-
Turrens, J.F.1
Boveris, A.2
-
91
-
-
0034740585
-
DeltaPsi(m)-Dependent and -independent production of reactive oxygen species by rat brain mitochondria
-
Votyakova TV, Reynolds IJ. DeltaPsi(m)-Dependent and -independent production of reactive oxygen species by rat brain mitochondria. J Neurochem. 2001;79(2):266-77.
-
(2001)
J Neurochem
, vol.79
, Issue.2
, pp. 266-277
-
-
Votyakova, T.V.1
Reynolds, I.J.2
-
92
-
-
0035929367
-
The site of production of superoxide radical in mitochondrial Complex i is not a bound ubisemiquinone but presumably iron-sulfur cluster N2
-
Genova ML, Ventura B, Giuliano G, et al. The site of production of superoxide radical in mitochondrial Complex I is not a bound ubisemiquinone but presumably iron-sulfur cluster N2. FEBS Lett. 2001;505(3):364-8.
-
(2001)
FEBS Lett
, vol.505
, Issue.3
, pp. 364-368
-
-
Genova, M.L.1
Ventura, B.2
Giuliano, G.3
-
93
-
-
0032545445
-
Diphenyleneiodonium, an NAD(P) H oxidase inhibitor, also potently inhibits mitochondrial reactive oxygen species production
-
Li Y, Trush MA. Diphenyleneiodonium, an NAD(P) H oxidase inhibitor, also potently inhibits mitochondrial reactive oxygen species production. Biochem Biophys Res Commun. 1998;253(2):295-9.
-
(1998)
Biochem Biophys Res Commun
, vol.253
, Issue.2
, pp. 295-299
-
-
Li, Y.1
Trush, M.A.2
-
94
-
-
0015499932
-
The univalent reduction of oxygen by reduced flavins and quinones
-
Misra HP, Fridovich I. The univalent reduction of oxygen by reduced flavins and quinones. J Biol Chem. 1972;247:188-92.
-
(1972)
J Biol Chem
, vol.247
, pp. 188-192
-
-
Misra, H.P.1
Fridovich, I.2
-
95
-
-
0021996572
-
Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria
-
Turrens JF, Alexandre A, Lehninger AL. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys. 1985;237:408-14.
-
(1985)
Arch Biochem Biophys
, vol.237
, pp. 408-414
-
-
Turrens, J.F.1
Alexandre, A.2
Lehninger, A.L.3
-
96
-
-
0028788763
-
Role of oxidative stress generated from the mitochondrial electron transport chain and mitochondrial glutathione status in loss of mitochondrial function and activation of transcription factor nuclear factor-kappa B: Studies with isolated mitochondria and rat hepatocytes
-
Garcia-Ruiz C, Colell A, Morales A, et al. Role of oxidative stress generated from the mitochondrial electron transport chain and mitochondrial glutathione status in loss of mitochondrial function and activation of transcription factor nuclear factor-kappa B: studies with isolated mitochondria and rat hepatocytes. Mol Pharmacol. 1995;48(5):825-34.
-
(1995)
Mol Pharmacol
, vol.48
, Issue.5
, pp. 825-834
-
-
Garcia-Ruiz, C.1
Colell, A.2
Morales, A.3
-
97
-
-
0031853099
-
Substrate and site specificity of hydrogen peroxide generation in mouse mitochondria
-
Kwong LK, Sohal RS. Substrate and site specificity of hydrogen peroxide generation in mouse mitochondria. Arch Biochem Biophys. 1998;350:118-26.
-
(1998)
Arch Biochem Biophys
, vol.350
, pp. 118-126
-
-
Kwong, L.K.1
Sohal, R.S.2
-
98
-
-
1842330849
-
Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione
-
Garcia-Ruiz C, Colell A, Mari M, et al. Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione. J Biol Chem. 1997;272(17):11369-77.
-
(1997)
J Biol Chem
, vol.272
, Issue.17
, pp. 11369-11377
-
-
Garcia-Ruiz, C.1
Colell, A.2
Mari, M.3
-
99
-
-
1842375100
-
Implication of mitochondrial hydrogen peroxide generation in ceramide-induced apoptosis
-
Quillet-Mary A, Jaffrezou JP, Mansat V, et al. Implication of mitochondrial hydrogen peroxide generation in ceramide-induced apoptosis. J Biol Chem. 1997;272(34):21388-95.
-
(1997)
J Biol Chem
, vol.272
, Issue.34
, pp. 21388-21395
-
-
Quillet-Mary, A.1
Jaffrezou, J.P.2
Mansat, V.3
-
100
-
-
0035297517
-
The ubiquinol/bc1 redox couple regulates mitochondrial oxygen radical formation
-
Gille L, Nohl H. The ubiquinol/bc1 redox couple regulates mitochondrial oxygen radical formation. Arch Biochem Biophys. 2001;388(1):34-8.
-
(2001)
Arch Biochem Biophys
, vol.388
, Issue.1
, pp. 34-38
-
-
Gille, L.1
Nohl, H.2
-
101
-
-
0032545269
-
Generation of superoxide anion by succinate-cytochrome c reductase from bovine heart mitochondria
-
Zhang L, Yu LD, Yu CA. Generation of superoxide anion by succinate-cytochrome c reductase from bovine heart mitochondria. J Biol Chem. 1998;273(51):33972-6.
-
(1998)
J Biol Chem
, vol.273
, Issue.51
, pp. 33972-33976
-
-
Zhang, L.1
Yu, L.D.2
Yu, C.A.3
-
102
-
-
24144493814
-
Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing
-
Guzy RD, Hoyos B, Robin E, et al. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 2005;1(6):401-8.
-
(2005)
Cell Metab
, vol.1
, Issue.6
, pp. 401-408
-
-
Guzy, R.D.1
Hoyos, B.2
Robin, E.3
-
103
-
-
24144447915
-
Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIFalpha activation
-
Mansfield KD, Guzy RD, Pan Y, et al. Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIFalpha activation. Cell Metab. 2005;1(6):393-9.
-
(2005)
Cell Metab
, vol.1
, Issue.6
, pp. 393-399
-
-
Mansfield, K.D.1
Guzy, R.D.2
Pan, Y.3
-
104
-
-
77649112162
-
Hypoxia triggers subcellular compartmental redox signaling in vascular smooth muscle cells
-
Waypa GB, Marks JD, Guzy R, et al. Hypoxia triggers subcellular compartmental redox signaling in vascular smooth muscle cells. Circ Res. 2010;106(3): 526-35.
-
(2010)
Circ Res
, vol.106
, Issue.3
, pp. 526-535
-
-
Waypa, G.B.1
Marks, J.D.2
Guzy, R.3
-
105
-
-
34547448862
-
Fluorescent proteins: Maturation, photochemistry and photophysics
-
Remington SJ. Fluorescent proteins: maturation, photochemistry and photophysics. Curr Opin Struct Biol. 2006;16(6):714-21.
-
(2006)
Curr Opin Struct Biol
, vol.16
, Issue.6
, pp. 714-721
-
-
Remington, S.J.1
-
106
-
-
0842344106
-
Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators
-
Hanson GT, Aggeler R, Oglesbee D, et al. Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J Biol Chem. 2004;279(13):13044-53.
-
(2004)
J Biol Chem
, vol.279
, Issue.13
, pp. 13044-13053
-
-
Hanson, G.T.1
Aggeler, R.2
Oglesbee, D.3
-
107
-
-
33750449016
-
Increases in mitochondrial reactive oxygen species trigger hypoxia-induced calcium responses in pulmonary artery smooth muscle cells
-
Waypa GB, Guzy R, Mungai PT, et al. Increases in mitochondrial reactive oxygen species trigger hypoxia-induced calcium responses in pulmonary artery smooth muscle cells. Circ Res. 2006;99(9): 970-8.
-
(2006)
Circ Res
, vol.99
, Issue.9
, pp. 970-978
-
-
Waypa, G.B.1
Guzy, R.2
Mungai, P.T.3
-
108
-
-
0037131391
-
Mitochondrial reactive oxygen species trigger calcium increases during hypoxia in pulmonary arterial myocytes
-
Waypa GB, Marks JD, Mack MM, et al. Mitochondrial reactive oxygen species trigger calcium increases during hypoxia in pulmonary arterial myocytes. Circ Res. 2002;91(8):719-26.
-
(2002)
Circ Res
, vol.91
, Issue.8
, pp. 719-726
-
-
Waypa, G.B.1
Marks, J.D.2
Mack, M.M.3
-
109
-
-
0035933388
-
Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing
-
Waypa GB, Chandel NS, Schumacker PT. Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing. Circ Res. 2001; 88(12):1259-66.
-
(2001)
Circ Res
, vol.88
, Issue.12
, pp. 1259-1266
-
-
Waypa, G.B.1
Chandel, N.S.2
Schumacker, P.T.3
-
110
-
-
77951241278
-
Terpestacin inhibits tumor angiogenesis by targeting UQCRB of mitochondrial complex III and suppressing hypoxiainduced reactive oxygen species production and cellular oxygen sensing
-
Jung HJ, Shim JS, Lee J, et al. Terpestacin inhibits tumor angiogenesis by targeting UQCRB of mitochondrial complex III and suppressing hypoxiainduced reactive oxygen species production and cellular oxygen sensing. J Biol Chem. 2010;285(15):11584-95.
-
(2010)
J Biol Chem
, vol.285
, Issue.15
, pp. 11584-11595
-
-
Jung, H.J.1
Shim, J.S.2
Lee, J.3
-
111
-
-
0024448458
-
Human cells lacking mtDNA: Repopulation with exogenous mitochondria by complementation
-
King MP, Attardi G. Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science. 1989;246:500-3.
-
(1989)
Science
, vol.246
, pp. 500-503
-
-
King, M.P.1
Attardi, G.2
-
112
-
-
0035880239
-
Regulation of hypoxia-inducible factor is preserved in the absence of a functioning mitochondrial respiratory chain
-
Vaux EC, Metzen E, Yeates KM, et al. Regulation of hypoxia-inducible factor is preserved in the absence of a functioning mitochondrial respiratory chain. Blood. 2001;98(2):296-302.
-
(2001)
Blood
, vol.98
, Issue.2
, pp. 296-302
-
-
Vaux, E.C.1
Metzen, E.2
Yeates, K.M.3
-
113
-
-
0034682786
-
Reactive oxygen species generated at mitochondrial Complex III stabilize HIF-1-alpha during hypoxia: A mechanism of O2 sensing
-
Chandel NS, McClintock DS, Feliciano CE, et al. Reactive oxygen species generated at mitochondrial Complex III stabilize HIF-1-alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem. 2000;275:25130-8.
-
(2000)
J Biol Chem
, vol.275
, pp. 25130-25138
-
-
Chandel, N.S.1
McClintock, D.S.2
Feliciano, C.E.3
-
114
-
-
67650032833
-
Alpha1- AMP- activated protein kinase regulates hypoxiainduced Na, K-ATPase endocytosis via direct phosphorylation of protein kinase C zeta
-
Gusarova GA, Dada LA, Kelly AM, et al. Alpha1- AMP- activated protein kinase regulates hypoxiainduced Na, K-ATPase endocytosis via direct phosphorylation of protein kinase C zeta. Mol Cell Biol. 2009;29(13):3455-64.
-
(2009)
Mol Cell Biol
, vol.29
, Issue.13
, pp. 3455-3464
-
-
Gusarova, G.A.1
Dada, L.A.2
Kelly, A.M.3
-
115
-
-
64449087671
-
Hypoxic activation of AMPK is dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio
-
Emerling BM, Weinberg F, Snyder C, et al. Hypoxic activation of AMPK is dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio. Free Radic Biol Med. 2009;46(10):1386-91.
-
(2009)
Free Radic Biol Med
, vol.46
, Issue.10
, pp. 1386-1391
-
-
Emerling, B.M.1
Weinberg, F.2
Snyder, C.3
-
116
-
-
80052317552
-
Hypoxia triggers AMPK activation through ROS-mediated activation of CRAC channels
-
Mungai PT, Waypa GB, Jairaman A, et al. Hypoxia triggers AMPK activation through ROS-mediated activation of CRAC channels. Mol Cell Biol. 2011;31(17):3531-45.
-
(2011)
Mol Cell Biol
, vol.31
, Issue.17
, pp. 3531-3545
-
-
Mungai, P.T.1
Waypa, G.B.2
Jairaman, A.3
-
117
-
-
33747596652
-
Oxygen sensing by mitochondria at complex III: The paradox of increased reactive oxygen species during hypoxia
-
Guzy RD, Schumacker PT. Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol. 2006;91(5):807-19.
-
(2006)
Exp Physiol
, vol.91
, Issue.5
, pp. 807-819
-
-
Guzy, R.D.1
Schumacker, P.T.2
|