메뉴 건너뛰기




Volumn 520, Issue 7548, 2015, Pages 511-517

Erratum: Structure of the TRPA1 ion channel suggests regulatory mechanisms (Nature (2015) 520 (511-517) DOI:10.1038/nature14367);Structure of the TRPA1 ion channel suggests regulatory mechanisms

Author keywords

[No Author keywords available]

Indexed keywords

ANKYRIN; PHYTIC ACID; POLYPHOSPHATE; TRANSIENT RECEPTOR POTENTIAL CHANNEL A1; VOLTAGE GATED POTASSIUM CHANNEL; ANALGESIC AGENT; ANTIINFLAMMATORY AGENT; CALCIUM CHANNEL; NERVE PROTEIN; PROTEIN SUBUNIT; TRANSIENT RECEPTOR POTENTIAL CHANNEL; TRPA1 PROTEIN, HUMAN;

EID: 84928474213     PISSN: 00280836     EISSN: 14764687     Source Type: Journal    
DOI: 10.1038/nature14871     Document Type: Erratum
Times cited : (471)

References (72)
  • 2
    • 16844367591 scopus 로고    scopus 로고
    • Pain TRPs
    • Wang, H. & Woolf, C. J. Pain TRPs. Neuron 46, 9-12 (2005).
    • (2005) Neuron , vol.46 , pp. 9-12
    • Wang, H.1    Woolf, C.J.2
  • 3
    • 1842475312 scopus 로고    scopus 로고
    • Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin
    • Bandell, M. et al. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41, 849-857 (2004).
    • (2004) Neuron , vol.41 , pp. 849-857
    • Bandell, M.1
  • 4
    • 33646045075 scopus 로고    scopus 로고
    • TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents
    • Bautista, D. M. et al. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124, 1269-1282 (2006).
    • (2006) Cell , vol.124 , pp. 1269-1282
    • Bautista, D.M.1
  • 5
    • 24744446008 scopus 로고    scopus 로고
    • Pungent products fromgarlic activate the sensory ion channel TRPA1
    • Bautista, D.M. et al. Pungent products fromgarlic activate the sensory ion channel TRPA1. Proc. Natl Acad. Sci. USA 102, 12248-12252 (2005).
    • (2005) Proc. Natl Acad. Sci. USA , vol.102 , pp. 12248-12252
    • Bautista, D.M.1
  • 6
    • 1642430679 scopus 로고    scopus 로고
    • Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1
    • Jordt, S. E. et al. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427, 260-265 (2004).
    • (2004) Nature , vol.427 , pp. 260-265
    • Jordt, S.E.1
  • 7
    • 34548101399 scopus 로고    scopus 로고
    • TRPA1mediates formalin-induced pain
    • McNamara, C.R. et al. TRPA1mediates formalin-induced pain. Proc. Natl Acad. Sci. USA 104, 13525-13530 (2007).
    • (2007) Proc. Natl Acad. Sci. USA , vol.104 , pp. 13525-13530
    • McNamara, C.R.1
  • 8
    • 38549092780 scopus 로고    scopus 로고
    • Prostaglandin-induced activation of nociceptive neurons via direct interaction with transient receptor potential A1 (TRPA1)
    • Taylor-Clark, T. E. et al. Prostaglandin-induced activation of nociceptive neurons via direct interaction with transient receptor potential A1 (TRPA1). Mol. Pharmacol. 73, 274-281 (2008).
    • (2008) Mol. Pharmacol. , vol.73 , pp. 274-281
    • Taylor-Clark, T.E.1
  • 9
    • 34548094044 scopus 로고    scopus 로고
    • 4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1
    • Trevisani, M. et al. 4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. Proc. Natl Acad. Sci. USA 104, 13519-13524 (2007).
    • (2007) Proc. Natl Acad. Sci. USA , vol.104 , pp. 13519-13524
    • Trevisani, M.1
  • 10
    • 64549120669 scopus 로고    scopus 로고
    • TRPA1 and cold transduction: An unresolved issue?
    • Caspani, O. & Heppenstall, P. A. TRPA1 and cold transduction: an unresolved issue? J. Gen. Physiol. 133, 245-249 (2009).
    • (2009) J. Gen. Physiol. , vol.133 , pp. 245-249
    • Caspani, O.1    Heppenstall, P.A.2
  • 11
    • 79955385137 scopus 로고    scopus 로고
    • TRPA1 is required for histamine-independent, Mas-related G protein-coupled receptor-mediated itch
    • Wilson, S. R. et al. TRPA1 is required for histamine-independent, Mas-related G protein-coupled receptor-mediated itch. Nature Neurosci. 14, 595-602 (2011).
    • (2011) Nature Neurosci. , vol.14 , pp. 595-602
    • Wilson, S.R.1
  • 12
    • 84856409044 scopus 로고    scopus 로고
    • TRPA1 antagonists as potential analgesic drugs
    • Andrade, E. L., Meotti, F. C.& Calixto, J.B. TRPA1 antagonists as potential analgesic drugs. Pharmacol. Ther. 133, 189-204 (2012).
    • (2012) Pharmacol. Ther. , vol.133 , pp. 189-204
    • Andrade, E.L.1    Meotti, F.C.2    Calixto, J.B.3
  • 13
    • 77953681608 scopus 로고    scopus 로고
    • A gain-of-functionmutation in TRPA1 causes familial episodic pain syndrome
    • Kremeyer, B. et al. A gain-of-functionmutation in TRPA1 causes familial episodic pain syndrome. Neuron 66, 671-680 (2010).
    • (2010) Neuron , vol.66 , pp. 671-680
    • Kremeyer, B.1
  • 15
    • 33846692923 scopus 로고    scopus 로고
    • Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines
    • Macpherson, L. J. et al. Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445, 541-545 (2007).
    • (2007) Nature , vol.445 , pp. 541-545
    • Macpherson, L.J.1
  • 16
    • 34250340875 scopus 로고    scopus 로고
    • Requirement of a soluble intracellular factor for activation of transient receptor potential A1 by pungent chemicals: Role of inorganic polyphosphates
    • Kim, D. & Cavanaugh, E. J. Requirement of a soluble intracellular factor for activation of transient receptor potential A1 by pungent chemicals: role of inorganic polyphosphates. J. Neurosci. 27, 6500-6509 (2007).
    • (2007) J. Neurosci. , vol.27 , pp. 6500-6509
    • Kim, D.1    Cavanaugh, E.J.2
  • 17
    • 79953156425 scopus 로고    scopus 로고
    • Irritating channels: The case of TRPA1
    • Nilius, B., Prenen, J. & Owsianik, G. Irritating channels: the case of TRPA1. J. Physiol. (Lond.) 589, 1543-1549 (2011).
    • (2011) J. Physiol. (Lond.) , vol.589 , pp. 1543-1549
    • Nilius, B.1    Prenen, J.2    Owsianik, G.3
  • 18
    • 57749107691 scopus 로고    scopus 로고
    • The nociceptor ion channel TRPA1 is potentiated and inactivated by permeating calcium ions
    • Wang, Y. Y., Chang, R.B., Waters, H. N., McKemy, D. D. & Liman, E.R. The nociceptor ion channel TRPA1 is potentiated and inactivated by permeating calcium ions. J. Biol. Chem. 283, 32691-32703 (2008).
    • (2008) J. Biol. Chem. , vol.283 , pp. 32691-32703
    • Wang, Y.Y.1    Chang, R.B.2    Waters, H.N.3    McKemy, D.D.4    Liman, E.R.5
  • 19
    • 80055073153 scopus 로고    scopus 로고
    • Molecular architecture and subunit organization of TRPA1 ion channel revealed by electron microscopy
    • Cvetkov, T. L., Huynh, K. W., Cohen, M. R. & Moiseenkova-Bell, V. Y. Molecular architecture and subunit organization of TRPA1 ion channel revealed by electron microscopy. J. Biol. Chem. 286, 38168-38176 (2011).
    • (2011) J. Biol. Chem. , vol.286 , pp. 38168-38176
    • Cvetkov, T.L.1    Huynh, K.W.2    Cohen, M.R.3    Moiseenkova-Bell, V.Y.4
  • 20
    • 84889594608 scopus 로고    scopus 로고
    • TRPV1 structures in distinct conformations reveal activation mechanisms
    • Cao, E., Liao, M., Cheng, Y. & Julius, D. TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504, 113-118 (2013).
    • (2013) Nature , vol.504 , pp. 113-118
    • Cao, E.1    Liao, M.2    Cheng, Y.3    Julius, D.4
  • 21
    • 84889607320 scopus 로고    scopus 로고
    • Structure of the TRPV1 ion channel determined by electron cryo-microscopy
    • Liao, M., Cao, E., Julius, D. & Cheng, Y. Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504, 107-112 (2013).
    • (2013) Nature , vol.504 , pp. 107-112
    • Liao, M.1    Cao, E.2    Julius, D.3    Cheng, Y.4
  • 22
    • 79551485942 scopus 로고    scopus 로고
    • The C-terminal basic residues contribute to the chemical- and voltage-dependent activation of TRPA1
    • Samad, A. et al. The C-terminal basic residues contribute to the chemical- and voltage-dependent activation of TRPA1. Biochem. J. 433, 197-204 (2011).
    • (2011) Biochem. J. , vol.433 , pp. 197-204
    • Samad, A.1
  • 23
    • 17444433002 scopus 로고    scopus 로고
    • The design of coiled-coil structures and assemblies
    • Woolfson, D. N. The design of coiled-coil structures and assemblies. Adv. Protein Chem. 70, 79-112 (2005).
    • (2005) Adv. Protein Chem. , vol.70 , pp. 79-112
    • Woolfson, D.N.1
  • 24
    • 24644519954 scopus 로고    scopus 로고
    • Inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing
    • Macbeth, M. R. et al. Inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing. Science 309, 1534-1539 (2005).
    • (2005) Science , vol.309 , pp. 1534-1539
    • Macbeth, M.R.1
  • 25
    • 84896719951 scopus 로고    scopus 로고
    • Polyphosphate is a primordial chaperone
    • Gray, M. J. et al. Polyphosphate is a primordial chaperone. Mol. Cell 53, 689-699 (2014).
    • (2014) Mol. Cell , vol.53 , pp. 689-699
    • Gray, M.J.1
  • 26
    • 84958539229 scopus 로고    scopus 로고
    • Phosphoinositide regulation of TRP channels
    • Rohacs, T. Phosphoinositide regulation of TRP channels. Handb. Exp. Pharmacol. 223, 1143-1176 (2014).
    • (2014) Handb. Exp. Pharmacol. , vol.223 , pp. 1143-1176
    • Rohacs, T.1
  • 27
    • 84880105471 scopus 로고    scopus 로고
    • Cysteine-mediated redox signaling: Chemistry, biology, and tools for discovery
    • Paulsen, C. E. & Carroll, K. S. Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chem. Rev. 113, 4633-4679 (2013).
    • (2013) Chem. Rev. , vol.113 , pp. 4633-4679
    • Paulsen, C.E.1    Carroll, K.S.2
  • 28
    • 44949088543 scopus 로고    scopus 로고
    • Molecular determinants of species-specific activation or blockade of TRPA1 channels
    • Chen, J. et al. Molecular determinants of species-specific activation or blockade of TRPA1 channels. J. Neurosci. 28, 5063-5071 (2008).
    • (2008) J. Neurosci. , vol.28 , pp. 5063-5071
    • Chen, J.1
  • 29
    • 84912567148 scopus 로고    scopus 로고
    • Human TRPA1 is intrinsically cold- and chemosensitive with and without its N-terminal ankyrin repeat domain
    • Moparthi, L. et al. Human TRPA1 is intrinsically cold- and chemosensitive with and without its N-terminal ankyrin repeat domain. Proc. Natl Acad. Sci. USA 111, 16901-16906 (2014).
    • (2014) Proc. Natl Acad. Sci. USA , vol.111 , pp. 16901-16906
    • Moparthi, L.1
  • 30
    • 0033548702 scopus 로고    scopus 로고
    • An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts
    • Jaquemar, D., Schenker, T. & Trueb, B. An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts. J. Biol. Chem. 274, 7325-7333 (1999).
    • (1999) J. Biol. Chem. , vol.274 , pp. 7325-7333
    • Jaquemar, D.1    Schenker, T.2    Trueb, B.3
  • 31
    • 84888289833 scopus 로고    scopus 로고
    • Regulation of the transient receptor potential channel TRPA1 by its N-terminal ankyrin repeat domain
    • Zayats, V. et al. Regulation of the transient receptor potential channel TRPA1 by its N-terminal ankyrin repeat domain. J. Mol. Model. 19, 4689-4700 (2013).
    • (2013) J. Mol. Model. , vol.19 , pp. 4689-4700
    • Zayats, V.1
  • 32
    • 77951114632 scopus 로고    scopus 로고
    • Molecular basis of infrared detection by snakes
    • Gracheva, E. O. et al. Molecular basis of infrared detection by snakes. Nature 464, 1006-1011 (2010).
    • (2010) Nature , vol.464 , pp. 1006-1011
    • Gracheva, E.O.1
  • 34
    • 0037804066 scopus 로고    scopus 로고
    • Opposite thermosensor in fruitfly and mouse
    • Viswanath, V. et al. Opposite thermosensor in fruitfly and mouse. Nature 423, 822-823 (2003).
    • (2003) Nature , vol.423 , pp. 822-823
    • Viswanath, V.1
  • 35
    • 84856242768 scopus 로고    scopus 로고
    • Thermosensory and nonthermosensory isoforms of Drosophila melanogaster TRPA1 reveal heat-sensor domains of a thermoTRP Channel
    • Zhong, L. et al. Thermosensory and nonthermosensory isoforms of Drosophila melanogaster TRPA1 reveal heat-sensor domains of a thermoTRP Channel. Cell Rep 1, 43-55 (2012).
    • (2012) Cell Rep , vol.1 , pp. 43-55
    • Zhong, L.1
  • 36
    • 81755185888 scopus 로고    scopus 로고
    • Cytoplasmic ankyrin repeats of transient receptor potential A1 (TRPA1) dictate sensitivity to thermaland chemical stimuli
    • Cordero-Morales, J. F., Gracheva, E. O. & Julius, D. Cytoplasmic ankyrin repeats of transient receptor potential A1 (TRPA1) dictate sensitivity to thermaland chemical stimuli. Proc. Natl Acad. Sci. USA 108, E1184-E1191 (2011).
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. E1184-E1191
    • Cordero-Morales, J.F.1    Gracheva, E.O.2    Julius, D.3
  • 37
    • 84901827531 scopus 로고    scopus 로고
    • Directionality of temperature activation in mouse TRPA1 ion channel can be inverted by single-point mutations in ankyrin repeat six
    • Jabba, S. et al. Directionality of temperature activation in mouse TRPA1 ion channel can be inverted by single-point mutations in ankyrin repeat six. Neuron 82, 1017-1031 (2014).
    • (2014) Neuron , vol.82 , pp. 1017-1031
    • Jabba, S.1
  • 38
    • 79960621367 scopus 로고    scopus 로고
    • The crystal structure of a voltage-gated sodium channel
    • Payandeh, J., Scheuer, T., Zheng, N. & Catterall, W. A. The crystal structure of a voltage-gated sodium channel. Nature 475, 353-358 (2011).
    • (2011) Nature , vol.475 , pp. 353-358
    • Payandeh, J.1    Scheuer, T.2    Zheng, N.3    Catterall, W.A.4
  • 39
    • 23244456428 scopus 로고    scopus 로고
    • Crystal structure of a mammalian voltage-dependent Shaker family K 1 channel
    • Long, S. B., Campbell, E. B. & Mackinnon, R. Crystal structure of a mammalian voltage-dependent Shaker family K 1 channel. Science 309, 897-903 (2005).
    • (2005) Science , vol.309 , pp. 897-903
    • Long, S.B.1    Campbell, E.B.2    Mackinnon, R.3
  • 40
    • 34447515681 scopus 로고    scopus 로고
    • Contribution of the putative inner-pore region to the gating of the transient receptor potential vanilloid subtype 1 channel (TRPV1)
    • Susankova, K., Ettrich, R., Vyklicky, L., Teisinger, J. & Vlachova, V.Contribution of the putative inner-pore region to the gating of the transient receptor potential vanilloid subtype 1 channel (TRPV1). J. Neurosci. 27, 7578-7585 (2007).
    • (2007) J. Neurosci. , vol.27 , pp. 7578-7585
    • Susankova, K.1    Ettrich, R.2    Vyklicky, L.3    Teisinger, J.4    Vlachova, V.5
  • 42
    • 77950436208 scopus 로고    scopus 로고
    • TRPA1 modulation of spontaneous and mechanically evoked firing of spinal neurons in uninjured, osteoarthritic, and inflamed rats
    • McGaraughty, S. et al. TRPA1 modulation of spontaneous and mechanically evoked firing of spinal neurons in uninjured, osteoarthritic, and inflamed rats. Mol. Pain 6, 14 (2010).
    • (2010) Mol. Pain , vol.6 , pp. 14
    • McGaraughty, S.1
  • 43
    • 38949175353 scopus 로고    scopus 로고
    • A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition
    • Petrus, M. et al. A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition. Mol. Pain 3, 40 (2007).
    • (2007) Mol. Pain , vol.3 , pp. 40
    • Petrus, M.1
  • 44
    • 84911453940 scopus 로고    scopus 로고
    • Molecular basis determining inhibition/activation of nociceptive receptor TRPA1: A single amino acid dictates species-specific actions of the most potent mammalian trpa1 antagonists
    • Banzawa, N. et al. Molecular basis determining inhibition/activation of nociceptive receptor TRPA1: a single amino acid dictates species-specific actions of the most potent mammalian trpa1 antagonists. J. Biol. Chem. 289, 31927-31939 (2014).
    • (2014) J. Biol. Chem. , vol.289 , pp. 31927-31939
    • Banzawa, N.1
  • 45
    • 84874184374 scopus 로고    scopus 로고
    • Characterization of a ligand binding site in the human transient receptor potential ankyrin 1 pore
    • Klement, G. et al. Characterization of a ligand binding site in the human transient receptor potential ankyrin 1 pore. Biophys. J. 104, 798-806 (2013).
    • (2013) Biophys. J. , vol.104 , pp. 798-806
    • Klement, G.1
  • 46
    • 84885958800 scopus 로고    scopus 로고
    • Identification of molecular determinants for a potent mammalian TRPA1 antagonist by utilizing species differences
    • Nakatsuka, K. et al. Identification of molecular determinants for a potent mammalian TRPA1 antagonist by utilizing species differences. J. Mol. Neurosci. 51, 754-762 (2013).
    • (2013) J. Mol. Neurosci. , vol.51 , pp. 754-762
    • Nakatsuka, K.1
  • 47
    • 55749087512 scopus 로고    scopus 로고
    • Identification of transmembrane domain 5 as a critical molecular determinant of menthol sensitivity in mammalian TRPA1 channels
    • Xiao, B. et al. Identification of transmembrane domain 5 as a critical molecular determinant of menthol sensitivity in mammalian TRPA1 channels. J. Neurosci. 28, 9640-9651 (2008).
    • (2008) J. Neurosci. , vol.28 , pp. 9640-9651
    • Xiao, B.1
  • 48
    • 84902161802 scopus 로고    scopus 로고
    • Prokaryotic NavMs channel as a structural and functional model for eukaryotic sodium channel antagonism
    • Bagnéris, C. et al. Prokaryotic NavMs channel as a structural and functional model for eukaryotic sodium channel antagonism. Proc. Natl Acad. Sci. USA 111, 8428-8433 (2014).
    • (2014) Proc. Natl Acad. Sci. USA , vol.111 , pp. 8428-8433
    • Bagnéris, C.1
  • 49
    • 84892438148 scopus 로고    scopus 로고
    • Structure and function of voltage-gated sodium channels at atomic resolution
    • Catterall, W. A. Structure and function of voltage-gated sodium channels at atomic resolution. Exp. Physiol. 99, 35-51 (2014).
    • (2014) Exp. Physiol. , vol.99 , pp. 35-51
    • Catterall, W.A.1
  • 50
    • 33646011258 scopus 로고    scopus 로고
    • Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins
    • Kawate, T. & Gouaux, E. Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14, 673-681 (2006).
    • (2006) Structure , vol.14 , pp. 673-681
    • Kawate, T.1    Gouaux, E.2
  • 51
    • 78649693871 scopus 로고    scopus 로고
    • Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins
    • Chae, P. S. et al. Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins. Nature Methods 7, 1003-1008 (2010).
    • (2010) Nature Methods , vol.7 , pp. 1003-1008
    • Chae, P.S.1
  • 52
    • 2342662152 scopus 로고    scopus 로고
    • Negative staining and image classification - Powerful tools in modern electron microscopy
    • Ohi, M., Li, Y., Cheng, Y. & Walz, T. Negative staining and image classification - powerful tools in modern electron microscopy. Biol. Proced. Online 6, 23-34 (2004).
    • (2004) Biol. Proced. Online , vol.6 , pp. 23-34
    • Ohi, M.1    Li, Y.2    Cheng, Y.3    Walz, T.4
  • 53
    • 84880848354 scopus 로고    scopus 로고
    • Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM
    • Li, X. et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nature Methods 10, 584-590 (2013).
    • (2013) Nature Methods , vol.10 , pp. 584-590
    • Li, X.1
  • 54
    • 0038441501 scopus 로고    scopus 로고
    • Accurate determinationof local defocus and specimen tilt in electron microscopy
    • Mindell, J.A. & Grigorieff, N. Accurate determinationof local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334-347 (2003).
    • (2003) J. Struct. Biol. , vol.142 , pp. 334-347
    • Mindell, J.A.1    Grigorieff, N.2
  • 55
    • 0029975088 scopus 로고    scopus 로고
    • SPIDER and WEB: Processing and visualization of images in 3D electron microscopy and related fields
    • Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190-199 (1996).
    • (1996) J. Struct. Biol. , vol.116 , pp. 190-199
    • Frank, J.1
  • 56
    • 84881432897 scopus 로고    scopus 로고
    • PRIME: Probabilistic initial 3D model generation for single-particle cryo-electron microscopy
    • Elmlund, H., Elmlund, D. & Bengio, S. PRIME: probabilistic initial 3D model generation for single-particle cryo-electron microscopy. Structure 21, 1299-1306 (2013).
    • (2013) Structure , vol.21 , pp. 1299-1306
    • Elmlund, H.1    Elmlund, D.2    Bengio, S.3
  • 57
    • 84868444740 scopus 로고    scopus 로고
    • RELION: Implementation of a Bayesian approach to cryo-EM structure determination
    • Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519-530 (2012).
    • (2012) J. Struct. Biol. , vol.180 , pp. 519-530
    • Scheres, S.H.1
  • 58
    • 84920942671 scopus 로고    scopus 로고
    • Beam-induced motion correction for sub-megadalton cryo-EM particles
    • Scheres, S. H. Beam-induced motion correction for sub-megadalton cryo-EM particles. Elife 3, e03665 (2014).
    • (2014) Elife , vol.3 , pp. e03665
    • Scheres, S.H.1
  • 59
    • 84866078359 scopus 로고    scopus 로고
    • Prevention of overfitting in cryo-EM structure determination
    • Scheres, S. H. & Chen, S. Prevention of overfitting in cryo-EM structure determination. Nature Methods 9, 853-854 (2012).
    • (2012) Nature Methods , vol.9 , pp. 853-854
    • Scheres, S.H.1    Chen, S.2
  • 60
    • 84894623755 scopus 로고    scopus 로고
    • Quantifying the local resolution of cryo-EM density maps
    • Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nature Methods 11, 63-65 (2014).
    • (2014) Nature Methods , vol.11 , pp. 63-65
    • Kucukelbir, A.1    Sigworth, F.J.2    Tagare, H.D.3
  • 62
    • 23144452044 scopus 로고    scopus 로고
    • The HHpred interactive server for protein homology detection and structure prediction
    • Söding, J., Biegert, A. & Lupas, A. N. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 33, W244-W248 (2005).
    • (2005) Nucleic Acids Res. , vol.33 , pp. W244-W248
    • Söding, J.1    Biegert, A.2    Lupas, A.N.3
  • 63
    • 0033578684 scopus 로고    scopus 로고
    • Protein secondary structure prediction based on position-specific scoring matrices
    • Jones, D. T. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195-202 (1999).
    • (1999) J. Mol. Biol. , vol.292 , pp. 195-202
    • Jones, D.T.1
  • 64
    • 23144450570 scopus 로고    scopus 로고
    • REPPER-repeats and their periodicities in fibrous proteins
    • Gruber, M., Soding, J. & Lupas, A. N. REPPER-repeats and their periodicities in fibrous proteins. Nucleic Acids Res. 33, W239-W243 (2005).
    • (2005) Nucleic Acids Res. , vol.33 , pp. W239-W243
    • Gruber, M.1    Soding, J.2    Lupas, A.N.3
  • 65
    • 42349109026 scopus 로고    scopus 로고
    • A primer on ankyrin repeat function in TRP channels and beyond
    • Gaudet, R. A primer on ankyrin repeat function in TRP channels and beyond. Mol. Biosyst. 4, 372-379 (2008).
    • (2008) Mol. Biosyst. , vol.4 , pp. 372-379
    • Gaudet, R.1
  • 66
    • 0033396635 scopus 로고    scopus 로고
    • Haloarcula marismortui 50S subunit-complementarity of electron microscopy and X-Ray crystallographic information
    • Penczek, P., Ban, N., Grassucci, R. A., Agrawal, R. K. & Frank, J. Haloarcula marismortui 50S subunit-complementarity of electron microscopy and X-Ray crystallographic information. J. Struct. Biol. 128, 44-50 (1999).
    • (1999) J. Struct. Biol. , vol.128 , pp. 44-50
    • Penczek, P.1    Ban, N.2    Grassucci, R.A.3    Agrawal, R.K.4    Frank, J.5
  • 67
    • 79953737180 scopus 로고    scopus 로고
    • Overview of the CCP4 suite and current developments
    • Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D 67, 235-242 (2011).
    • (2011) Acta Crystallogr. D , vol.67 , pp. 235-242
    • Winn, M.D.1
  • 68
    • 76449098262 scopus 로고    scopus 로고
    • PHENIX: A comprehensive Python-based system for macromolecular structure solution
    • Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213-221 (2010).
    • (2010) Acta Crystallogr. D , vol.66 , pp. 213-221
    • Adams, P.D.1
  • 69
    • 74549178560 scopus 로고    scopus 로고
    • MolProbity: All-atom structure validation for macromolecular crystallography
    • Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12-21 (2010).
    • (2010) Acta Crystallogr. D , vol.66 , pp. 12-21
    • Chen, V.B.1
  • 70
    • 84897000112 scopus 로고    scopus 로고
    • Structure of the yeast mitochondrial large ribosomal subunit
    • Amunts, A. et al. Structure of the yeast mitochondrial large ribosomal subunit. Science 343, 1485-1489 (2014).
    • (2014) Science , vol.343 , pp. 1485-1489
    • Amunts, A.1
  • 71
    • 4444221565 scopus 로고    scopus 로고
    • UCSFChimera-a visualization systemfor exploratory research and analysis
    • Pettersen, E. F. et al. UCSFChimera-a visualization systemfor exploratory research and analysis. J. Comput. Chem. 25, 1605-1612 (2004).
    • (2004) J. Comput. Chem. , vol.25 , pp. 1605-1612
    • Pettersen, E.F.1
  • 72
    • 0030404988 scopus 로고    scopus 로고
    • HOLE: A program for the analysis of the pore dimensions of ion channel structuralmodels
    • Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. HOLE: a program for the analysis of the pore dimensions of ion channel structuralmodels. J. Mol. Graph. 14, 354-360, 376 (1996).
    • (1996) J. Mol. Graph. , vol.14 , pp. 354-360+376
    • Smart, O.S.1    Neduvelil, J.G.2    Wang, X.3    Wallace, B.A.4    Sansom, M.S.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.