메뉴 건너뛰기




Volumn 36, Issue 4, 2015, Pages 240-249

Intertwined regulation of angiogenesis and immunity by myeloid cells

Author keywords

[No Author keywords available]

Indexed keywords

VASCULOTROPIN;

EID: 84926516814     PISSN: 14714906     EISSN: 14714981     Source Type: Journal    
DOI: 10.1016/j.it.2015.02.005     Document Type: Review
Times cited : (129)

References (104)
  • 1
    • 84880757177 scopus 로고    scopus 로고
    • Deciphering and reversing tumor immune suppression
    • Motz G.T., Coukos G. Deciphering and reversing tumor immune suppression. Immunity 2013, 39:61-73.
    • (2013) Immunity , vol.39 , pp. 61-73
    • Motz, G.T.1    Coukos, G.2
  • 2
    • 0037967272 scopus 로고    scopus 로고
    • Tumorigenesis and the angiogenic switch
    • Bergers G., Benjamin L.E. Tumorigenesis and the angiogenic switch. Nat. Rev. Cancer 2003, 3:401-410.
    • (2003) Nat. Rev. Cancer , vol.3 , pp. 401-410
    • Bergers, G.1    Benjamin, L.E.2
  • 3
    • 12344312042 scopus 로고    scopus 로고
    • Cellular abnormalities of blood vessels as targets in cancer
    • Baluk P., et al. Cellular abnormalities of blood vessels as targets in cancer. Curr. Opin. Genet. Dev. 2005, 15:102-111.
    • (2005) Curr. Opin. Genet. Dev. , vol.15 , pp. 102-111
    • Baluk, P.1
  • 4
    • 30744479430 scopus 로고    scopus 로고
    • Angiogenesis in life, disease and medicine
    • Carmeliet P. Angiogenesis in life, disease and medicine. Nature 2005, 438:932-936.
    • (2005) Nature , vol.438 , pp. 932-936
    • Carmeliet, P.1
  • 5
    • 0022891340 scopus 로고
    • Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing
    • Dvorak H.F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 1986, 315:1650-1659.
    • (1986) N. Engl. J. Med. , vol.315 , pp. 1650-1659
    • Dvorak, H.F.1
  • 6
    • 68049113584 scopus 로고    scopus 로고
    • Angiogenesis as a therapeutic target in malignant gliomas
    • Chi A.S., et al. Angiogenesis as a therapeutic target in malignant gliomas. Oncologist 2009, 14:621-636.
    • (2009) Oncologist , vol.14 , pp. 621-636
    • Chi, A.S.1
  • 7
    • 67649091076 scopus 로고    scopus 로고
    • VEGF inhibitors in the treatment of cerebral edema in patients with brain cancer
    • Gerstner E.R., et al. VEGF inhibitors in the treatment of cerebral edema in patients with brain cancer. Nat. Rev. Clin. Oncol. 2009, 6:229-236.
    • (2009) Nat. Rev. Clin. Oncol. , vol.6 , pp. 229-236
    • Gerstner, E.R.1
  • 8
    • 0034614637 scopus 로고    scopus 로고
    • The hallmarks of cancer
    • Hanahan D., Weinberg R.A. The hallmarks of cancer. Cell 2000, 100:57-70.
    • (2000) Cell , vol.100 , pp. 57-70
    • Hanahan, D.1    Weinberg, R.A.2
  • 9
    • 67650380136 scopus 로고    scopus 로고
    • Biomarkers of response and resistance to antiangiogenic therapy
    • Jain R.K., et al. Biomarkers of response and resistance to antiangiogenic therapy. Nat. Rev. Clin. Oncol. 2009, 6:327-338.
    • (2009) Nat. Rev. Clin. Oncol. , vol.6 , pp. 327-338
    • Jain, R.K.1
  • 10
    • 23444460271 scopus 로고    scopus 로고
    • Antiangiogenic therapy for cancer: current and emerging concepts
    • Jain R.K. Antiangiogenic therapy for cancer: current and emerging concepts. Oncology 2005, 19:7-16.
    • (2005) Oncology , vol.19 , pp. 7-16
    • Jain, R.K.1
  • 11
    • 79953244361 scopus 로고    scopus 로고
    • Antiangiogenic therapy: impact on invasion, disease progression, and metastasis
    • Ebos J.M., Kerbel R.S. Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nat. Rev. Clin. Oncol. 2011, 8:210-221.
    • (2011) Nat. Rev. Clin. Oncol. , vol.8 , pp. 210-221
    • Ebos, J.M.1    Kerbel, R.S.2
  • 12
    • 33845767868 scopus 로고    scopus 로고
    • Macrophages regulate the angiogenic switch in a mouse model of breast cancer
    • Lin E.Y., et al. Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res. 2006, 66:11238-11246.
    • (2006) Cancer Res. , vol.66 , pp. 11238-11246
    • Lin, E.Y.1
  • 13
    • 36549025804 scopus 로고    scopus 로고
    • Vascular endothelial growth factor restores delayed tumor progression in tumors depleted of macrophages
    • Lin E.Y., et al. Vascular endothelial growth factor restores delayed tumor progression in tumors depleted of macrophages. Mol. Oncol. 2007, 1:288-302.
    • (2007) Mol. Oncol. , vol.1 , pp. 288-302
    • Lin, E.Y.1
  • 14
    • 4944239035 scopus 로고    scopus 로고
    • An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis
    • Giraudo E., et al. An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J. Clin. Invest. 2004, 114:623-633.
    • (2004) J. Clin. Invest. , vol.114 , pp. 623-633
    • Giraudo, E.1
  • 15
    • 0000391746 scopus 로고    scopus 로고
    • Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis
    • Bergers G., et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat. Cell Biol. 2000, 2:737-744.
    • (2000) Nat. Cell Biol. , vol.2 , pp. 737-744
    • Bergers, G.1
  • 16
    • 39849102836 scopus 로고    scopus 로고
    • HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion
    • Du R., et al. HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 2008, 13:206-220.
    • (2008) Cancer Cell , vol.13 , pp. 206-220
    • Du, R.1
  • 17
    • 5444225991 scopus 로고    scopus 로고
    • + cells in tumor-bearing host directly promotes tumor angiogenesis
    • + cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 2004, 6:409-421.
    • (2004) Cancer Cell , vol.6 , pp. 409-421
    • Yang, L.1
  • 18
    • 38049181485 scopus 로고    scopus 로고
    • Reversion of immune tolerance in advanced malignancy: modulation of myeloid-derived suppressor cell development by blockade of stem-cell factor function
    • Pan P.Y., et al. Reversion of immune tolerance in advanced malignancy: modulation of myeloid-derived suppressor cell development by blockade of stem-cell factor function. Blood 2008, 111:219-228.
    • (2008) Blood , vol.111 , pp. 219-228
    • Pan, P.Y.1
  • 19
    • 79958696667 scopus 로고    scopus 로고
    • Receptor tyrosine kinases and TLR/IL1Rs unexpectedly activate myeloid cell PI3Kgamma, a single convergent point promoting tumor inflammation and progression
    • Schmid M.C., et al. Receptor tyrosine kinases and TLR/IL1Rs unexpectedly activate myeloid cell PI3Kgamma, a single convergent point promoting tumor inflammation and progression. Cancer Cell 2011, 19:715-727.
    • (2011) Cancer Cell , vol.19 , pp. 715-727
    • Schmid, M.C.1
  • 20
    • 55849107422 scopus 로고    scopus 로고
    • Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice
    • Kujawski M., et al. Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. J. Clin. Invest. 2008, 118:3367-3377.
    • (2008) J. Clin. Invest. , vol.118 , pp. 3367-3377
    • Kujawski, M.1
  • 21
    • 84924616997 scopus 로고    scopus 로고
    • Role of angiopoietin-2 in adaptive tumor resistance to VEGF signaling blockade
    • Rigamonti N., et al. Role of angiopoietin-2 in adaptive tumor resistance to VEGF signaling blockade. Cell Rep. 2014, 8:696-706.
    • (2014) Cell Rep. , vol.8 , pp. 696-706
    • Rigamonti, N.1
  • 22
  • 23
    • 78651461701 scopus 로고    scopus 로고
    • HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF
    • Rolny C., et al. HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF. Cancer Cell 2011, 19:31-44.
    • (2011) Cancer Cell , vol.19 , pp. 31-44
    • Rolny, C.1
  • 24
    • 84904406680 scopus 로고    scopus 로고
    • Tumor-associated macrophages: from mechanisms to therapy
    • Noy R., Pollard J.W. Tumor-associated macrophages: from mechanisms to therapy. Immunity 2014, 41:49-61.
    • (2014) Immunity , vol.41 , pp. 49-61
    • Noy, R.1    Pollard, J.W.2
  • 25
    • 84911958406 scopus 로고    scopus 로고
    • Hypoxia-inducible factors in regulation of immune responses in tumour microenvironment
    • Kumar V., Gabrilovich D.I. Hypoxia-inducible factors in regulation of immune responses in tumour microenvironment. Immunology 2014, 143:512-519.
    • (2014) Immunology , vol.143 , pp. 512-519
    • Kumar, V.1    Gabrilovich, D.I.2
  • 26
    • 79952284127 scopus 로고    scopus 로고
    • Hallmarks of cancer: the next generation
    • Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell 2011, 144:646-674.
    • (2011) Cell , vol.144 , pp. 646-674
    • Hanahan, D.1    Weinberg, R.A.2
  • 27
    • 0037805549 scopus 로고    scopus 로고
    • Basement membranes: structure, assembly and role in tumour angiogenesis
    • Kalluri R. Basement membranes: structure, assembly and role in tumour angiogenesis. Nat. Rev. Cancer 2003, 3:422-433.
    • (2003) Nat. Rev. Cancer , vol.3 , pp. 422-433
    • Kalluri, R.1
  • 28
    • 16644395747 scopus 로고    scopus 로고
    • The role of VEGF in the regulation of physiological and pathological angiogenesis
    • Ferrara N. The role of VEGF in the regulation of physiological and pathological angiogenesis. Exs 2005, 2005:209-231.
    • (2005) Exs , vol.2005 , pp. 209-231
    • Ferrara, N.1
  • 29
    • 80052933197 scopus 로고    scopus 로고
    • Basic and therapeutic aspects of angiogenesis
    • Potente M., et al. Basic and therapeutic aspects of angiogenesis. Cell 2011, 146:873-887.
    • (2011) Cell , vol.146 , pp. 873-887
    • Potente, M.1
  • 30
    • 0037698967 scopus 로고    scopus 로고
    • Angiogenesis and lymphangiogenesis in tumors: insights from intravital microscopy
    • Jain R.K. Angiogenesis and lymphangiogenesis in tumors: insights from intravital microscopy. Cold Spring Harb. Symp. Quant. Biol. 2002, 67:239-248.
    • (2002) Cold Spring Harb. Symp. Quant. Biol. , vol.67 , pp. 239-248
    • Jain, R.K.1
  • 31
    • 0021111648 scopus 로고
    • Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid
    • Senger D.R., et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 1983, 219:983-985.
    • (1983) Science , vol.219 , pp. 983-985
    • Senger, D.R.1
  • 32
    • 84884368877 scopus 로고    scopus 로고
    • Influence of tumour micro-environment heterogeneity on therapeutic response
    • Junttila M.R., de Sauvage F.J. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 2013, 501:346-354.
    • (2013) Nature , vol.501 , pp. 346-354
    • Junttila, M.R.1    de Sauvage, F.J.2
  • 33
    • 0031892785 scopus 로고    scopus 로고
    • Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells
    • Oyama T., et al. Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells. J. Immunol. 1998, 160:1224-1232.
    • (1998) J. Immunol. , vol.160 , pp. 1224-1232
    • Oyama, T.1
  • 34
    • 84858766182 scopus 로고    scopus 로고
    • The blockade of immune checkpoints in cancer immunotherapy
    • Pardoll D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012, 12:252-264.
    • (2012) Nat. Rev. Cancer , vol.12 , pp. 252-264
    • Pardoll, D.M.1
  • 35
    • 80053159303 scopus 로고    scopus 로고
    • The parallel lives of angiogenesis and immunosuppression: cancer and other tales
    • Motz G.T., Coukos G. The parallel lives of angiogenesis and immunosuppression: cancer and other tales. Nat. Rev. Immunol. 2011, 11:702-711.
    • (2011) Nat. Rev. Immunol. , vol.11 , pp. 702-711
    • Motz, G.T.1    Coukos, G.2
  • 36
    • 84872822257 scopus 로고    scopus 로고
    • Modulation of immunity by antiangiogenic molecules in cancer
    • Terme M., et al. Modulation of immunity by antiangiogenic molecules in cancer. Clin. Dev. Immunol. 2012, 2012:492920.
    • (2012) Clin. Dev. Immunol. , vol.2012 , pp. 492920
    • Terme, M.1
  • 37
    • 83955164291 scopus 로고    scopus 로고
    • VEGF directly suppresses activation of T cells from ovarian cancer patients and healthy individuals via VEGF receptor type 2
    • Ziogas A.C., et al. VEGF directly suppresses activation of T cells from ovarian cancer patients and healthy individuals via VEGF receptor type 2. Int. J. Cancer 2012, 130:857-864.
    • (2012) Int. J. Cancer , vol.130 , pp. 857-864
    • Ziogas, A.C.1
  • 38
    • 0034721666 scopus 로고    scopus 로고
    • MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis
    • Coussens L.M., et al. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 2000, 103:481-490.
    • (2000) Cell , vol.103 , pp. 481-490
    • Coussens, L.M.1
  • 39
    • 30644457353 scopus 로고    scopus 로고
    • Macrophages promote angiogenesis in human breast tumour spheroids in vivo
    • Bingle L., et al. Macrophages promote angiogenesis in human breast tumour spheroids in vivo. Br. J. Cancer 2006, 94:101-107.
    • (2006) Br. J. Cancer , vol.94 , pp. 101-107
    • Bingle, L.1
  • 40
    • 36849013036 scopus 로고    scopus 로고
    • Bv8 regulates myeloid-cell-dependent tumour angiogenesis
    • Shojaei F., et al. Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature 2007, 450:825-831.
    • (2007) Nature , vol.450 , pp. 825-831
    • Shojaei, F.1
  • 41
    • 47949090079 scopus 로고    scopus 로고
    • The role of myeloid cells in the promotion of tumour angiogenesis
    • Murdoch C., et al. The role of myeloid cells in the promotion of tumour angiogenesis. Nat. Rev. Cancer 2008, 8:618-631.
    • (2008) Nat. Rev. Cancer , vol.8 , pp. 618-631
    • Murdoch, C.1
  • 42
    • 67649482821 scopus 로고    scopus 로고
    • Immune cells and inflammatory mediators as regulators of tumor angiogenesis
    • Springer Science + Business Media, W.D. Figg, J. Folkman (Eds.)
    • de Palma M., Coussens L.M. Immune cells and inflammatory mediators as regulators of tumor angiogenesis. Angiogenesis: An Integrative Approach from Science to Medicine 2008, Springer Science + Business Media. W.D. Figg, J. Folkman (Eds.).
    • (2008) Angiogenesis: An Integrative Approach from Science to Medicine
    • de Palma, M.1    Coussens, L.M.2
  • 43
    • 2942682933 scopus 로고    scopus 로고
    • Insight into the physiological functions of PDGF through genetic studies in mice
    • Betsholtz C. Insight into the physiological functions of PDGF through genetic studies in mice. Cytokine Growth Factor Rev. 2004, 15:215-228.
    • (2004) Cytokine Growth Factor Rev. , vol.15 , pp. 215-228
    • Betsholtz, C.1
  • 44
    • 2342603891 scopus 로고    scopus 로고
    • Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis
    • Joyce J.A., et al. Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell 2004, 5:443-453.
    • (2004) Cancer Cell , vol.5 , pp. 443-453
    • Joyce, J.A.1
  • 45
    • 0037699954 scopus 로고    scopus 로고
    • The biology of VEGF and its receptors
    • Ferrara N., et al. The biology of VEGF and its receptors. Nat. Med. 2003, 9:669-676.
    • (2003) Nat. Med. , vol.9 , pp. 669-676
    • Ferrara, N.1
  • 46
    • 0034671392 scopus 로고    scopus 로고
    • Fibroblast growth factors are required for efficient tumor angiogenesis
    • Compagni A., et al. Fibroblast growth factors are required for efficient tumor angiogenesis. Cancer Res. 2000, 60:7163-7169.
    • (2000) Cancer Res. , vol.60 , pp. 7163-7169
    • Compagni, A.1
  • 47
    • 9444226473 scopus 로고    scopus 로고
    • SDF-1 involvement in endothelial phenotype and ischemia-induced recruitment of bone marrow progenitor cells
    • De Falco E., et al. SDF-1 involvement in endothelial phenotype and ischemia-induced recruitment of bone marrow progenitor cells. Blood 2004, 104:3472-3482.
    • (2004) Blood , vol.104 , pp. 3472-3482
    • De Falco, E.1
  • 48
    • 1542571789 scopus 로고    scopus 로고
    • Neuropilin-1-mediated vascular permeability factor/vascular endothelial growth factor-dependent endothelial cell migration
    • Wang L., et al. Neuropilin-1-mediated vascular permeability factor/vascular endothelial growth factor-dependent endothelial cell migration. J. Biol. Chem. 2003, 278:48848-48860.
    • (2003) J. Biol. Chem. , vol.278 , pp. 48848-48860
    • Wang, L.1
  • 49
    • 39849084165 scopus 로고    scopus 로고
    • Matrix metalloproteinase-2 regulates vascular patterning and growth affecting tumor cell survival and invasion in GBM
    • Du R., et al. Matrix metalloproteinase-2 regulates vascular patterning and growth affecting tumor cell survival and invasion in GBM. Neuro Oncol. 2008, 10:254-264.
    • (2008) Neuro Oncol. , vol.10 , pp. 254-264
    • Du, R.1
  • 50
    • 47949096781 scopus 로고    scopus 로고
    • Cancer-related inflammation
    • Mantovani A., et al. Cancer-related inflammation. Nature 2008, 454:436-444.
    • (2008) Nature , vol.454 , pp. 436-444
    • Mantovani, A.1
  • 51
    • 84904394690 scopus 로고    scopus 로고
    • Macrophage activation and polarization: nomenclature and experimental guidelines
    • Murray P.J., et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 2014, 41:14-20.
    • (2014) Immunity , vol.41 , pp. 14-20
    • Murray, P.J.1
  • 52
    • 84886654275 scopus 로고    scopus 로고
    • Tissue-resident macrophages
    • Davies L.C., et al. Tissue-resident macrophages. Nat. Immunol. 2013, 14:986-995.
    • (2013) Nat. Immunol. , vol.14 , pp. 986-995
    • Davies, L.C.1
  • 53
    • 84887481716 scopus 로고    scopus 로고
    • CSF-1R inhibition alters macrophage polarization and blocks glioma progression
    • Pyonteck S.M., et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med. 2013, 19:1264-1272.
    • (2013) Nat. Med. , vol.19 , pp. 1264-1272
    • Pyonteck, S.M.1
  • 54
    • 84873468174 scopus 로고    scopus 로고
    • Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses
    • Mitchem J.B., et al. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res. 2013, 73:1128-1141.
    • (2013) Cancer Res. , vol.73 , pp. 1128-1141
    • Mitchem, J.B.1
  • 55
    • 84894520967 scopus 로고    scopus 로고
    • CSF1R inhibition delays cervical and mammary tumor growth in murine models by attenuating the turnover of tumor-associated macrophages and enhancing infiltration by CD8 T cells
    • Strachan D.C., et al. CSF1R inhibition delays cervical and mammary tumor growth in murine models by attenuating the turnover of tumor-associated macrophages and enhancing infiltration by CD8 T cells. Oncoimmunology 2013, 2:e26968.
    • (2013) Oncoimmunology , vol.2 , pp. e26968
    • Strachan, D.C.1
  • 56
    • 84866784798 scopus 로고    scopus 로고
    • Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy
    • DeNardo D.G., et al. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 2011, 1:54-67.
    • (2011) Cancer Discov. , vol.1 , pp. 54-67
    • DeNardo, D.G.1
  • 57
    • 84902465821 scopus 로고    scopus 로고
    • B cells regulate macrophage phenotype and response to chemotherapy in squamous carcinomas
    • Affara N.I., et al. B cells regulate macrophage phenotype and response to chemotherapy in squamous carcinomas. Cancer Cell 2014, 25:809-821.
    • (2014) Cancer Cell , vol.25 , pp. 809-821
    • Affara, N.I.1
  • 58
    • 39049126521 scopus 로고    scopus 로고
    • Tie2-expressing monocytes: regulation of tumor angiogenesis and therapeutic implications
    • De Palma M., et al. Tie2-expressing monocytes: regulation of tumor angiogenesis and therapeutic implications. Trends Immunol. 2007, 28:519-524.
    • (2007) Trends Immunol. , vol.28 , pp. 519-524
    • De Palma, M.1
  • 59
    • 67651111095 scopus 로고    scopus 로고
    • A distinguishing gene signature shared by tumor-infiltrating Tie2-expressing monocytes, blood 'resident' monocytes, and embryonic macrophages suggests common functions and developmental relationships
    • Pucci F., et al. A distinguishing gene signature shared by tumor-infiltrating Tie2-expressing monocytes, blood 'resident' monocytes, and embryonic macrophages suggests common functions and developmental relationships. Blood 2009, 114:901-914.
    • (2009) Blood , vol.114 , pp. 901-914
    • Pucci, F.1
  • 60
    • 84883759753 scopus 로고    scopus 로고
    • Receptor tyrosine kinase-mediated angiogenesis
    • Jeltsch M., et al. Receptor tyrosine kinase-mediated angiogenesis. Cold Spring Harb. Perspect. Biol. 2013, 5:a009183.
    • (2013) Cold Spring Harb. Perspect. Biol. , vol.5 , pp. a009183
    • Jeltsch, M.1
  • 61
    • 79955006478 scopus 로고    scopus 로고
    • Angiopoietin 2 stimulates TIE2-expressing monocytes to suppress T cell activation and to promote regulatory T cell expansion
    • Coffelt S.B., et al. Angiopoietin 2 stimulates TIE2-expressing monocytes to suppress T cell activation and to promote regulatory T cell expansion. J. Immunol. 2011, 186:4183-4190.
    • (2011) J. Immunol. , vol.186 , pp. 4183-4190
    • Coffelt, S.B.1
  • 62
    • 24944587964 scopus 로고    scopus 로고
    • Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors
    • De Palma M., et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 2005, 8:211-226.
    • (2005) Cancer Cell , vol.8 , pp. 211-226
    • De Palma, M.1
  • 63
    • 79953750307 scopus 로고    scopus 로고
    • Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells
    • Mazzieri R., et al. Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell 2011, 19:512-526.
    • (2011) Cancer Cell , vol.19 , pp. 512-526
    • Mazzieri, R.1
  • 64
    • 84875456598 scopus 로고    scopus 로고
    • Angiopoietin-2: an attractive target for improved antiangiogenic tumor therapy
    • Gerald D., et al. Angiopoietin-2: an attractive target for improved antiangiogenic tumor therapy. Cancer Res. 2013, 73:1649-1657.
    • (2013) Cancer Res. , vol.73 , pp. 1649-1657
    • Gerald, D.1
  • 65
    • 84902456985 scopus 로고    scopus 로고
    • Macrophage colony-stimulating factor augments Tie2-expressing monocyte differentiation, angiogenic function, and recruitment in a mouse model of breast cancer
    • Forget M.A., et al. Macrophage colony-stimulating factor augments Tie2-expressing monocyte differentiation, angiogenic function, and recruitment in a mouse model of breast cancer. PLoS ONE 2014, 9:e98623.
    • (2014) PLoS ONE , vol.9 , pp. e98623
    • Forget, M.A.1
  • 66
    • 77953988924 scopus 로고    scopus 로고
    • Targeting the tumour vasculature: insights from physiological angiogenesis
    • Chung A.S., et al. Targeting the tumour vasculature: insights from physiological angiogenesis. Nat. Rev. Cancer 2010, 10:505-514.
    • (2010) Nat. Rev. Cancer , vol.10 , pp. 505-514
    • Chung, A.S.1
  • 67
    • 69249222379 scopus 로고    scopus 로고
    • Polarization of tumor-associated neutrophil phenotype by TGF-beta: 'N1' versus 'N2' TAN
    • Fridlender Z.G., et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: 'N1' versus 'N2' TAN. Cancer Cell 2009, 16:183-194.
    • (2009) Cancer Cell , vol.16 , pp. 183-194
    • Fridlender, Z.G.1
  • 68
    • 84884556145 scopus 로고    scopus 로고
    • History of myeloid-derived suppressor cells
    • Talmadge J.E., Gabrilovich D.I. History of myeloid-derived suppressor cells. Nat. Rev. Cancer 2013, 13:739-752.
    • (2013) Nat. Rev. Cancer , vol.13 , pp. 739-752
    • Talmadge, J.E.1    Gabrilovich, D.I.2
  • 69
    • 37349100945 scopus 로고    scopus 로고
    • + myeloid cells that promote metastasis
    • + myeloid cells that promote metastasis. Cancer Cell 2008, 13:23-35.
    • (2008) Cancer Cell , vol.13 , pp. 23-35
    • Yang, L.1
  • 70
    • 41649116240 scopus 로고    scopus 로고
    • Plasticity in tumor-promoting inflammation: impairment of macrophage recruitment evokes a compensatory neutrophil response
    • Pahler J.C., et al. Plasticity in tumor-promoting inflammation: impairment of macrophage recruitment evokes a compensatory neutrophil response. Neoplasia 2008, 10:329-340.
    • (2008) Neoplasia , vol.10 , pp. 329-340
    • Pahler, J.C.1
  • 71
    • 34547124062 scopus 로고    scopus 로고
    • Hypoxia: a key regulator of angiogenesis in cancer
    • Liao D., Johnson R.S. Hypoxia: a key regulator of angiogenesis in cancer. Cancer Metastasis Rev. 2007, 26:281-290.
    • (2007) Cancer Metastasis Rev. , vol.26 , pp. 281-290
    • Liao, D.1    Johnson, R.S.2
  • 72
    • 84655161946 scopus 로고    scopus 로고
    • HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression
    • Keith B., et al. HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat. Rev. Cancer 2011, 12:9-22.
    • (2011) Nat. Rev. Cancer , vol.12 , pp. 9-22
    • Keith, B.1
  • 73
    • 54049146968 scopus 로고    scopus 로고
    • The angiopoietin-2 gene of endothelial cells is up-regulated in hypoxia by a HIF binding site located in its first intron and by the central factors GATA-2 and Ets-1
    • Simon M.P., et al. The angiopoietin-2 gene of endothelial cells is up-regulated in hypoxia by a HIF binding site located in its first intron and by the central factors GATA-2 and Ets-1. J. Cell. Physiol. 2008, 217:809-818.
    • (2008) J. Cell. Physiol. , vol.217 , pp. 809-818
    • Simon, M.P.1
  • 74
    • 0029761644 scopus 로고    scopus 로고
    • Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1
    • Forsythe J.A., et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell. Biol. 1996, 16:4604-4613.
    • (1996) Mol. Cell. Biol. , vol.16 , pp. 4604-4613
    • Forsythe, J.A.1
  • 75
    • 0344874751 scopus 로고    scopus 로고
    • Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1
    • Kelly B.D., et al. Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1. Circ. Res. 2003, 93:1074-1081.
    • (2003) Circ. Res. , vol.93 , pp. 1074-1081
    • Kelly, B.D.1
  • 76
    • 4944244259 scopus 로고    scopus 로고
    • Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues
    • Murdoch C., et al. Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 2004, 104:2224-2234.
    • (2004) Blood , vol.104 , pp. 2224-2234
    • Murdoch, C.1
  • 77
    • 84888081111 scopus 로고    scopus 로고
    • On-site education of VEGF-recruited monocytes improves their performance as angiogenic and arteriogenic accessory cells
    • Avraham-Davidi I., et al. On-site education of VEGF-recruited monocytes improves their performance as angiogenic and arteriogenic accessory cells. J. Exp. Med. 2013, 210:2611-2625.
    • (2013) J. Exp. Med. , vol.210 , pp. 2611-2625
    • Avraham-Davidi, I.1
  • 78
    • 30344437303 scopus 로고    scopus 로고
    • VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells
    • Grunewald M., et al. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 2006, 124:175-189.
    • (2006) Cell , vol.124 , pp. 175-189
    • Grunewald, M.1
  • 79
    • 43049173715 scopus 로고    scopus 로고
    • Hypoxia enhances CXCR4 expression favoring microglia migration via HIF-1alpha activation
    • Wang X., et al. Hypoxia enhances CXCR4 expression favoring microglia migration via HIF-1alpha activation. Biochem. Biophys. Res. Commun. 2008, 371:283-288.
    • (2008) Biochem. Biophys. Res. Commun. , vol.371 , pp. 283-288
    • Wang, X.1
  • 80
    • 64849114878 scopus 로고    scopus 로고
    • Hypoxia enhances CXCR4 expression by activating HIF-1 in oral squamous cell carcinoma
    • Ishikawa T., et al. Hypoxia enhances CXCR4 expression by activating HIF-1 in oral squamous cell carcinoma. Oncol. Rep. 2009, 21:707-712.
    • (2009) Oncol. Rep. , vol.21 , pp. 707-712
    • Ishikawa, T.1
  • 81
    • 0041382820 scopus 로고    scopus 로고
    • The hypoxic response of tumors is dependent on their microenvironment
    • Blouw B., et al. The hypoxic response of tumors is dependent on their microenvironment. Cancer Cell 2003, 4:133-146.
    • (2003) Cancer Cell , vol.4 , pp. 133-146
    • Blouw, B.1
  • 82
    • 84891930215 scopus 로고    scopus 로고
    • Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity
    • Casazza A., et al. Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity. Cancer Cell 2013, 24:695-709.
    • (2013) Cancer Cell , vol.24 , pp. 695-709
    • Casazza, A.1
  • 83
    • 84867381718 scopus 로고    scopus 로고
    • Hypoxia-inducible factor-1 alpha-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa
    • Clambey E.T., et al. Hypoxia-inducible factor-1 alpha-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:E2784-E2793.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. E2784-E2793
    • Clambey, E.T.1
  • 84
    • 84883745262 scopus 로고    scopus 로고
    • An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy
    • Chung A.S., et al. An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy. Nat. Med. 2013, 19:1114-1123.
    • (2013) Nat. Med. , vol.19 , pp. 1114-1123
    • Chung, A.S.1
  • 85
    • 79955517032 scopus 로고    scopus 로고
    • TIE2-expressing macrophages limit the therapeutic efficacy of the vascular-disrupting agent combretastatin A4 phosphate in mice
    • Welford A.F., et al. TIE2-expressing macrophages limit the therapeutic efficacy of the vascular-disrupting agent combretastatin A4 phosphate in mice. J. Clin. Invest. 2011, 121:1969-1973.
    • (2011) J. Clin. Invest. , vol.121 , pp. 1969-1973
    • Welford, A.F.1
  • 86
    • 35548982639 scopus 로고    scopus 로고
    • Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels
    • Fischer C., et al. Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell 2007, 131:463-475.
    • (2007) Cell , vol.131 , pp. 463-475
    • Fischer, C.1
  • 87
    • 77949873730 scopus 로고    scopus 로고
    • Phosphatidylinositol 3-kinase gamma inhibition ameliorates inflammation and tumor growth in a model of colitis-associated cancer
    • Gonzalez-Garcia A., et al. Phosphatidylinositol 3-kinase gamma inhibition ameliorates inflammation and tumor growth in a model of colitis-associated cancer. Gastroenterology 2010, 138:1374-1383.
    • (2010) Gastroenterology , vol.138 , pp. 1374-1383
    • Gonzalez-Garcia, A.1
  • 88
    • 0034635452 scopus 로고    scopus 로고
    • Central role for G protein-coupled phosphoinositide 3-kinase gamma in inflammation
    • Hirsch E., et al. Central role for G protein-coupled phosphoinositide 3-kinase gamma in inflammation. Science 2000, 287:1049-1053.
    • (2000) Science , vol.287 , pp. 1049-1053
    • Hirsch, E.1
  • 89
    • 84863232885 scopus 로고    scopus 로고
    • Macrophage-induced tumor angiogenesis is regulated by the TSC2-mTOR pathway
    • Chen W., et al. Macrophage-induced tumor angiogenesis is regulated by the TSC2-mTOR pathway. Cancer Res. 2012, 72:1363-1372.
    • (2012) Cancer Res. , vol.72 , pp. 1363-1372
    • Chen, W.1
  • 90
    • 84867902940 scopus 로고    scopus 로고
    • Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy
    • Huang Y., et al. Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:17561-17566.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 17561-17566
    • Huang, Y.1
  • 91
    • 43749112760 scopus 로고    scopus 로고
    • Vascular normalization in Rgs5-deficient tumours promotes immune destruction
    • Hamzah J., et al. Vascular normalization in Rgs5-deficient tumours promotes immune destruction. Nature 2008, 453:410-414.
    • (2008) Nature , vol.453 , pp. 410-414
    • Hamzah, J.1
  • 92
    • 80053506358 scopus 로고    scopus 로고
    • Anti-angiogenesis immunotherapy
    • Schoenfeld J.D., Dranoff G. Anti-angiogenesis immunotherapy. Hum. Vaccin. 2011, 7:976-981.
    • (2011) Hum. Vaccin. , vol.7 , pp. 976-981
    • Schoenfeld, J.D.1    Dranoff, G.2
  • 93
    • 84925545845 scopus 로고    scopus 로고
    • Promising early results for immunotherapy-antiangiogenesis combination
    • dju392
    • Garber K. Promising early results for immunotherapy-antiangiogenesis combination. J. Natl. Cancer Inst. 2014, 106:dju392.
    • (2014) J. Natl. Cancer Inst. , vol.106
    • Garber, K.1
  • 94
    • 0030576517 scopus 로고    scopus 로고
    • Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis
    • Hanahan D., Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996, 86:353-364.
    • (1996) Cell , vol.86 , pp. 353-364
    • Hanahan, D.1    Folkman, J.2
  • 95
    • 84881119066 scopus 로고    scopus 로고
    • Role of PFKFB3-driven glycolysis in vessel sprouting
    • De Bock K., et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 2013, 154:651-663.
    • (2013) Cell , vol.154 , pp. 651-663
    • De Bock, K.1
  • 96
    • 84893480253 scopus 로고    scopus 로고
    • Endothelial PGC-1alpha mediates vascular dysfunction in diabetes
    • Sawada N., et al. Endothelial PGC-1alpha mediates vascular dysfunction in diabetes. Cell Metab. 2014, 19:246-258.
    • (2014) Cell Metab. , vol.19 , pp. 246-258
    • Sawada, N.1
  • 97
    • 0035160312 scopus 로고    scopus 로고
    • Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth
    • Lyden D., et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat. Med. 2001, 7:1194-1201.
    • (2001) Nat. Med. , vol.7 , pp. 1194-1201
    • Lyden, D.1
  • 98
    • 26944437515 scopus 로고    scopus 로고
    • + perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival
    • + perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival. Nat. Cell Biol. 2005, 7:870-879.
    • (2005) Nat. Cell Biol. , vol.7 , pp. 870-879
    • Song, S.1
  • 99
    • 53149098943 scopus 로고    scopus 로고
    • Tumor recovery by angiogenic switch from sprouting to intussusceptive angiogenesis after treatment with PTK787/ZK222584 or ionizing radiation
    • Hlushchuk R., et al. Tumor recovery by angiogenic switch from sprouting to intussusceptive angiogenesis after treatment with PTK787/ZK222584 or ionizing radiation. Am. J. Pathol. 2008, 173:1173-1185.
    • (2008) Am. J. Pathol. , vol.173 , pp. 1173-1185
    • Hlushchuk, R.1
  • 100
    • 0033822622 scopus 로고    scopus 로고
    • Anti-VEGF antibody treatment of glioblastoma prolongs survival but results in increased vascular cooption
    • Rubenstein J.L., et al. Anti-VEGF antibody treatment of glioblastoma prolongs survival but results in increased vascular cooption. Neoplasia 2000, 2:306-314.
    • (2000) Neoplasia , vol.2 , pp. 306-314
    • Rubenstein, J.L.1
  • 101
    • 60649106195 scopus 로고    scopus 로고
    • Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis
    • Paez-Ribes M., et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 2009, 15:220-231.
    • (2009) Cancer Cell , vol.15 , pp. 220-231
    • Paez-Ribes, M.1
  • 102
    • 84863754907 scopus 로고    scopus 로고
    • VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex
    • Lu K.V., et al. VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex. Cancer Cell 2012, 22:21-35.
    • (2012) Cancer Cell , vol.22 , pp. 21-35
    • Lu, K.V.1
  • 103
    • 84863704553 scopus 로고    scopus 로고
    • Suppression of tumor invasion and metastasis by concurrent inhibition of c-Met and VEGF signaling in pancreatic neuroendocrine tumors
    • Sennino B., et al. Suppression of tumor invasion and metastasis by concurrent inhibition of c-Met and VEGF signaling in pancreatic neuroendocrine tumors. Cancer Discov. 2012, 2:270-287.
    • (2012) Cancer Discov. , vol.2 , pp. 270-287
    • Sennino, B.1
  • 104
    • 0038476608 scopus 로고    scopus 로고
    • Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors
    • Bergers G., et al. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J. Clin. Invest. 2003, 111:1287-1295.
    • (2003) J. Clin. Invest. , vol.111 , pp. 1287-1295
    • Bergers, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.