-
1
-
-
71849112391
-
What's in a name?
-
Arkin A., et al. What's in a name?. Nat. Biotechnol. 2009, 27:1071-1073.
-
(2009)
Nat. Biotechnol.
, vol.27
, pp. 1071-1073
-
-
Arkin, A.1
-
2
-
-
84862991239
-
4 rice: current progress and future challenges
-
4 rice: current progress and future challenges. Science 2012, 336:1671-1672.
-
(2012)
Science
, vol.336
, pp. 1671-1672
-
-
Von Caemmerer, S.1
-
3
-
-
84883792527
-
Biotechnological solutions to the nitrogen problem
-
Oldroyd G.E.D., Dixon R. Biotechnological solutions to the nitrogen problem. Curr. Opin. Biotechnol. 2014, 26:19-24.
-
(2014)
Curr. Opin. Biotechnol.
, vol.26
, pp. 19-24
-
-
Oldroyd, G.E.D.1
Dixon, R.2
-
4
-
-
84863772895
-
The transition to a bio-economy: emerging from the oil age
-
Kircher M. The transition to a bio-economy: emerging from the oil age. Biofuels Bioprod. Biorefining 2012, 6:369-375.
-
(2012)
Biofuels Bioprod. Biorefining
, vol.6
, pp. 369-375
-
-
Kircher, M.1
-
5
-
-
36849150295
-
Transgenic plants protected from insect attack
-
Vaeck M., et al. Transgenic plants protected from insect attack. Nature 1987, 328:33-37.
-
(1987)
Nature
, vol.328
, pp. 33-37
-
-
Vaeck, M.1
-
6
-
-
67149113654
-
Engineering key components in a synthetic eukaryotic signal transduction pathway
-
Antunes M.S., et al. Engineering key components in a synthetic eukaryotic signal transduction pathway. Mol. Syst. Biol. 2009, 5:270.
-
(2009)
Mol. Syst. Biol.
, vol.5
, pp. 270
-
-
Antunes, M.S.1
-
7
-
-
33845604556
-
DNA double-strand break repair: all's well that ends well
-
Wyman C., Kanaar R. DNA double-strand break repair: all's well that ends well. Annu. Rev. Genet. 2006, 40:363-383.
-
(2006)
Annu. Rev. Genet.
, vol.40
, pp. 363-383
-
-
Wyman, C.1
Kanaar, R.2
-
8
-
-
0029946668
-
Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination
-
Puchta H., et al. Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination. Proc. Natl. Acad. Sci. U.S.A. 1996, 93:5055-5060.
-
(1996)
Proc. Natl. Acad. Sci. U.S.A.
, vol.93
, pp. 5055-5060
-
-
Puchta, H.1
-
9
-
-
84884415478
-
Targeted molecular trait stacking in cotton through targeted double-strand break induction
-
D'Halluin K., et al. Targeted molecular trait stacking in cotton through targeted double-strand break induction. Plant Biotechnol. J. 2013, 11:933-941.
-
(2013)
Plant Biotechnol. J.
, vol.11
, pp. 933-941
-
-
D'Halluin, K.1
-
10
-
-
78249245697
-
Nontransgenic genome modification in plant cells
-
Marton I., et al. Nontransgenic genome modification in plant cells. Plant Physiol. 2010, 154:1079-1087.
-
(2010)
Plant Physiol.
, vol.154
, pp. 1079-1087
-
-
Marton, I.1
-
11
-
-
34250828453
-
The C-terminal loop of the homing endonuclease I-CreI is essential for site recognition, DNA binding and cleavage
-
Prieto J., et al. The C-terminal loop of the homing endonuclease I-CreI is essential for site recognition, DNA binding and cleavage. Nucleic Acids Res. 2007, 35:3262-3271.
-
(2007)
Nucleic Acids Res.
, vol.35
, pp. 3262-3271
-
-
Prieto, J.1
-
12
-
-
42949083192
-
Unexpected failure rates for modular assembly of engineered zinc fingers
-
Ramirez C.L., et al. Unexpected failure rates for modular assembly of engineered zinc fingers. Nat. Methods 2008, 5:374-375.
-
(2008)
Nat. Methods
, vol.5
, pp. 374-375
-
-
Ramirez, C.L.1
-
13
-
-
47349097567
-
Rapid 'open-source' engineering of customized zinc-finger nucleases for highly efficient gene modification
-
Maeder M.L., et al. Rapid 'open-source' engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol. Cell 2008, 31:294-301.
-
(2008)
Mol. Cell
, vol.31
, pp. 294-301
-
-
Maeder, M.L.1
-
14
-
-
78650863981
-
Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA)
-
Sander J.D., et al. Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat. Methods 2011, 8:67-69.
-
(2011)
Nat. Methods
, vol.8
, pp. 67-69
-
-
Sander, J.D.1
-
15
-
-
79960064013
-
Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting
-
Cermak T., et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 2011, 39:e82.
-
(2011)
Nucleic Acids Res.
, vol.39
, pp. e82
-
-
Cermak, T.1
-
16
-
-
84860747716
-
FLASH assembly of TALENs for high-throughput genome editing
-
Reyon D., et al. FLASH assembly of TALENs for high-throughput genome editing. Nat. Biotechnol. 2012, 30:460-465.
-
(2012)
Nat. Biotechnol.
, vol.30
, pp. 460-465
-
-
Reyon, D.1
-
17
-
-
84866879789
-
Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers
-
Briggs A.W., et al. Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers. Nucleic Acids Res. 2012, 40:e117.
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. e117
-
-
Briggs, A.W.1
-
18
-
-
84872203111
-
A ligation-independent cloning technique for high-throughput assembly of transcription activator-like effector genes
-
Schmid-Burgk J.L., et al. A ligation-independent cloning technique for high-throughput assembly of transcription activator-like effector genes. Nat. Biotechnol. 2013, 31:76-81.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 76-81
-
-
Schmid-Burgk, J.L.1
-
19
-
-
84903212620
-
TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity
-
Mussolino C., et al. TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity. Nucleic Acids Res. 2014, 42:6762-6773.
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. 6762-6773
-
-
Mussolino, C.1
-
20
-
-
84880570576
-
High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells
-
Fu Y., et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 2013, 31:822-826.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 822-826
-
-
Fu, Y.1
-
21
-
-
84891710947
-
Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases
-
Cho S.W., et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. 2014, 24:132-141.
-
(2014)
Genome Res.
, vol.24
, pp. 132-141
-
-
Cho, S.W.1
-
22
-
-
84884288934
-
Double nicking by RNA-guided CRISPR cas9 for enhanced genome editing specificity
-
Ran F.A., et al. Double nicking by RNA-guided CRISPR cas9 for enhanced genome editing specificity. Cell 2013, 154:1380-1389.
-
(2013)
Cell
, vol.154
, pp. 1380-1389
-
-
Ran, F.A.1
-
23
-
-
84884160273
-
CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering
-
Mali P., et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 2013, 31:833-838.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 833-838
-
-
Mali, P.1
-
24
-
-
84902210542
-
Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification
-
Guilinger J.P., et al. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 2014, 32:577-582.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 577-582
-
-
Guilinger, J.P.1
-
25
-
-
84902204289
-
Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing
-
Tsai S.Q., et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat. Biotechnol. 2014, 32:569-576.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 569-576
-
-
Tsai, S.Q.1
-
26
-
-
84896929630
-
Improving CRISPR-Cas nuclease specificity using truncated guide RNAs
-
Fu Y., et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 2014, 32:279-284.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 279-284
-
-
Fu, Y.1
-
27
-
-
84888103045
-
Trait stacking via targeted genome editing
-
Ainley W.M., et al. Trait stacking via targeted genome editing. Plant Biotechnol. J. 2013, 11:1126-1134.
-
(2013)
Plant Biotechnol. J.
, vol.11
, pp. 1126-1134
-
-
Ainley, W.M.1
-
28
-
-
0344583765
-
Targeted integration of T-DNA into the tobacco genome at double-stranded breaks: new insights on the mechanism of T-DNA integration
-
Chilton M-D.M., Que Q. Targeted integration of T-DNA into the tobacco genome at double-stranded breaks: new insights on the mechanism of T-DNA integration. Plant Physiol. 2003, 133:956-965.
-
(2003)
Plant Physiol.
, vol.133
, pp. 956-965
-
-
Chilton, M.-D.M.1
Que, Q.2
-
29
-
-
84921934205
-
Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew
-
Wang Y., et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 2014, 32:947-951.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 947-951
-
-
Wang, Y.1
-
30
-
-
0032531757
-
Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells
-
Salomon S., Puchta H. Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells. EMBO J. 1998, 17:6086-6095.
-
(1998)
EMBO J.
, vol.17
, pp. 6086-6095
-
-
Salomon, S.1
Puchta, H.2
-
31
-
-
80052766645
-
An unbiased genome-wide analysis of zinc-finger nuclease specificity
-
Gabriel R., et al. An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat. Biotechnol. 2011, 29:816-823.
-
(2011)
Nat. Biotechnol.
, vol.29
, pp. 816-823
-
-
Gabriel, R.1
-
32
-
-
84874613680
-
Obligate ligation-gated recombination (ObLiGaRe): custom-designed nuclease-mediated targeted integration through nonhomologous end joining
-
Maresca M., et al. Obligate ligation-gated recombination (ObLiGaRe): custom-designed nuclease-mediated targeted integration through nonhomologous end joining. Genome Res. 2013, 23:539-546.
-
(2013)
Genome Res.
, vol.23
, pp. 539-546
-
-
Maresca, M.1
-
33
-
-
84860803588
-
Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca
-
Temme K., et al. Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:7085-7090.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 7085-7090
-
-
Temme, K.1
-
34
-
-
77955395799
-
High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases
-
Zhang F., et al. High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:12028-12033.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 12028-12033
-
-
Zhang, F.1
-
35
-
-
84873734105
-
RNA-guided human genome engineering via Cas9
-
Mali P., et al. RNA-guided human genome engineering via Cas9. Science 2013, 339:823-826.
-
(2013)
Science
, vol.339
, pp. 823-826
-
-
Mali, P.1
-
36
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
Cong L., et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339:819-823.
-
(2013)
Science
, vol.339
, pp. 819-823
-
-
Cong, L.1
-
37
-
-
84883785822
-
Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9
-
Li J-F., et al. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat. Biotechnol. 2013, 31:688-691.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 688-691
-
-
Li, J.-F.1
-
38
-
-
84886926151
-
Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice
-
Jiang W., et al. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res. 2013, 41:e188.
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. e188
-
-
Jiang, W.1
-
39
-
-
84885181396
-
Efficient genome editing in plants using a CRISPR/Cas system
-
Feng Z., et al. Efficient genome editing in plants using a CRISPR/Cas system. Cell Res. 2013, 23:1229-1232.
-
(2013)
Cell Res.
, vol.23
, pp. 1229-1232
-
-
Feng, Z.1
-
40
-
-
84896924524
-
Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis
-
Feng Z., et al. Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:4632-4637.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 4632-4637
-
-
Feng, Z.1
-
41
-
-
84904068340
-
Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana
-
Fauser F., et al. Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J. 2014, 79:348-359.
-
(2014)
Plant J.
, vol.79
, pp. 348-359
-
-
Fauser, F.1
-
42
-
-
84903398817
-
Efficient CRISPR/Cas9-mediated gene editing in Arabidopsis thaliana and inheritance of modified genes in the T2 and T3 generations
-
Jiang W., et al. Efficient CRISPR/Cas9-mediated gene editing in Arabidopsis thaliana and inheritance of modified genes in the T2 and T3 generations. PLoS ONE 2014, 9:e99225.
-
(2014)
PLoS ONE
, vol.9
, pp. e99225
-
-
Jiang, W.1
-
43
-
-
85042815594
-
Targeted genome modification of crop plants using the CRISPR-Cas system
-
Shan Q., et al. Targeted genome modification of crop plants using the CRISPR-Cas system. Nat. Biotechnol. 2013, 31:686-688.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 686-688
-
-
Shan, Q.1
-
44
-
-
84921549293
-
Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice
-
Zhou H., et al. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res. 2014, 42:10903-10914.
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. 10903-10914
-
-
Zhou, H.1
-
45
-
-
66249093890
-
High-frequency modification of plant genes using engineered zinc-finger nucleases
-
Townsend J.A., et al. High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 2009, 459:442-445.
-
(2009)
Nature
, vol.459
, pp. 442-445
-
-
Townsend, J.A.1
-
46
-
-
84871803423
-
Transcription activator-like effector nucleases enable efficient plant genome engineering
-
Zhang Y., et al. Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol. 2013, 161:20-27.
-
(2013)
Plant Physiol.
, vol.161
, pp. 20-27
-
-
Zhang, Y.1
-
47
-
-
77954426532
-
Zinc finger nuclease-mediated transgene deletion
-
Petolino J.F., et al. Zinc finger nuclease-mediated transgene deletion. Plant Mol. Biol. 2010, 73:617-628.
-
(2010)
Plant Mol. Biol.
, vol.73
, pp. 617-628
-
-
Petolino, J.F.1
-
48
-
-
84885831885
-
Targeted deletion and inversion of tandemly arrayed genes in Arabidopsis thaliana using zinc finger nucleases
-
Qi Y., et al. Targeted deletion and inversion of tandemly arrayed genes in Arabidopsis thaliana using zinc finger nucleases. G3 2013, 3:1707-1715.
-
(2013)
G3
, vol.3
, pp. 1707-1715
-
-
Qi, Y.1
-
49
-
-
67649757162
-
Chromosomal translocations induced at specified loci in human stem cells
-
Brunet E., et al. Chromosomal translocations induced at specified loci in human stem cells. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:10620-10625.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 10620-10625
-
-
Brunet, E.1
-
50
-
-
84880062591
-
Cancer translocations in human cells induced by zinc finger and TALE nucleases
-
Piganeau M., et al. Cancer translocations in human cells induced by zinc finger and TALE nucleases. Genome Res. 2013, 23:1182-1193.
-
(2013)
Genome Res.
, vol.23
, pp. 1182-1193
-
-
Piganeau, M.1
-
51
-
-
84906085877
-
Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family
-
Haun W., et al. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol. 2014, 12:934-940.
-
(2014)
Plant Biotechnol.
, vol.12
, pp. 934-940
-
-
Haun, W.1
-
52
-
-
84855882014
-
Targeted transcriptional repression using a chimeric TALE-SRDX repressor protein
-
Mahfouz M.M., et al. Targeted transcriptional repression using a chimeric TALE-SRDX repressor protein. Plant Mol. Biol. 2012, 78:311-321.
-
(2012)
Plant Mol. Biol.
, vol.78
, pp. 311-321
-
-
Mahfouz, M.M.1
-
53
-
-
84864505275
-
Transcriptional activation of Brassica napus β-ketoacyl-ACP synthase II with an engineered zinc finger protein transcription factor
-
Gupta M., et al. Transcriptional activation of Brassica napus β-ketoacyl-ACP synthase II with an engineered zinc finger protein transcription factor. Plant Biotechnol. J. 2012, 10:783-791.
-
(2012)
Plant Biotechnol. J.
, vol.10
, pp. 783-791
-
-
Gupta, M.1
-
54
-
-
84882986957
-
Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system
-
Bikard D., et al. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 2013, 41:7429-7437.
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. 7429-7437
-
-
Bikard, D.1
-
55
-
-
84886488970
-
Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas
-
Farzadfard F., et al. Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas. ACS Synth. Biol. 2013, 2:604-613.
-
(2013)
ACS Synth. Biol.
, vol.2
, pp. 604-613
-
-
Farzadfard, F.1
-
56
-
-
84964313405
-
Comparison of TALE designer transcription factors and the CRISPR/dCas9 in regulation of gene expression by targeting enhancers
-
Gao X., et al. Comparison of TALE designer transcription factors and the CRISPR/dCas9 in regulation of gene expression by targeting enhancers. Nucleic Acids Res. 2014, 42:e155.
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. e155
-
-
Gao, X.1
-
57
-
-
0030813154
-
Non-homologous DNA end joining in plant cells is associated with deletions and filler DNA insertions
-
Gorbunova V., Levy A.A. Non-homologous DNA end joining in plant cells is associated with deletions and filler DNA insertions. Nucleic Acids Res. 1997, 25:4650-5467.
-
(1997)
Nucleic Acids Res.
, vol.25
, pp. 4650-5467
-
-
Gorbunova, V.1
Levy, A.A.2
-
58
-
-
0030032063
-
Hybrid restriction enzymes: zinc finger fusions to FokI cleavage domain
-
Kim Y.G., et al. Hybrid restriction enzymes: zinc finger fusions to FokI cleavage domain. Proc. Natl. Acad. Sci. U.S.A. 1996, 93:1156-1160.
-
(1996)
Proc. Natl. Acad. Sci. U.S.A.
, vol.93
, pp. 1156-1160
-
-
Kim, Y.G.1
-
59
-
-
72749124013
-
Heritable targeted mutagenesis in maize using a designed endonuclease
-
Gao H., et al. Heritable targeted mutagenesis in maize using a designed endonuclease. Plant J. 2010, 61:176-187.
-
(2010)
Plant J.
, vol.61
, pp. 176-187
-
-
Gao, H.1
-
60
-
-
84889089830
-
Male-sterile maize plants produced by targeted mutagenesis of the cytochrome P450-like gene (MS26) using a re-designed I-CreI homing endonuclease
-
Djukanovic V., et al. Male-sterile maize plants produced by targeted mutagenesis of the cytochrome P450-like gene (MS26) using a re-designed I-CreI homing endonuclease. Plant J. 2013, 76:888-899.
-
(2013)
Plant J.
, vol.76
, pp. 888-899
-
-
Djukanovic, V.1
-
61
-
-
79958065910
-
Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases
-
Curtin S.J., et al. Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiol. 2011, 156:466-473.
-
(2011)
Plant Physiol.
, vol.156
, pp. 466-473
-
-
Curtin, S.J.1
-
62
-
-
77955406102
-
Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases
-
Osakabe K., et al. Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:12034-12039.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 12034-12039
-
-
Osakabe, K.1
-
63
-
-
84874643080
-
Increasing frequencies of site-specific mutagenesis and gene targeting in Arabidopsis by manipulating DNA repair pathways
-
Qi Y., et al. Increasing frequencies of site-specific mutagenesis and gene targeting in Arabidopsis by manipulating DNA repair pathways. Genome Res. 2013, 23:547-554.
-
(2013)
Genome Res.
, vol.23
, pp. 547-554
-
-
Qi, Y.1
-
64
-
-
59149103100
-
A toolbox and procedural notes for characterizing novel zinc finger nucleases for genome editing in plant cells
-
Tovkach A., et al. A toolbox and procedural notes for characterizing novel zinc finger nucleases for genome editing in plant cells. Plant J. 2009, 57:747-757.
-
(2009)
Plant J.
, vol.57
, pp. 747-757
-
-
Tovkach, A.1
-
65
-
-
82355181082
-
Localized egg-cell expression of effector proteins for targeted modification of the Arabidopsis genome
-
Even-Faitelson L., et al. Localized egg-cell expression of effector proteins for targeted modification of the Arabidopsis genome. Plant J. 2011, 68:929-937.
-
(2011)
Plant J.
, vol.68
, pp. 929-937
-
-
Even-Faitelson, L.1
-
66
-
-
84885780340
-
Targeted mutagenesis of Arabidopsis thaliana using engineered TAL effector nucleases
-
Christian M., et al. Targeted mutagenesis of Arabidopsis thaliana using engineered TAL effector nucleases. G3 (Bethesda) 2013, 3:1697-1705.
-
(2013)
G3 (Bethesda)
, vol.3
, pp. 1697-1705
-
-
Christian, M.1
-
67
-
-
84884350172
-
TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants
-
Wendt T., et al. TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants. Plant Mol. Biol. 2013, 83:279-285.
-
(2013)
Plant Mol. Biol.
, vol.83
, pp. 279-285
-
-
Wendt, T.1
-
68
-
-
84860736700
-
High-efficiency TALEN-based gene editing produces disease-resistant rice
-
Li T., et al. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat. Biotechnol. 2012, 30:390-392.
-
(2012)
Nat. Biotechnol.
, vol.30
, pp. 390-392
-
-
Li, T.1
-
69
-
-
84894321885
-
Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system
-
Liang Z., et al. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J. Genet. Genomics 2014, 41:63-68.
-
(2014)
J. Genet. Genomics
, vol.41
, pp. 63-68
-
-
Liang, Z.1
-
70
-
-
84898623364
-
True-breeding targeted gene knock-out in barley using designer TALE-nuclease in haploid cells
-
Gurushidze M., et al. True-breeding targeted gene knock-out in barley using designer TALE-nuclease in haploid cells. PLoS ONE 2014, 9:e92046.
-
(2014)
PLoS ONE
, vol.9
, pp. e92046
-
-
Gurushidze, M.1
-
71
-
-
84880737219
-
Rapid and efficient gene modification in rice and Brachypodium using TALENs
-
Shan Q., et al. Rapid and efficient gene modification in rice and Brachypodium using TALENs. Mol. Plant 2013, 6:1365-1368.
-
(2013)
Mol. Plant
, vol.6
, pp. 1365-1368
-
-
Shan, Q.1
-
72
-
-
84899556051
-
Targeted genome editing of sweet orange using Cas9/sgRNA
-
Jia H., Wang N. Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS ONE 2014, 9:e93806.
-
(2014)
PLoS ONE
, vol.9
, pp. e93806
-
-
Jia, H.1
Wang, N.2
-
73
-
-
84904639258
-
The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation
-
Zhang H., et al. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol. J. 2014, 12:797-807.
-
(2014)
Plant Biotechnol. J.
, vol.12
, pp. 797-807
-
-
Zhang, H.1
-
74
-
-
84885831885
-
Targeted deletion and onversion of tandemly arrayed genes in Arabidopsis thaliana using zinc finger nucleases
-
Qi Y., et al. Targeted deletion and onversion of tandemly arrayed genes in Arabidopsis thaliana using zinc finger nucleases. G3 2013, 3:1707-1715.
-
(2013)
G3
, vol.3
, pp. 1707-1715
-
-
Qi, Y.1
-
75
-
-
0034724291
-
RecA stimulates sister chromatid exchange and the fidelity of double-strand break repair, but not gene targeting, in plants transformed by Agrobacterium
-
Reiss B., et al. RecA stimulates sister chromatid exchange and the fidelity of double-strand break repair, but not gene targeting, in plants transformed by Agrobacterium. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:3358-3363.
-
(2000)
Proc. Natl. Acad. Sci. U.S.A.
, vol.97
, pp. 3358-3363
-
-
Reiss, B.1
-
76
-
-
70349103842
-
ZFN-induced mutagenesis and gene-targeting in Arabidopsis through Agrobacterium-mediated floral dip transformation
-
De Pater S., et al. ZFN-induced mutagenesis and gene-targeting in Arabidopsis through Agrobacterium-mediated floral dip transformation. Plant Biotechnol. J. 2009, 7:821-835.
-
(2009)
Plant Biotechnol. J.
, vol.7
, pp. 821-835
-
-
De Pater, S.1
-
77
-
-
84876955340
-
ZFN-mediated gene targeting of the Arabidopsis protoporphyrinogen oxidase gene through Agrobacterium-mediated floral dip transformation
-
De Pater S., et al. ZFN-mediated gene targeting of the Arabidopsis protoporphyrinogen oxidase gene through Agrobacterium-mediated floral dip transformation. Plant Biotechnol. J. 2013, 11:510-515.
-
(2013)
Plant Biotechnol. J.
, vol.11
, pp. 510-515
-
-
De Pater, S.1
-
78
-
-
84896882685
-
DNA replicons for plant genome engineering
-
Baltes N.J., et al. DNA replicons for plant genome engineering. Plant Cell 2014, 26:151-163.
-
(2014)
Plant Cell
, vol.26
, pp. 151-163
-
-
Baltes, N.J.1
-
79
-
-
61649085865
-
Targeted transgene integration in plant cells using designed zinc finger nucleases
-
Cai C.Q., et al. Targeted transgene integration in plant cells using designed zinc finger nucleases. Plant Mol. Biol. 2009, 69:699-709.
-
(2009)
Plant Mol. Biol.
, vol.69
, pp. 699-709
-
-
Cai, C.Q.1
-
80
-
-
66249147273
-
Precise genome modification in the crop species Zea mays using zinc-finger nucleases
-
Shukla V.K., et al. Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 2009, 459:437-441.
-
(2009)
Nature
, vol.459
, pp. 437-441
-
-
Shukla, V.K.1
-
81
-
-
33644693285
-
High-frequency homologous recombination in plants mediated by zinc-finger nucleases
-
Wright D.A., et al. High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J. 2005, 44:693-705.
-
(2005)
Plant J.
, vol.44
, pp. 693-705
-
-
Wright, D.A.1
-
82
-
-
79956261977
-
Transcriptional activators of human genes with programmable DNA-specificity
-
Geißler R., et al. Transcriptional activators of human genes with programmable DNA-specificity. PLoS ONE 2011, 6:e19509.
-
(2011)
PLoS ONE
, vol.6
, pp. e19509
-
-
Geißler, R.1
-
83
-
-
84901195977
-
Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells
-
Nissim L., et al. Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells. Mol. Cell 2014, 54:698-710.
-
(2014)
Mol. Cell
, vol.54
, pp. 698-710
-
-
Nissim, L.1
-
84
-
-
84885180675
-
Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system
-
Cheng A.W., et al. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res. 2013, 23:1163-1171.
-
(2013)
Cell Res.
, vol.23
, pp. 1163-1171
-
-
Cheng, A.W.1
-
85
-
-
84884907424
-
CRISPR RNA-guided activation of endogenous human genes
-
Maeder M.L., et al. CRISPR RNA-guided activation of endogenous human genes. Nat. Methods 2013, 10:977-979.
-
(2013)
Nat. Methods
, vol.10
, pp. 977-979
-
-
Maeder, M.L.1
-
86
-
-
84880571335
-
CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes
-
Gilbert L., et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 2013, 154:442-451.
-
(2013)
Cell
, vol.154
, pp. 442-451
-
-
Gilbert, L.1
-
87
-
-
84874687019
-
Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression
-
Qi L.S., et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 2013, 152:1173-1183.
-
(2013)
Cell
, vol.152
, pp. 1173-1183
-
-
Qi, L.S.1
-
88
-
-
84928212884
-
RNA - guided transcriptional regulation in planta via synthetic dCas9 - based transcription factors
-
Published online November 14, 2014.
-
Piatek A., et al. RNA - guided transcriptional regulation in planta via synthetic dCas9 - based transcription factors. Plant Biotechnol. J. 2014, Published online November 14, 2014. http://dx.doi.org/10.1111/pbi.12284.
-
(2014)
Plant Biotechnol. J.
-
-
Piatek, A.1
-
89
-
-
84916624400
-
The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny
-
Published online November 11, 2014.
-
Schiml S., et al. The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J. 2014, Published online November 11, 2014. http://dx.doi.org/10.1111/tpj.12704.
-
(2014)
Plant J.
-
-
Schiml, S.1
|