메뉴 건너뛰기




Volumn 156, Issue 1, 2015, Pages 157-168

Gallic acid regulates body weight and glucose homeostasis through AMPK activation

Author keywords

[No Author keywords available]

Indexed keywords

ACETYL COENZYME A CARBOXYLASE; GALLIC ACID; HYDROXYMETHYLGLUTARYL COENZYME A REDUCTASE KINASE; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA COACTIVATOR 1ALPHA; SIRTUIN 1; FAT INTAKE; GLUCOSE; GLUCOSE BLOOD LEVEL; TRANSCRIPTION FACTOR;

EID: 84919764176     PISSN: 00137227     EISSN: 19457170     Source Type: Journal    
DOI: 10.1210/en.2014-1354     Document Type: Article
Times cited : (146)

References (55)
  • 1
    • 0036788293 scopus 로고    scopus 로고
    • Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes
    • Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes. 2002;51(10):2944-2950
    • (2002) Diabetes. , vol.51 , Issue.10 , pp. 2944-2950
    • Kelley, D.E.1    He, J.2    Menshikova, E.V.3    Ritov, V.B.4
  • 2
    • 0038025371 scopus 로고    scopus 로고
    • Mitochondrial dysfunction in the elderly: Possible role in insulin resistance
    • Petersen KF, Befroy D, Dufour S, et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science. 2003; 300(5622):1140-1142
    • (2003) Science. , vol.300 , Issue.5622 , pp. 1140-1142
    • Petersen, K.F.1    Befroy, D.2    Dufour, S.3
  • 3
    • 71849094328 scopus 로고    scopus 로고
    • Targeting mitochondrial biogenesis for preventing and treating insulin resistance in diabetes and obesity: Hope from natural mitochondrial nutrients
    • Liu J, Shen W, Zhao B, et al. Targeting mitochondrial biogenesis for preventing and treating insulin resistance in diabetes and obesity: Hope from natural mitochondrial nutrients. Adv Drug Deliv Rev. 2009;61(14):1343-1352
    • (2009) Adv Drug Deliv Rev. , vol.61 , Issue.14 , pp. 1343-1352
    • Liu, J.1    Shen, W.2    Zhao, B.3
  • 4
    • 34648828532 scopus 로고    scopus 로고
    • AMP-Activated/SNF1 protein kinases: Conserved guardians of cellular energy
    • HardieDG.AMP-Activated/SNF1 protein kinases: Conserved guardians of cellular energy. Nat Rev Mol Cell Biol. 2007;8(10):774-785
    • (2007) Nat Rev Mol Cell Biol. , vol.8 , Issue.10 , pp. 774-785
    • Hardie, D.G.1
  • 5
    • 84889887123 scopus 로고    scopus 로고
    • Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulinsensitizing effects of metformin
    • Fullerton MD, Galic S, Marcinko K, et al. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulinsensitizing effects of metformin. Nat Med. 2013;19(12):1649-1654
    • (2013) Nat Med. , vol.19 , Issue.12 , pp. 1649-1654
    • Fullerton, M.D.1    Galic, S.2    Marcinko, K.3
  • 6
    • 84872667668 scopus 로고    scopus 로고
    • AMPKregulation of fatty acid metabolism and mitochondrial biogenesis: Implications for obesity
    • O'NeillHM,Holloway GP, SteinbergGR.AMPKregulation of fatty acid metabolism and mitochondrial biogenesis: Implications for obesity. Mol Cell Endocrinol. 2013;366(2):135-151
    • (2013) Mol Cell Endocrinol. , vol.366 , Issue.2 , pp. 135-151
    • O'Neill, H.M.1    Holloway, G.P.2    Steinberg, G.R.3
  • 7
    • 34547545892 scopus 로고    scopus 로고
    • AMP-Activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α
    • Jager S, Handschin C, St Pierre J, Spiegelman BM. AMP-Activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proc Natl Acad Sci USA. 2007;104(29): 12017-12022
    • (2007) Proc Natl Acad Sci USA. , vol.104 , Issue.29 , pp. 12017-12022
    • Jager, S.1    Handschin, C.2    St Pierre, J.3    Spiegelman, B.M.4
  • 8
    • 64549127790 scopus 로고    scopus 로고
    • PGC-1α SIRT1 and AMPK, an energy sensing network that controls energy expenditure
    • Canto C, Auwerx J. PGC-1α, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol. 2009; 20(2):98-105
    • (2009) Curr Opin Lipidol. , vol.20 , Issue.2 , pp. 98-105
    • Canto, C.1    Auwerx, J.2
  • 9
    • 43049121395 scopus 로고    scopus 로고
    • Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt
    • Fulco M, Cen Y, Zhao P, et al. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev Cell. 2008;14(5):661-673
    • (2008) Dev Cell. , vol.14 , Issue.5 , pp. 661-673
    • Fulco, M.1    Cen, Y.2    Zhao, P.3
  • 10
    • 14544282413 scopus 로고    scopus 로고
    • Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1
    • Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature. 2005;434(7029):113-118
    • (2005) Nature. , vol.434 , Issue.7029 , pp. 113-118
    • Rodgers, J.T.1    Lerin, C.2    Haas, W.3    Gygi, S.P.4    Spiegelman, B.M.5    Puigserver, P.6
  • 11
    • 33845399894 scopus 로고    scopus 로고
    • Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α
    • Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell. 2006;127(6):1109-1122
    • (2006) Cell. , vol.127 , Issue.6 , pp. 1109-1122
    • Lagouge, M.1    Argmann, C.2    Gerhart-Hines, Z.3
  • 12
    • 67349276169 scopus 로고    scopus 로고
    • AMPK regulates energy expenditure by modulating NAD+metabolism and SIRT1 activity
    • Canto C, Gerhart-Hines Z, Feige JN, et al. AMPK regulates energy expenditure by modulating NAD+metabolism and SIRT1 activity. Nature. 2009;458(7241):1056-1060
    • (2009) Nature. , vol.458 , Issue.7241 , pp. 1056-1060
    • Canto, C.1    Gerhart-Hines, Z.2    Feige, J.N.3
  • 13
    • 79551598347 scopus 로고    scopus 로고
    • AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
    • Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13(2):132-141
    • (2011) Nat Cell Biol. , vol.13 , Issue.2 , pp. 132-141
    • Kim, J.1    Kundu, M.2    Viollet, B.3    Guan, K.L.4
  • 14
    • 80053476420 scopus 로고    scopus 로고
    • The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR
    • Egan D, Kim J, Shaw RJ, Guan KL. The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy. 2011;7(6):643-644
    • (2011) Autophagy. , vol.7 , Issue.6 , pp. 643-644
    • Egan, D.1    Kim, J.2    Shaw, R.J.3    Guan, K.L.4
  • 15
    • 65949095803 scopus 로고    scopus 로고
    • Autophagy regulates lipid metabolism
    • Singh R, Kaushik S, Wang YJ, et al. Autophagy regulates lipid metabolism. Nature. 2009;458(7242):U1131-U1164
    • (2009) Nature. , vol.458 , Issue.7242 , pp. U1131-U1164
    • Singh, R.1    Kaushik, S.2    Wang, Y.J.3
  • 16
    • 84883709817 scopus 로고    scopus 로고
    • AMPK a target for drugs and natural products with effects on both diabetes and cancer
    • Hardie DG. AMPK a target for drugs and natural products with effects on both diabetes and cancer. Diabetes. 2013;62(7):2164-2172
    • (2013) Diabetes. , vol.62 , Issue.7 , pp. 2164-2172
    • Hardie, D.G.1
  • 17
    • 84875906572 scopus 로고    scopus 로고
    • Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure
    • Liesa M, Shirihai OS. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab. 2013; 17(4):491-506
    • (2013) Cell Metab. , vol.17 , Issue.4 , pp. 491-506
    • Liesa, M.1    Shirihai, O.S.2
  • 18
    • 38549136863 scopus 로고    scopus 로고
    • Polyphenolic phytochemicals-just antioxidants or much more?
    • Stevenson DE, Hurst RD. Polyphenolic phytochemicals-just antioxidants or much more? Cell Mol Life Sci. 2007;64(22):2900-2916
    • (2007) Cell Mol Life Sci. , vol.64 , Issue.22 , pp. 2900-2916
    • Stevenson, D.E.1    Hurst, R.D.2
  • 19
    • 84860477354 scopus 로고    scopus 로고
    • SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function
    • Price NL, Gomes AP, Ling AJ, et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 2012;15(5):675-690
    • (2012) Cell Metab. , vol.15 , Issue.5 , pp. 675-690
    • Price, N.L.1    Gomes, A.P.2    Ling, A.J.3
  • 21
    • 0038486194 scopus 로고    scopus 로고
    • Gallic acid and gallic acid derivatives: Effects on drug metabolizing enzymes
    • Ow YY, Stupans I. Gallic acid and gallic acid derivatives: Effects on drug metabolizing enzymes. Curr Drug Metab. 2003;4(3):241-248
    • (2003) Curr Drug Metab. , vol.4 , Issue.3 , pp. 241-248
    • Ow, Y.Y.1    Stupans, I.2
  • 22
    • 58149117412 scopus 로고    scopus 로고
    • Solid-phase/supercritical- fluid extraction for liquid chromatography of phenolic compounds in freshwater microalgae and selected cyanobacterial species
    • Klejdus B, Kopecky J, Benesova L, Vacek J. Solid-phase/supercritical- fluid extraction for liquid chromatography of phenolic compounds in freshwater microalgae and selected cyanobacterial species. J Chromatogr A. 2009;1216(5):763-771
    • (2009) J Chromatogr A. , vol.1216 , Issue.5 , pp. 763-771
    • Klejdus, B.1    Kopecky, J.2    Benesova, L.3    Vacek, J.4
  • 23
    • 79251620608 scopus 로고    scopus 로고
    • Insulin-secretagogue, antihyperlipidemic and other protective effects of gallic acid isolated from Terminalia bellerica Roxb. in streptozotocin-induced diabetic rats
    • Latha RC, Daisy P. Insulin-secretagogue, antihyperlipidemic and other protective effects of gallic acid isolated from Terminalia bellerica Roxb. in streptozotocin-induced diabetic rats. Chem Biol Interact. 2011;189(1-2):112-118
    • (2011) Chem Biol Interact. , vol.189 , Issue.1-2 , pp. 112-118
    • Latha, R.C.1    Daisy, P.2
  • 24
    • 79953729956 scopus 로고    scopus 로고
    • Protective effects of gallic acid on hepatic lipid peroxide metabolism, glycoprotein components and lipids in streptozotocininduced type II diabetic Wistar rats
    • Punithavathi VR, Stanely Mainzen Prince P, Kumar MR, Selvakumari CJ. Protective effects of gallic acid on hepatic lipid peroxide metabolism, glycoprotein components and lipids in streptozotocininduced type II diabetic Wistar rats. J Biochem Mol Toxicol. 2011; 25(2):68-76
    • (2011) J Biochem Mol Toxicol. , vol.25 , Issue.2 , pp. 68-76
    • Punithavathi, V.R.1    Stanely Mainzen, P.P.2    Kumar, M.R.3    Selvakumari, C.J.4
  • 25
    • 34748843412 scopus 로고    scopus 로고
    • Effect of gallic acid on high fat diet-induced dyslipidaemia, hepatosteatosis and oxidative stress in rats
    • Hsu CL, Yen GC. Effect of gallic acid on high fat diet-induced dyslipidaemia, hepatosteatosis and oxidative stress in rats. Br J Nutr. 2007;98(4):727-735
    • (2007) Br J Nutr. , vol.98 , Issue.4 , pp. 727-735
    • Hsu, C.L.1    Yen, G.C.2
  • 26
    • 46049100765 scopus 로고    scopus 로고
    • Comparison of hypolipidemic activity of synthetic gallic acid-linoleic acid ester with mixture of gallic acid and linoleic acid, gallic acid, and linoleic acid on high-fat diet induced obesity in C57BL/6 Cr Slc mice
    • Jang A, Srinivasan P, Lee NY, et al. Comparison of hypolipidemic activity of synthetic gallic acid-linoleic acid ester with mixture of gallic acid and linoleic acid, gallic acid, and linoleic acid on high-fat diet induced obesity in C57BL/6 Cr Slc mice. Chem Biol Interact. 2008;174(2):109-117
    • (2008) Chem Biol Interact. , vol.174 , Issue.2 , pp. 109-117
    • Jang, A.1    Srinivasan, P.2    Lee, N.Y.3
  • 27
    • 84859620149 scopus 로고    scopus 로고
    • Antiobesity effects of Chinese black tea (Pu-erh tea) extract and gallic acid
    • Oi Y, Hou IC, Fujita H, Yazawa K. Antiobesity effects of Chinese black tea (Pu-erh tea) extract and gallic acid. Phytother Res. 2012; 26(4):475-481
    • (2012) Phytother Res. , vol.26 , Issue.4 , pp. 475-481
    • Oi, Y.1    Hou, I.C.2    Fujita, H.3    Yazawa, K.4
  • 28
    • 84887593467 scopus 로고    scopus 로고
    • Gallic acid improves glucose tolerance and triglyceride concentration in diet-induced obesity mice
    • Bak EJ, Kim J, Jang S, et al. Gallic acid improves glucose tolerance and triglyceride concentration in diet-induced obesity mice. Scand J Clin Lab Invest. 2013;73(8):607-614
    • (2013) Scand J Clin Lab Invest. , vol.73 , Issue.8 , pp. 607-614
    • Bak, E.J.1    Kim, J.2    Jang, S.3
  • 29
    • 84878870713 scopus 로고    scopus 로고
    • Pharmacological activation of Sirt1 ameliorates polyglutamine-induced toxicity through the regulation of autophagy
    • Shin BH, Lim Y, OH HJ, et al. Pharmacological activation of Sirt1 ameliorates polyglutamine-induced toxicity through the regulation of autophagy. PLoS One. 2013;8(6):e64953
    • (2013) PLoS One. , vol.8 , Issue.6 , pp. e64953
    • Shin, B.H.1    Lim, Y.2    Oh, H.J.3
  • 30
    • 84875513164 scopus 로고    scopus 로고
    • P-Coumaric acid modulates glucose and lipid metabolism via AMP-Activated protein kinase in L6 skeletal muscle cells
    • Yoon SA, Kang SI, Shin HS, et al. p-Coumaric acid modulates glucose and lipid metabolism via AMP-Activated protein kinase in L6 skeletal muscle cells. Biochem Biophys Res Commun. 2013;432(4): 553-557
    • (2013) Biochem Biophys Res Commun. , vol.432 , Issue.4 , pp. 553-557
    • Yoon, S.A.1    Kang, S.I.2    Shin, H.S.3
  • 31
    • 84863549071 scopus 로고    scopus 로고
    • FOXO1 in the ventromedial hypothalamus regulates energy balance
    • Kim KW, Donato J Jr, Berglund ED, et al. FOXO1 in the ventromedial hypothalamus regulates energy balance. J Clin Invest. 2012; 122(7):2578-2589
    • (2012) J Clin Invest. , vol.122 , Issue.7 , pp. 2578-2589
    • Kim, K.W.1    Donato, Jr.J.2    Berglund, E.D.3
  • 32
    • 79960617185 scopus 로고    scopus 로고
    • Steroidogenic factor 1 directs programs regulating diet-induced thermogenesis and leptin action in the ventral medial hypothalamic nucleus
    • Kim KW, Zhao L, Donato J Jr, et al. Steroidogenic factor 1 directs programs regulating diet-induced thermogenesis and leptin action in the ventral medial hypothalamic nucleus. Proc Natl Acad Sci USA. 2011;108(26):10673-10678
    • (2011) Proc Natl Acad Sci USA. , vol.108 , Issue.26 , pp. 10673-10678
    • Kim, K.W.1    Zhao, L.2    Donato, Jr.J.3
  • 33
    • 79551507263 scopus 로고    scopus 로고
    • AMPK-dependent phosphorylation of ULK1 induces autophagy
    • Zhao MT, Klionsky DJ. AMPK-dependent phosphorylation of ULK1 induces autophagy. Cell Metab. 2011;13(2):119-120
    • (2011) Cell Metab. , vol.13 , Issue.2 , pp. 119-120
    • Zhao, M.T.1    Klionsky, D.J.2
  • 34
    • 84865414333 scopus 로고    scopus 로고
    • Transcriptional integration of mitochondrial biogenesis
    • Scarpulla RC, Vega RB, Kelly DP. Transcriptional integration of mitochondrial biogenesis. Trends Endocrinol Metab. 2012;23(9): 459-466
    • (2012) Trends Endocrinol Metab. , vol.23 , Issue.9 , pp. 459-466
    • Scarpulla, R.C.1    Vega, R.B.2    Kelly, D.P.3
  • 35
    • 77955918482 scopus 로고    scopus 로고
    • Reversible acetylation of PGC-1: Connecting energy sensors and effectors to guarantee metabolic flexibility
    • Jeninga EH, Schoonjans K, Auwerx J. Reversible acetylation of PGC-1: Connecting energy sensors and effectors to guarantee metabolic flexibility. Oncogene. 2010;29(33):4617-4624
    • (2010) Oncogene. , vol.29 , Issue.33 , pp. 4617-4624
    • Jeninga, E.H.1    Schoonjans, K.2    Auwerx, J.3
  • 36
    • 0141719702 scopus 로고    scopus 로고
    • Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan
    • Howitz KT, Bitterman KJ, Cohen HY, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003;425(6954):191-196
    • (2003) Nature. , vol.425 , Issue.6954 , pp. 191-196
    • Howitz, K.T.1    Bitterman, K.J.2    Cohen, H.Y.3
  • 37
    • 18144411313 scopus 로고    scopus 로고
    • SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC- 1α
    • Nemoto S, Fergusson MM, Finkel T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC- 1α. J Biol Chem. 2005;280(16):16456-16460
    • (2005) J Biol Chem. , vol.280 , Issue.16 , pp. 16456-16460
    • Nemoto, S.1    Fergusson, M.M.2    Finkel, T.3
  • 38
    • 63449112017 scopus 로고    scopus 로고
    • Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation
    • Purushotham A, Schug TT, Xu Q, Surapureddi S, Guo X, Li X. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab. 2009; 9(4):327-338
    • (2009) Cell Metab. , vol.9 , Issue.4 , pp. 327-338
    • Purushotham, A.1    Schug, T.T.2    Xu, Q.3    Surapureddi, S.4    Guo, X.5    Li, X.6
  • 39
    • 73649136859 scopus 로고    scopus 로고
    • Green tea polyphenol epigallocatechin gallate reduces endothelin-1 expression and secretion in vascular endothelial cells: Roles for AMP-Activated protein kinase Akt and FOXO1
    • Reiter CE, Kim JA, Quon MJ. Green tea polyphenol epigallocatechin gallate reduces endothelin-1 expression and secretion in vascular endothelial cells: roles for AMP-Activated protein kinase, Akt, and FOXO1. Endocrinology. 2010;151(1):103-114
    • (2010) Endocrinology. , vol.151 , Issue.1 , pp. 103-114
    • Reiter, C.E.1    Kim, J.A.2    Quon, M.J.3
  • 40
    • 35648944317 scopus 로고    scopus 로고
    • Epigallocatechin- 3-gallate (EGCG), a green tea polyphenol, suppresses hepatic gluconeogenesis through 5'-AMP-Activated protein kinase
    • Collins QF, Liu HY, Pi J, Liu Z,QuonMJ, CaoW.Epigallocatechin- 3-gallate (EGCG), a green tea polyphenol, suppresses hepatic gluconeogenesis through 5'-AMP-Activated protein kinase. J Biol Chem. 2007;282(41):30143-30149
    • (2007) J Biol Chem. , vol.282 , Issue.41 , pp. 30143-30149
    • Collins, Q.F.1    Liu, H.Y.2    Pi, J.3    Liu, Z.4    Quon, M.J.5    Cao, W.6
  • 41
    • 67650488877 scopus 로고    scopus 로고
    • SirT1 knockdown in liver decreases basal hepatic glucose production and increases hepatic insulin responsiveness in diabetic rats
    • Erion DM, Yonemitsu S, Nie Y, et al. SirT1 knockdown in liver decreases basal hepatic glucose production and increases hepatic insulin responsiveness in diabetic rats. Proc Natl Acad Sci USA. 2009;106(27):11288-11293
    • (2009) Proc Natl Acad Sci USA. , vol.106 , Issue.27 , pp. 11288-11293
    • Erion, D.M.1    Yonemitsu, S.2    Nie, Y.3
  • 42
    • 84872296122 scopus 로고    scopus 로고
    • Role of sirtuin 1 in the regulation of hepatic gene expression by thyroid hormone
    • Thakran S, Sharma P, Attia RR, et al. Role of sirtuin 1 in the regulation of hepatic gene expression by thyroid hormone. J BiolChem. 2013;288(2):807-818
    • (2013) J BiolChem. , vol.288 , Issue.2 , pp. 807-818
    • Thakran, S.1    Sharma, P.2    Attia, R.R.3
  • 43
    • 84886928680 scopus 로고    scopus 로고
    • FoxO1 deacetylation regulates thyroid hormone-induced transcription of key hepatic gluconeogenic genes
    • Singh BK, Sinha RA, Zhou J, et al. FoxO1 deacetylation regulates thyroid hormone-induced transcription of key hepatic gluconeogenic genes. J Biol Chem. 2013;288(42):30365-30372
    • (2013) J Biol Chem. , vol.288 , Issue.42 , pp. 30365-30372
    • Singh, B.K.1    Sinha, R.A.2    Zhou, J.3
  • 44
    • 40749116561 scopus 로고    scopus 로고
    • Metformin inhibits hepatic gluconeogenesis through AMP-Activated protein kinase-dependent regulation of the orphan nuclear receptor SHP
    • Kim YD, Park KG, Lee YS, et al. Metformin inhibits hepatic gluconeogenesis through AMP-Activated protein kinase-dependent regulation of the orphan nuclear receptor SHP. Diabetes. 2008;57(2): 306-314
    • (2008) Diabetes. , vol.57 , Issue.2 , pp. 306-314
    • Kim, Y.D.1    Park, K.G.2    Lee, Y.S.3
  • 45
    • 28844433635 scopus 로고    scopus 로고
    • The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin
    • Shaw RJ, Lamia KA, Vasquez D, et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science. 2005;310(5754):1642-1646
    • (2005) Science. , vol.310 , Issue.5754 , pp. 1642-1646
    • Shaw, R.J.1    Lamia, K.A.2    Vasquez, D.3
  • 46
    • 33644886769 scopus 로고    scopus 로고
    • Nutrients suppress phosphatidylinositol 3-kinase/Akt signaling via raptor-dependent mTOR-mediated insulin receptor substrate 1 phosphorylation
    • Tzatsos A, Kandror KV. Nutrients suppress phosphatidylinositol 3-kinase/Akt signaling via raptor-dependent mTOR-mediated insulin receptor substrate 1 phosphorylation. Mol Cell Biol. 2006;26(1): 63-76
    • (2006) Mol Cell Biol. , vol.26 , Issue.1 , pp. 63-76
    • Tzatsos, A.1    Kandror, K.V.2
  • 47
    • 10744228468 scopus 로고    scopus 로고
    • Hepatic Akt activation induces marked hypoglycemia, hepatomegaly, and hypertriglyceridemia with sterol regulatory element binding protein involvement
    • OnoH, Shimano H, Katagiri H, et al. Hepatic Akt activation induces marked hypoglycemia, hepatomegaly, and hypertriglyceridemia with sterol regulatory element binding protein involvement. Diabetes. 2003;52(12):2905-2913
    • (2003) Diabetes. , vol.52 , Issue.12 , pp. 2905-2913
    • Onoh Shimano, H.1    Katagiri, H.2
  • 48
    • 84255198350 scopus 로고    scopus 로고
    • The cAMP/PKA pathway rapidly activates SIRT1 to promote fatty acid oxidation independently of changes in NAD(+)
    • Gerhart-Hines Z, Dominy JE Jr, Blattler SM, et al. The cAMP/PKA pathway rapidly activates SIRT1 to promote fatty acid oxidation independently of changes in NAD(+). Mol Cell. 2011;44(6):851-863
    • (2011) Mol Cell. , vol.44 , Issue.6 , pp. 851-863
    • Gerhart-Hines, Z.1    Dominy, Jr.J.E.2    Blattler, S.M.3
  • 49
    • 83455206803 scopus 로고    scopus 로고
    • Targeting sirtuin 1 to improve metabolism: All you need is NAD(+)?
    • Canto C, Auwerx J. Targeting sirtuin 1 to improve metabolism: All you need is NAD(+)? Pharmacol Rev. 2012;64(1):166-187
    • (2012) Pharmacol Rev. , vol.64 , Issue.1 , pp. 166-187
    • Canto, C.1    Auwerx, J.2
  • 50
    • 0033969381 scopus 로고    scopus 로고
    • Green tea and thermogenesis: Interactions between catechin-polyphenols, caffeine and sympathetic activity
    • Dulloo AG, Seydoux J, Girardier L, Chantre P, Vandermander J. Green tea and thermogenesis: Interactions between catechin-polyphenols, caffeine and sympathetic activity. Int J Obes Relat Metab Disord. 2000;24(2):252-258
    • (2000) Int J Obes Relat Metab Disord. , vol.24 , Issue.2 , pp. 252-258
    • Dulloo, A.G.1    Seydoux, J.2    Girardier, L.3    Chantre, P.4    Vandermander, J.5
  • 51
    • 20044383992 scopus 로고    scopus 로고
    • Epigallocatechin gallate attenuates diet-induced obesity in mice by decreasing energy absorption and increasing fat oxidation
    • Klaus S, Pultz S, Thone-Reineke C, Wolfram S. Epigallocatechin gallate attenuates diet-induced obesity in mice by decreasing energy absorption and increasing fat oxidation. Int J Obes (Lond). 2005; 29(6):615-623
    • (2005) Int J Obes (Lond). , vol.29 , Issue.6 , pp. 615-623
    • Klaus, S.1    Pultz, S.2    Thone-Reineke, C.3    Wolfram, S.4
  • 52
    • 84863012022 scopus 로고    scopus 로고
    • FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis
    • Fisher FM, Kleiner S, Douris N, et al. FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 2012;26(3):271-281
    • (2012) Genes Dev. , vol.26 , Issue.3 , pp. 271-281
    • Fisher, F.M.1    Kleiner, S.2    Douris, N.3
  • 53
    • 78650945931 scopus 로고    scopus 로고
    • Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice
    • Seale P, Conroe HM, Estall J, et al. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J Clin Invest. 2011;121(1):96-105
    • (2011) J Clin Invest. , vol.121 , Issue.1 , pp. 96-105
    • Seale, P.1    Conroe, H.M.2    Estall, J.3
  • 54
    • 23044467570 scopus 로고    scopus 로고
    • Anti-diabetic action of Punica granatum flower extract: Activation of PPAR-γ and identification of an active component
    • Huang THW, Peng G, Kota BP, et al. Anti-diabetic action of Punica granatum flower extract: Activation of PPAR-γ and identification of an active component. Toxicol Appl Pharmacol. 2005;207(2):160-169
    • (2005) Toxicol Appl Pharmacol. , vol.207 , Issue.2 , pp. 160-169
    • Huang, T.H.W.1    Peng, G.2    Kota, B.P.3
  • 55
    • 74449085044 scopus 로고    scopus 로고
    • Gallic acid induces GLUT4 translocation and glucose uptake activity in 3T3-L1 cells
    • Prasad CNV, Anjana T, Banerji A, Gopalakrishnapillai A. Gallic acid induces GLUT4 translocation and glucose uptake activity in 3T3-L1 cells. FEBS Lett. 2010;584(3):531-536.
    • (2010) FEBS Lett. , vol.584 , Issue.3 , pp. 531-536
    • Prasad, C.N.V.1    Anjana, T.2    Banerji, A.3    Gopalakrishnapillai, A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.