-
1
-
-
43949105866
-
Regulatory T cells and immune tolerance
-
Sakaguchi S., et al. Regulatory T cells and immune tolerance. Cell 2008, 133:775-787.
-
(2008)
Cell
, vol.133
, pp. 775-787
-
-
Sakaguchi, S.1
-
2
-
-
69049107358
-
Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo
-
Zhou X., et al. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat. Immunol. 2009, 10:1000-1007.
-
(2009)
Nat. Immunol.
, vol.10
, pp. 1000-1007
-
-
Zhou, X.1
-
3
-
-
79151484704
-
Adipokines in inflammation and metabolic disease
-
Ouchi N., et al. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 2011, 11:85-97.
-
(2011)
Nat. Rev. Immunol.
, vol.11
, pp. 85-97
-
-
Ouchi, N.1
-
4
-
-
79151478555
-
Type 2 diabetes as an inflammatory disease
-
Donath M.Y., Shoelson S.E. Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol. 2011, 11:98-107.
-
(2011)
Nat. Rev. Immunol.
, vol.11
, pp. 98-107
-
-
Donath, M.Y.1
Shoelson, S.E.2
-
5
-
-
79151486083
-
Metabolism, migration and memory in cytotoxic T cells
-
Finlay D., Cantrell D.A. Metabolism, migration and memory in cytotoxic T cells. Nat. Rev. Immunol. 2011, 11:109-117.
-
(2011)
Nat. Rev. Immunol.
, vol.11
, pp. 109-117
-
-
Finlay, D.1
Cantrell, D.A.2
-
6
-
-
68349148211
-
Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters
-
Feuerer M., et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 2009, 15:930-939.
-
(2009)
Nat. Med.
, vol.15
, pp. 930-939
-
-
Feuerer, M.1
-
7
-
-
68349137821
-
Normalization of obesity-associated insulin resistance through immunotherapy
-
Winer S., et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nat. Med. 2009, 15:921-929.
-
(2009)
Nat. Med.
, vol.15
, pp. 921-929
-
-
Winer, S.1
-
8
-
-
77957054466
-
The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism
-
Powell J.D., Delgoffe G.M. The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism. Immunity 2010, 33:301-311.
-
(2010)
Immunity
, vol.33
, pp. 301-311
-
-
Powell, J.D.1
Delgoffe, G.M.2
-
9
-
-
78049287331
-
MTOR signalling and metabolic regulation of T cell differentiation
-
Peter C., et al. mTOR signalling and metabolic regulation of T cell differentiation. Curr. Opin. Immunol. 2010, 5:655-661.
-
(2010)
Curr. Opin. Immunol.
, vol.5
, pp. 655-661
-
-
Peter, C.1
-
10
-
-
0032572722
-
Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression
-
Lord G.M., et al. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 1998, 394:897-901.
-
(1998)
Nature
, vol.394
, pp. 897-901
-
-
Lord, G.M.1
-
11
-
-
37849030260
-
Regulatory CD4 T cells: sensing the environment
-
Matarese G., et al. Regulatory CD4 T cells: sensing the environment. Trends Immunol. 2008, 29:12-17.
-
(2008)
Trends Immunol.
, vol.29
, pp. 12-17
-
-
Matarese, G.1
-
12
-
-
1642315558
-
The intricate interface between immune system and metabolism
-
Matarese G., La Cava A. The intricate interface between immune system and metabolism. Trends Immunol. 2004, 25:193-200.
-
(2004)
Trends Immunol.
, vol.25
, pp. 193-200
-
-
Matarese, G.1
La Cava, A.2
-
13
-
-
33847312289
-
A key role of leptin in the control of regulatory T cell proliferation
-
De Rosa V., et al. A key role of leptin in the control of regulatory T cell proliferation. Immunity 2007, 26:241-255.
-
(2007)
Immunity
, vol.26
, pp. 241-255
-
-
De Rosa, V.1
-
14
-
-
0036069699
-
The CD28 signaling pathway regulates glucose metabolism
-
Frauwirth K.A., et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 2002, 16:769-777.
-
(2002)
Immunity
, vol.16
, pp. 769-777
-
-
Frauwirth, K.A.1
-
15
-
-
34247184208
-
Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking
-
Wieman H.L., et al. Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking. Mol. Biol. Cell 2007, 18:1437-1446.
-
(2007)
Mol. Biol. Cell
, vol.18
, pp. 1437-1446
-
-
Wieman, H.L.1
-
16
-
-
0035312747
-
Regulation of translation initiation by FRAP/mTOR
-
Gingras A.C., et al. Regulation of translation initiation by FRAP/mTOR. Genes Dev. 2001, 15:807-826.
-
(2001)
Genes Dev.
, vol.15
, pp. 807-826
-
-
Gingras, A.C.1
-
17
-
-
27744519400
-
Fuel feeds function: energy metabolism and the T-cell response
-
Fox C.J., et al. Fuel feeds function: energy metabolism and the T-cell response. Nat. Rev. Immunol. 2005, 5:844-852.
-
(2005)
Nat. Rev. Immunol.
, vol.5
, pp. 844-852
-
-
Fox, C.J.1
-
18
-
-
0027474296
-
Metabolic changes in activated T cells: an NMR study of human peripheral blood lymphocytes
-
Bental M., Deutsch C. Metabolic changes in activated T cells: an NMR study of human peripheral blood lymphocytes. Magn. Reson. Med. 1993, 29:317-326.
-
(1993)
Magn. Reson. Med.
, vol.29
, pp. 317-326
-
-
Bental, M.1
Deutsch, C.2
-
19
-
-
34547098277
-
Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression
-
Borsellino G., et al. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 2007, 110:1225-1232.
-
(2007)
Blood
, vol.110
, pp. 1225-1232
-
-
Borsellino, G.1
-
20
-
-
77953897189
-
Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways
-
Lee K., et al. Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity 2010, 32:743-753.
-
(2010)
Immunity
, vol.32
, pp. 743-753
-
-
Lee, K.1
-
21
-
-
66949173728
-
The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment
-
Delgoffe G.M., et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 2009, 30:832-844.
-
(2009)
Immunity
, vol.30
, pp. 832-844
-
-
Delgoffe, G.M.1
-
22
-
-
78650188983
-
An oscillatory switch in mTOR kinase activity sets regulatory T cell responsiveness
-
Procaccini C., et al. An oscillatory switch in mTOR kinase activity sets regulatory T cell responsiveness. Immunity 2010, 33:929-941.
-
(2010)
Immunity
, vol.33
, pp. 929-941
-
-
Procaccini, C.1
-
23
-
-
79953172571
-
Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets
-
Michalek R.D., et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol. 2011, 186:3299-3303.
-
(2011)
J. Immunol.
, vol.186
, pp. 3299-3303
-
-
Michalek, R.D.1
-
24
-
-
79960369458
-
HIF1{alpha}-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells
-
Shi L.Z., et al. HIF1{alpha}-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 2011, 208:1367-1376.
-
(2011)
J. Exp. Med.
, vol.208
, pp. 1367-1376
-
-
Shi, L.Z.1
-
25
-
-
80052277906
-
Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1
-
Dang E.V., et al. Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell 2011, 146:772-784.
-
(2011)
Cell
, vol.146
, pp. 772-784
-
-
Dang, E.V.1
-
26
-
-
65949113818
-
The axis of mTOR-mitochondria-ROS and stemness of the hematopoietic stem cells
-
Chen C., et al. The axis of mTOR-mitochondria-ROS and stemness of the hematopoietic stem cells. Cell Cycle 2009, 15:1158-1160.
-
(2009)
Cell Cycle
, vol.15
, pp. 1158-1160
-
-
Chen, C.1
-
27
-
-
78049317366
-
Induction of regulatory T cells by macrophages is dependent on production of reactive oxygen species
-
Kraaij M.D., et al. Induction of regulatory T cells by macrophages is dependent on production of reactive oxygen species. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:17686-17691.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 17686-17691
-
-
Kraaij, M.D.1
-
28
-
-
0037178786
-
MTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
-
Kim D.H., et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002, 110:163-175.
-
(2002)
Cell
, vol.110
, pp. 163-175
-
-
Kim, D.H.1
-
29
-
-
3342895823
-
Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton
-
Sarbassov D.D., et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol. 2004, 14:1296-1302.
-
(2004)
Curr. Biol.
, vol.14
, pp. 1296-1302
-
-
Sarbassov, D.D.1
-
30
-
-
70350418625
-
MTOR signalling at a glance
-
Laplante M., Sabatini D.M. mTOR signalling at a glance. J. Cell Sci. 2009, 122:3589-3594.
-
(2009)
J. Cell Sci.
, vol.122
, pp. 3589-3594
-
-
Laplante, M.1
Sabatini, D.M.2
-
31
-
-
22544455676
-
Identification of S6 kinase 1 as a novel mammalian target of rapamycin (mTOR)-phosphorylating kinase
-
Holz M.K., Blenis J. Identification of S6 kinase 1 as a novel mammalian target of rapamycin (mTOR)-phosphorylating kinase. J. Biol. Chem. 2005, 280:26089-26093.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 26089-26093
-
-
Holz, M.K.1
Blenis, J.2
-
32
-
-
77955483125
-
Activation of a metabolic gene regulatory network downstream of mTOR complex 1
-
Düvel K., et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 2010, 39:171-183.
-
(2010)
Mol. Cell
, vol.39
, pp. 171-183
-
-
Düvel, K.1
-
33
-
-
79952985551
-
The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2
-
Delgoffe G.M., et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat. Immunol. 2011, 12:295-303.
-
(2011)
Nat. Immunol.
, vol.12
, pp. 295-303
-
-
Delgoffe, G.M.1
-
34
-
-
45549098562
-
T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR
-
Sauer S., et al. T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:7797-7802.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 7797-7802
-
-
Sauer, S.1
-
35
-
-
41149113441
-
The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells
-
Haxhinasto S., et al. The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. J. Exp. Med. 2008, 205:565-574.
-
(2008)
J. Exp. Med.
, vol.205
, pp. 565-574
-
-
Haxhinasto, S.1
-
36
-
-
0031821875
-
CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production
-
Thornton A.M., Shevach E.M. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med. 1998, 188:287-296.
-
(1998)
J. Exp. Med.
, vol.188
, pp. 287-296
-
-
Thornton, A.M.1
Shevach, E.M.2
-
37
-
-
0035525739
-
Human CD4(+)CD25(+) cells: a naturally occurring population of regulatory T cells
-
Ng W.F., et al. Human CD4(+)CD25(+) cells: a naturally occurring population of regulatory T cells. Blood 2001, 98:2736-2744.
-
(2001)
Blood
, vol.98
, pp. 2736-2744
-
-
Ng, W.F.1
-
38
-
-
20444373376
-
Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells
-
Battaglia M., et al. Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. Blood 2005, 105:4743-4748.
-
(2005)
Blood
, vol.105
, pp. 4743-4748
-
-
Battaglia, M.1
-
39
-
-
33746368487
-
Induction of tolerance in type 1 diabetes via both CD4+CD25+ T regulatory cells and T regulatory type 1 cells
-
Battaglia M., et al. Induction of tolerance in type 1 diabetes via both CD4+CD25+ T regulatory cells and T regulatory type 1 cells. Diabetes 2006, 55:1571-1580.
-
(2006)
Diabetes
, vol.55
, pp. 1571-1580
-
-
Battaglia, M.1
-
40
-
-
33845915103
-
Selective survival of naturally occurring human CD4+CD25+Foxp3+ regulatory T cells cultured with rapamycin
-
Strauss L., et al. Selective survival of naturally occurring human CD4+CD25+Foxp3+ regulatory T cells cultured with rapamycin. J. Immunol. 2007, 178:320-329.
-
(2007)
J. Immunol.
, vol.178
, pp. 320-329
-
-
Strauss, L.1
-
41
-
-
38049177784
-
Differential impact of mammalian target of rapamycin inhibition on CD4+CD25+Foxp3+ regulatory T cells compared with conventional CD4+ T cells
-
Zeiser R., et al. Differential impact of mammalian target of rapamycin inhibition on CD4+CD25+Foxp3+ regulatory T cells compared with conventional CD4+ T cells. Blood 2008, 111:453-462.
-
(2008)
Blood
, vol.111
, pp. 453-462
-
-
Zeiser, R.1
-
42
-
-
33845935950
-
IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells
-
Burchill M.A., et al. IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J. Immunol. 2007, 178:280-290.
-
(2007)
J. Immunol.
, vol.178
, pp. 280-290
-
-
Burchill, M.A.1
-
43
-
-
34247564147
-
Nonredundant roles for Stat5a/b in directly regulating Foxp3
-
Yao Z., et al. Nonredundant roles for Stat5a/b in directly regulating Foxp3. Blood 2007, 109:4368-4375.
-
(2007)
Blood
, vol.109
, pp. 4368-4375
-
-
Yao, Z.1
-
44
-
-
44449100271
-
Cutting edge: Foxp3-mediated induction of pim 2 allows human T regulatory cells to preferentially expand in rapamycin
-
Basu S., et al. Cutting edge: Foxp3-mediated induction of pim 2 allows human T regulatory cells to preferentially expand in rapamycin. J. Immunol. 2008, 180:5794-5798.
-
(2008)
J. Immunol.
, vol.180
, pp. 5794-5798
-
-
Basu, S.1
-
45
-
-
33745861719
-
Rapamycin-mediated enrichment of T cells with regulatory activity in stimulated CD4+ T cell cultures is not due to the selective expansion of naturally occurring regulatory T cells but to the induction of regulatory functions in conventional CD4+ T cells
-
Valmori D., et al. Rapamycin-mediated enrichment of T cells with regulatory activity in stimulated CD4+ T cell cultures is not due to the selective expansion of naturally occurring regulatory T cells but to the induction of regulatory functions in conventional CD4+ T cells. J. Immunol. 2006, 177:944-949.
-
(2006)
J. Immunol.
, vol.177
, pp. 944-949
-
-
Valmori, D.1
-
46
-
-
77952280516
-
Anergic T cells are metabolically anergic
-
Zheng Y., et al. Anergic T cells are metabolically anergic. J. Immunol. 2009, 183:6095-6101.
-
(2009)
J. Immunol.
, vol.183
, pp. 6095-6101
-
-
Zheng, Y.1
-
47
-
-
77951234655
-
Generation and accumulation of immunosuppressive adenosine by human CD4+CD25highFOXP3+ regulatory T cells
-
Mandapathi M., et al. Generation and accumulation of immunosuppressive adenosine by human CD4+CD25highFOXP3+ regulatory T cells. J. Biol. Chem. 2010, 285:7176-7186.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 7176-7186
-
-
Mandapathi, M.1
-
48
-
-
33749448575
-
Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo
-
Vukmanovic-Stejic M., et al. Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo. J. Clin. Invest. 2006, 116:2829-2830.
-
(2006)
J. Clin. Invest.
, vol.116
, pp. 2829-2830
-
-
Vukmanovic-Stejic, M.1
-
49
-
-
70450161700
-
Impact of culture medium on the expansion of T cells for immunotherapy
-
Sato K., et al. Impact of culture medium on the expansion of T cells for immunotherapy. Cytotherapy 2009, 11:936-946.
-
(2009)
Cytotherapy
, vol.11
, pp. 936-946
-
-
Sato, K.1
-
50
-
-
70350339508
-
Nutritional programming of the metabolic syndrome
-
Symonds M.E., et al. Nutritional programming of the metabolic syndrome. Nat. Rev. Endocrinol. 2009, 5:604-610.
-
(2009)
Nat. Rev. Endocrinol.
, vol.5
, pp. 604-610
-
-
Symonds, M.E.1
-
51
-
-
70350188297
-
Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome
-
Maury E., et al. Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol. Cell Endocrinol. 2010, 15:1-16.
-
(2010)
Mol. Cell Endocrinol.
, vol.15
, pp. 1-16
-
-
Maury, E.1
-
52
-
-
33845866857
-
Inflammation and metabolic disorders
-
Hotamisligil G.S. Inflammation and metabolic disorders. Nature 2006, 14:860-867.
-
(2006)
Nature
, vol.14
, pp. 860-867
-
-
Hotamisligil, G.S.1
-
53
-
-
55849114349
-
Adipocytokines and the metabolic complications of obesity
-
Rasouli N., et al. Adipocytokines and the metabolic complications of obesity. J. Clin. Endocrinol. Metab. 2008, 93:64-73.
-
(2008)
J. Clin. Endocrinol. Metab.
, vol.93
, pp. 64-73
-
-
Rasouli, N.1
-
54
-
-
58149347247
-
Adipokines and the immune system: an adipocentric view
-
MacLaren R., et al. Adipokines and the immune system: an adipocentric view. Adv. Exp. Med. Biol. 2008, 632:1-21.
-
(2008)
Adv. Exp. Med. Biol.
, vol.632
, pp. 1-21
-
-
MacLaren, R.1
-
55
-
-
54249149973
-
Adipose-immune interactions during obesity and caloric restriction: reciprocal mechanisms regulating immunity and health span
-
Dixit V.D. Adipose-immune interactions during obesity and caloric restriction: reciprocal mechanisms regulating immunity and health span. J. Leukoc. Biol. 2008, 84:882-892.
-
(2008)
J. Leukoc. Biol.
, vol.84
, pp. 882-892
-
-
Dixit, V.D.1
-
56
-
-
0036905264
-
Move over protein kinase C, you've got company: alternative cellular effectors of diacylglycerol and phorbol esters
-
Brose N., Rosenmund C. Move over protein kinase C, you've got company: alternative cellular effectors of diacylglycerol and phorbol esters. J. Cell Sci. 2002, 115:4399-4411.
-
(2002)
J. Cell Sci.
, vol.115
, pp. 4399-4411
-
-
Brose, N.1
Rosenmund, C.2
-
57
-
-
0141844653
-
Reciprocal modulation of Toll-like receptor-4 signaling pathways involving MyD88 and phosphatidylinositol 3-kinase/AKT by saturated and polyunsaturated fatty acids
-
Lee J.Y., et al. Reciprocal modulation of Toll-like receptor-4 signaling pathways involving MyD88 and phosphatidylinositol 3-kinase/AKT by saturated and polyunsaturated fatty acids. J. Biol. Chem. 2003, 278:37041-37051.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 37041-37051
-
-
Lee, J.Y.1
-
58
-
-
2642561229
-
Palmitate, but not unsaturated fatty acids, induces the expression of interleukin-6 in human myotubes through proteasome-dependent activation of nuclear factor kappa B
-
Weigert C., et al. Palmitate, but not unsaturated fatty acids, induces the expression of interleukin-6 in human myotubes through proteasome-dependent activation of nuclear factor kappa B. J. Biol. Chem. 2004, 279:23942-23952.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 23942-23952
-
-
Weigert, C.1
-
59
-
-
3442895916
-
Inhibition of insulin sensitivity by free fatty acids requires activation of multiple serine kinases in 3T3-L1 adipocytes
-
Gao Z., et al. Inhibition of insulin sensitivity by free fatty acids requires activation of multiple serine kinases in 3T3-L1 adipocytes. Mol. Endocrinol. 2004, 18:2024-2034.
-
(2004)
Mol. Endocrinol.
, vol.18
, pp. 2024-2034
-
-
Gao, Z.1
-
60
-
-
5644231992
-
Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes
-
Ozcan U., et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 2004, 306:457-461.
-
(2004)
Science
, vol.306
, pp. 457-461
-
-
Ozcan, U.1
-
63
-
-
70449348631
-
Direct and macrophage-mediated actions of fatty acids causing insulin resistance in muscle cells
-
Bilan P.J., et al. Direct and macrophage-mediated actions of fatty acids causing insulin resistance in muscle cells. Arch. Physiol. Biochem. 2009, 115:176-190.
-
(2009)
Arch. Physiol. Biochem.
, vol.115
, pp. 176-190
-
-
Bilan, P.J.1
-
64
-
-
70349395711
-
Role of macrophage tissue infiltration in obesity and insulin resistance
-
Bourlier V., et al. Role of macrophage tissue infiltration in obesity and insulin resistance. Diabetes Metab. 2009, 35:251-260.
-
(2009)
Diabetes Metab.
, vol.35
, pp. 251-260
-
-
Bourlier, V.1
-
65
-
-
68349127290
-
T-ing up inflammation in fat
-
Lumeng C.N., et al. T-ing up inflammation in fat. Nat. Med. 2009, 15:846-847.
-
(2009)
Nat. Med.
, vol.15
, pp. 846-847
-
-
Lumeng, C.N.1
-
66
-
-
0037562083
-
Reversal of behavioral and metabolic abnormalities, and insulin resistance syndrome, by dietary restriction in mice deficient in brain-derived neurotrophic factor
-
Duan W., et al. Reversal of behavioral and metabolic abnormalities, and insulin resistance syndrome, by dietary restriction in mice deficient in brain-derived neurotrophic factor. Endocrinology 2003, 144:2446-2453.
-
(2003)
Endocrinology
, vol.144
, pp. 2446-2453
-
-
Duan, W.1
-
67
-
-
19944427435
-
Caloric restriction increases neurotrophic factor levels and attenuates neurochemical and behavioral deficits in a primate model of Parkinson's disease
-
Maswood N., et al. Caloric restriction increases neurotrophic factor levels and attenuates neurochemical and behavioral deficits in a primate model of Parkinson's disease. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:18171-18176.
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 18171-18176
-
-
Maswood, N.1
-
68
-
-
0026507725
-
The effects of dietary restriction on immune function and development of autoimmune disease in BXSB mice
-
Kubo C., et al. The effects of dietary restriction on immune function and development of autoimmune disease in BXSB mice. Proc. Natl. Acad. Sci. U.S.A. 1992, 89:3145-3149.
-
(1992)
Proc. Natl. Acad. Sci. U.S.A.
, vol.89
, pp. 3145-3149
-
-
Kubo, C.1
-
69
-
-
4544375557
-
Age associated alterations in costimulatory and adhesion molecule expression in lupus-prone mice are attenuated by food restriction with n-6 and n-3 fatty acids
-
Muthukumar A. Age associated alterations in costimulatory and adhesion molecule expression in lupus-prone mice are attenuated by food restriction with n-6 and n-3 fatty acids. J. Clin. Immunol. 2004, 24:471-480.
-
(2004)
J. Clin. Immunol.
, vol.24
, pp. 471-480
-
-
Muthukumar, A.1
-
70
-
-
78650667165
-
Leptin modulates the survival of autoreactive CD4+ T cells through the nutrient/energy-sensing mammalian target of rapamycin signaling pathway
-
Galgani M., et al. Leptin modulates the survival of autoreactive CD4+ T cells through the nutrient/energy-sensing mammalian target of rapamycin signaling pathway. J. Immunol. 2010, 185:7474-7479.
-
(2010)
J. Immunol.
, vol.185
, pp. 7474-7479
-
-
Galgani, M.1
-
71
-
-
54249147709
-
Chronic calorie restriction attenuates experimental autoimmune encephalomyelitis
-
Piccio L., et al. Chronic calorie restriction attenuates experimental autoimmune encephalomyelitis. J. Leukoc. Biol. 2008, 8:940-948.
-
(2008)
J. Leukoc. Biol.
, vol.8
, pp. 940-948
-
-
Piccio, L.1
-
72
-
-
67650944993
-
Rapamycin fed late in life extends lifespan in genetically heterogeneous mice
-
Harrison D.E., et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 2009, 460:392-395.
-
(2009)
Nature
, vol.460
, pp. 392-395
-
-
Harrison, D.E.1
-
73
-
-
33745630063
-
Leptin is a link between adipose tissue and inflammation
-
Härle P., Straub R.H. Leptin is a link between adipose tissue and inflammation. Ann. N. Y. Acad. Sci. 2006, 1069:454-462.
-
(2006)
Ann. N. Y. Acad. Sci.
, vol.1069
, pp. 454-462
-
-
Härle, P.1
Straub, R.H.2
-
74
-
-
68249124611
-
Treatment with rapamycin ameliorates clinical and histological signs of protracted relapsing experimental allergic encephalomyelitis in Dark Agouti rats and induces expansion of peripheral CD4+CD25+Foxp3+ regulatory T cells
-
Donia M., et al. Treatment with rapamycin ameliorates clinical and histological signs of protracted relapsing experimental allergic encephalomyelitis in Dark Agouti rats and induces expansion of peripheral CD4+CD25+Foxp3+ regulatory T cells. J. Autoimmun. 2009, 33:135-140.
-
(2009)
J. Autoimmun.
, vol.33
, pp. 135-140
-
-
Donia, M.1
-
75
-
-
77949264184
-
Rapamycin inhibits relapsing experimental autoimmune encephalomyelitis by both effector and regulatory T cells modulation
-
Esposito M., et al. Rapamycin inhibits relapsing experimental autoimmune encephalomyelitis by both effector and regulatory T cells modulation. J. Neuroimmunol. 2010, 220:52-63.
-
(2010)
J. Neuroimmunol.
, vol.220
, pp. 52-63
-
-
Esposito, M.1
-
76
-
-
70349156338
-
Use of a cocktail regimen consisting of soluble galectin-1, rapamycin and histone deacetylase inhibitor may effectively prevent type 1 diabetes
-
Jiang G.X., et al. Use of a cocktail regimen consisting of soluble galectin-1, rapamycin and histone deacetylase inhibitor may effectively prevent type 1 diabetes. Arch. Med. Res. 2009, 40:424-426.
-
(2009)
Arch. Med. Res.
, vol.40
, pp. 424-426
-
-
Jiang, G.X.1
-
77
-
-
75149154705
-
FOXO-dependent regulation of innate immune homeostasis
-
Becker T., et al. FOXO-dependent regulation of innate immune homeostasis. Nature 2010, 463:369-373.
-
(2010)
Nature
, vol.463
, pp. 369-373
-
-
Becker, T.1
-
78
-
-
10944247187
-
The AMP-activated protein kinase pathway-new players upstream and downstream
-
Hardie D.G. The AMP-activated protein kinase pathway-new players upstream and downstream. J. Cell Sci. 2004, 117:5479-5487.
-
(2004)
J. Cell Sci.
, vol.117
, pp. 5479-5487
-
-
Hardie, D.G.1
-
79
-
-
10744230065
-
LKB1 is the upstream kinase in the AMP-activated protein kinase cascade
-
Woods A., et al. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr. Biol. 2003, 13:2004-2008.
-
(2003)
Curr. Biol.
, vol.13
, pp. 2004-2008
-
-
Woods, A.1
-
80
-
-
0345107247
-
Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade
-
Hawley S.A., et al. Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J. Biol. 2003, 2:28.
-
(2003)
J. Biol.
, vol.2
, pp. 28
-
-
Hawley, S.A.1
-
81
-
-
67649196932
-
Metformin attenuated the autoimmune disease of the central nervous system in animal models of multiple sclerosis
-
Nath N., et al. Metformin attenuated the autoimmune disease of the central nervous system in animal models of multiple sclerosis. J. Immunol. 2009, 182:8005-8014.
-
(2009)
J. Immunol.
, vol.182
, pp. 8005-8014
-
-
Nath, N.1
-
82
-
-
16344384026
-
Suppression of FOXO1 activity by FHL2 through SIRT1-mediated deacetylation
-
Yang Y., et al. Suppression of FOXO1 activity by FHL2 through SIRT1-mediated deacetylation. EMBO J. 2005, 24:1021-1032.
-
(2005)
EMBO J.
, vol.24
, pp. 1021-1032
-
-
Yang, Y.1
-
83
-
-
33645221885
-
Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival following DNA damage
-
Solomon J.M., et al. Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival following DNA damage. Mol. Cell Biol. 2006, 26:28-38.
-
(2006)
Mol. Cell Biol.
, vol.26
, pp. 28-38
-
-
Solomon, J.M.1
-
84
-
-
3242719545
-
Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase
-
Yeung F., et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 2004, 23:2369-2380.
-
(2004)
EMBO J.
, vol.23
, pp. 2369-2380
-
-
Yeung, F.1
-
85
-
-
14544282413
-
Nutrient control of glucose homeostasis through a complex of PGC-1a and SIRT1
-
Rodgers J.T., et al. Nutrient control of glucose homeostasis through a complex of PGC-1a and SIRT1. Nature 2005, 3:113-118.
-
(2005)
Nature
, vol.3
, pp. 113-118
-
-
Rodgers, J.T.1
-
86
-
-
33244486764
-
SIRT1 regulates insulin secretion by repressing UCP-2 in pancreatic beta cells
-
Bordone L., et al. SIRT1 regulates insulin secretion by repressing UCP-2 in pancreatic beta cells. PLoS Biol. 2006, 4:e31.
-
(2006)
PLoS Biol.
, vol.4
-
-
Bordone, L.1
-
87
-
-
3042681042
-
SIRT1 promotes fat mobilization in white adipocytes by repressing PPAR-γ
-
Picard F., et al. SIRT1 promotes fat mobilization in white adipocytes by repressing PPAR-γ. Nature 2004, 17:771-776.
-
(2004)
Nature
, vol.17
, pp. 771-776
-
-
Picard, F.1
-
88
-
-
0035503936
-
Immunomodulatory activity of resveratrol: suppression of lymphocyte proliferation, development of cell-mediated cytotoxicity, and cytokine production
-
Gao X., et al. Immunomodulatory activity of resveratrol: suppression of lymphocyte proliferation, development of cell-mediated cytotoxicity, and cytokine production. Biochem. Pharmacol. 2001, 62:1299-1308.
-
(2001)
Biochem. Pharmacol.
, vol.62
, pp. 1299-1308
-
-
Gao, X.1
-
89
-
-
70349440053
-
The type III histone deacetylase Sirt1 is essential for maintenance of T cell tolerance in mice
-
Zhang J., et al. The type III histone deacetylase Sirt1 is essential for maintenance of T cell tolerance in mice. J. Clin. Invest. 2009, 119:3048-3058.
-
(2009)
J. Clin. Invest.
, vol.119
, pp. 3048-3058
-
-
Zhang, J.1
-
90
-
-
77649225958
-
Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization
-
van Loosdregt J., et al. Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization. Blood 2010, 115:965-974.
-
(2010)
Blood
, vol.115
, pp. 965-974
-
-
van Loosdregt, J.1
-
92
-
-
4143129696
-
Regulation of NF-kappaB, Th activation, and autoinflammation by the forkhead transcription factor Foxo3a
-
Lin L., et al. Regulation of NF-kappaB, Th activation, and autoinflammation by the forkhead transcription factor Foxo3a. Immunity 2004, 21:203-213.
-
(2004)
Immunity
, vol.21
, pp. 203-213
-
-
Lin, L.1
-
93
-
-
58449102260
-
Foxo1 links homing and survival of naive T cells by regulating L-selectin, CCR7 and interleukin 7 receptor
-
Kerdiles Y.M., et al. Foxo1 links homing and survival of naive T cells by regulating L-selectin, CCR7 and interleukin 7 receptor. Nat. Immunol. 2009, 10:176-184.
-
(2009)
Nat. Immunol.
, vol.10
, pp. 176-184
-
-
Kerdiles, Y.M.1
-
94
-
-
62049086102
-
An essential role of the Forkhead-box transcription factor Foxo1 in control of T cell homeostasis and tolerance
-
Ouyang W., et al. An essential role of the Forkhead-box transcription factor Foxo1 in control of T cell homeostasis and tolerance. Immunity 2009, 30:358-371.
-
(2009)
Immunity
, vol.30
, pp. 358-371
-
-
Ouyang, W.1
-
95
-
-
78650085394
-
Foxo transcription factors control regulatory T cell development and function
-
Kerdiles Y.M., et al. Foxo transcription factors control regulatory T cell development and function. Immunity 2010, 33:890-904.
-
(2010)
Immunity
, vol.33
, pp. 890-904
-
-
Kerdiles, Y.M.1
-
96
-
-
77953811224
-
Foxo proteins cooperatively control the differentiation of Foxp3+ regulatory T cells
-
Ouyang W., et al. Foxo proteins cooperatively control the differentiation of Foxp3+ regulatory T cells. Nat. Immunol. 2010, 11:618-627.
-
(2010)
Nat. Immunol.
, vol.11
, pp. 618-627
-
-
Ouyang, W.1
-
97
-
-
77954395996
-
Transcription factors Foxo3a and Foxo1 couple the E3 ligase Cbl-b to the induction of Foxp3 expression in induced regulatory T cells
-
Harada Y., et al. Transcription factors Foxo3a and Foxo1 couple the E3 ligase Cbl-b to the induction of Foxp3 expression in induced regulatory T cells. J. Exp. Med. 2010, 207:1381-1391.
-
(2010)
J. Exp. Med.
, vol.207
, pp. 1381-1391
-
-
Harada, Y.1
-
98
-
-
0029761275
-
TRAF6 is a signal transducer for interleukin-1
-
Cao Z., et al. TRAF6 is a signal transducer for interleukin-1. Nature 1996, 383:443-446.
-
(1996)
Nature
, vol.383
, pp. 443-446
-
-
Cao, Z.1
-
99
-
-
0242720415
-
TRAF6, a molecular bridge spanning adaptive immunity, innate immunity and osteoimmunology
-
Wu H., Arron J.R. TRAF6, a molecular bridge spanning adaptive immunity, innate immunity and osteoimmunology. Bioessays 2003, 25:1096-1105.
-
(2003)
Bioessays
, vol.25
, pp. 1096-1105
-
-
Wu, H.1
Arron, J.R.2
-
100
-
-
18444390259
-
Distinct molecular mechanism for initiating TRAF6 signalling
-
Ye H., et al. Distinct molecular mechanism for initiating TRAF6 signalling. Nature 2002, 418:443-447.
-
(2002)
Nature
, vol.418
, pp. 443-447
-
-
Ye, H.1
-
101
-
-
0034644474
-
Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain
-
Deng L., et al. Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 2000, 103:351-361.
-
(2000)
Cell
, vol.103
, pp. 351-361
-
-
Deng, L.1
-
102
-
-
40449139114
-
Cutting edge: requirement for TRAF6 in the induction of T cell anergy
-
King C.G., et al. Cutting edge: requirement for TRAF6 in the induction of T cell anergy. J. Immunol. 2008, 180:34-38.
-
(2008)
J. Immunol.
, vol.180
, pp. 34-38
-
-
King, C.G.1
-
103
-
-
67650096912
-
Enhancing CD8 T-cell memory by modulating fatty acid metabolism
-
Pearce E.L., et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 2009, 460:103-107.
-
(2009)
Nature
, vol.460
, pp. 103-107
-
-
Pearce, E.L.1
|