메뉴 건너뛰기




Volumn 33, Issue 1, 2012, Pages 1-7

Intracellular metabolic pathways control immune tolerance

Author keywords

[No Author keywords available]

Indexed keywords

LEPTIN; MAMMALIAN TARGET OF RAPAMYCIN;

EID: 84855303303     PISSN: 14714906     EISSN: 14714981     Source Type: Journal    
DOI: 10.1016/j.it.2011.09.002     Document Type: Review
Times cited : (59)

References (103)
  • 1
    • 43949105866 scopus 로고    scopus 로고
    • Regulatory T cells and immune tolerance
    • Sakaguchi S., et al. Regulatory T cells and immune tolerance. Cell 2008, 133:775-787.
    • (2008) Cell , vol.133 , pp. 775-787
    • Sakaguchi, S.1
  • 2
    • 69049107358 scopus 로고    scopus 로고
    • Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo
    • Zhou X., et al. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat. Immunol. 2009, 10:1000-1007.
    • (2009) Nat. Immunol. , vol.10 , pp. 1000-1007
    • Zhou, X.1
  • 3
    • 79151484704 scopus 로고    scopus 로고
    • Adipokines in inflammation and metabolic disease
    • Ouchi N., et al. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 2011, 11:85-97.
    • (2011) Nat. Rev. Immunol. , vol.11 , pp. 85-97
    • Ouchi, N.1
  • 4
    • 79151478555 scopus 로고    scopus 로고
    • Type 2 diabetes as an inflammatory disease
    • Donath M.Y., Shoelson S.E. Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol. 2011, 11:98-107.
    • (2011) Nat. Rev. Immunol. , vol.11 , pp. 98-107
    • Donath, M.Y.1    Shoelson, S.E.2
  • 5
    • 79151486083 scopus 로고    scopus 로고
    • Metabolism, migration and memory in cytotoxic T cells
    • Finlay D., Cantrell D.A. Metabolism, migration and memory in cytotoxic T cells. Nat. Rev. Immunol. 2011, 11:109-117.
    • (2011) Nat. Rev. Immunol. , vol.11 , pp. 109-117
    • Finlay, D.1    Cantrell, D.A.2
  • 6
    • 68349148211 scopus 로고    scopus 로고
    • Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters
    • Feuerer M., et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 2009, 15:930-939.
    • (2009) Nat. Med. , vol.15 , pp. 930-939
    • Feuerer, M.1
  • 7
    • 68349137821 scopus 로고    scopus 로고
    • Normalization of obesity-associated insulin resistance through immunotherapy
    • Winer S., et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nat. Med. 2009, 15:921-929.
    • (2009) Nat. Med. , vol.15 , pp. 921-929
    • Winer, S.1
  • 8
    • 77957054466 scopus 로고    scopus 로고
    • The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism
    • Powell J.D., Delgoffe G.M. The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism. Immunity 2010, 33:301-311.
    • (2010) Immunity , vol.33 , pp. 301-311
    • Powell, J.D.1    Delgoffe, G.M.2
  • 9
    • 78049287331 scopus 로고    scopus 로고
    • MTOR signalling and metabolic regulation of T cell differentiation
    • Peter C., et al. mTOR signalling and metabolic regulation of T cell differentiation. Curr. Opin. Immunol. 2010, 5:655-661.
    • (2010) Curr. Opin. Immunol. , vol.5 , pp. 655-661
    • Peter, C.1
  • 10
    • 0032572722 scopus 로고    scopus 로고
    • Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression
    • Lord G.M., et al. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 1998, 394:897-901.
    • (1998) Nature , vol.394 , pp. 897-901
    • Lord, G.M.1
  • 11
    • 37849030260 scopus 로고    scopus 로고
    • Regulatory CD4 T cells: sensing the environment
    • Matarese G., et al. Regulatory CD4 T cells: sensing the environment. Trends Immunol. 2008, 29:12-17.
    • (2008) Trends Immunol. , vol.29 , pp. 12-17
    • Matarese, G.1
  • 12
    • 1642315558 scopus 로고    scopus 로고
    • The intricate interface between immune system and metabolism
    • Matarese G., La Cava A. The intricate interface between immune system and metabolism. Trends Immunol. 2004, 25:193-200.
    • (2004) Trends Immunol. , vol.25 , pp. 193-200
    • Matarese, G.1    La Cava, A.2
  • 13
    • 33847312289 scopus 로고    scopus 로고
    • A key role of leptin in the control of regulatory T cell proliferation
    • De Rosa V., et al. A key role of leptin in the control of regulatory T cell proliferation. Immunity 2007, 26:241-255.
    • (2007) Immunity , vol.26 , pp. 241-255
    • De Rosa, V.1
  • 14
    • 0036069699 scopus 로고    scopus 로고
    • The CD28 signaling pathway regulates glucose metabolism
    • Frauwirth K.A., et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 2002, 16:769-777.
    • (2002) Immunity , vol.16 , pp. 769-777
    • Frauwirth, K.A.1
  • 15
    • 34247184208 scopus 로고    scopus 로고
    • Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking
    • Wieman H.L., et al. Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking. Mol. Biol. Cell 2007, 18:1437-1446.
    • (2007) Mol. Biol. Cell , vol.18 , pp. 1437-1446
    • Wieman, H.L.1
  • 16
    • 0035312747 scopus 로고    scopus 로고
    • Regulation of translation initiation by FRAP/mTOR
    • Gingras A.C., et al. Regulation of translation initiation by FRAP/mTOR. Genes Dev. 2001, 15:807-826.
    • (2001) Genes Dev. , vol.15 , pp. 807-826
    • Gingras, A.C.1
  • 17
    • 27744519400 scopus 로고    scopus 로고
    • Fuel feeds function: energy metabolism and the T-cell response
    • Fox C.J., et al. Fuel feeds function: energy metabolism and the T-cell response. Nat. Rev. Immunol. 2005, 5:844-852.
    • (2005) Nat. Rev. Immunol. , vol.5 , pp. 844-852
    • Fox, C.J.1
  • 18
    • 0027474296 scopus 로고
    • Metabolic changes in activated T cells: an NMR study of human peripheral blood lymphocytes
    • Bental M., Deutsch C. Metabolic changes in activated T cells: an NMR study of human peripheral blood lymphocytes. Magn. Reson. Med. 1993, 29:317-326.
    • (1993) Magn. Reson. Med. , vol.29 , pp. 317-326
    • Bental, M.1    Deutsch, C.2
  • 19
    • 34547098277 scopus 로고    scopus 로고
    • Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression
    • Borsellino G., et al. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 2007, 110:1225-1232.
    • (2007) Blood , vol.110 , pp. 1225-1232
    • Borsellino, G.1
  • 20
    • 77953897189 scopus 로고    scopus 로고
    • Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways
    • Lee K., et al. Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity 2010, 32:743-753.
    • (2010) Immunity , vol.32 , pp. 743-753
    • Lee, K.1
  • 21
    • 66949173728 scopus 로고    scopus 로고
    • The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment
    • Delgoffe G.M., et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 2009, 30:832-844.
    • (2009) Immunity , vol.30 , pp. 832-844
    • Delgoffe, G.M.1
  • 22
    • 78650188983 scopus 로고    scopus 로고
    • An oscillatory switch in mTOR kinase activity sets regulatory T cell responsiveness
    • Procaccini C., et al. An oscillatory switch in mTOR kinase activity sets regulatory T cell responsiveness. Immunity 2010, 33:929-941.
    • (2010) Immunity , vol.33 , pp. 929-941
    • Procaccini, C.1
  • 23
    • 79953172571 scopus 로고    scopus 로고
    • Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets
    • Michalek R.D., et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol. 2011, 186:3299-3303.
    • (2011) J. Immunol. , vol.186 , pp. 3299-3303
    • Michalek, R.D.1
  • 24
    • 79960369458 scopus 로고    scopus 로고
    • HIF1{alpha}-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells
    • Shi L.Z., et al. HIF1{alpha}-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 2011, 208:1367-1376.
    • (2011) J. Exp. Med. , vol.208 , pp. 1367-1376
    • Shi, L.Z.1
  • 25
    • 80052277906 scopus 로고    scopus 로고
    • Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1
    • Dang E.V., et al. Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell 2011, 146:772-784.
    • (2011) Cell , vol.146 , pp. 772-784
    • Dang, E.V.1
  • 26
    • 65949113818 scopus 로고    scopus 로고
    • The axis of mTOR-mitochondria-ROS and stemness of the hematopoietic stem cells
    • Chen C., et al. The axis of mTOR-mitochondria-ROS and stemness of the hematopoietic stem cells. Cell Cycle 2009, 15:1158-1160.
    • (2009) Cell Cycle , vol.15 , pp. 1158-1160
    • Chen, C.1
  • 27
    • 78049317366 scopus 로고    scopus 로고
    • Induction of regulatory T cells by macrophages is dependent on production of reactive oxygen species
    • Kraaij M.D., et al. Induction of regulatory T cells by macrophages is dependent on production of reactive oxygen species. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:17686-17691.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 17686-17691
    • Kraaij, M.D.1
  • 28
    • 0037178786 scopus 로고    scopus 로고
    • MTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
    • Kim D.H., et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002, 110:163-175.
    • (2002) Cell , vol.110 , pp. 163-175
    • Kim, D.H.1
  • 29
    • 3342895823 scopus 로고    scopus 로고
    • Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton
    • Sarbassov D.D., et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol. 2004, 14:1296-1302.
    • (2004) Curr. Biol. , vol.14 , pp. 1296-1302
    • Sarbassov, D.D.1
  • 30
    • 70350418625 scopus 로고    scopus 로고
    • MTOR signalling at a glance
    • Laplante M., Sabatini D.M. mTOR signalling at a glance. J. Cell Sci. 2009, 122:3589-3594.
    • (2009) J. Cell Sci. , vol.122 , pp. 3589-3594
    • Laplante, M.1    Sabatini, D.M.2
  • 31
    • 22544455676 scopus 로고    scopus 로고
    • Identification of S6 kinase 1 as a novel mammalian target of rapamycin (mTOR)-phosphorylating kinase
    • Holz M.K., Blenis J. Identification of S6 kinase 1 as a novel mammalian target of rapamycin (mTOR)-phosphorylating kinase. J. Biol. Chem. 2005, 280:26089-26093.
    • (2005) J. Biol. Chem. , vol.280 , pp. 26089-26093
    • Holz, M.K.1    Blenis, J.2
  • 32
    • 77955483125 scopus 로고    scopus 로고
    • Activation of a metabolic gene regulatory network downstream of mTOR complex 1
    • Düvel K., et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 2010, 39:171-183.
    • (2010) Mol. Cell , vol.39 , pp. 171-183
    • Düvel, K.1
  • 33
    • 79952985551 scopus 로고    scopus 로고
    • The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2
    • Delgoffe G.M., et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat. Immunol. 2011, 12:295-303.
    • (2011) Nat. Immunol. , vol.12 , pp. 295-303
    • Delgoffe, G.M.1
  • 34
    • 45549098562 scopus 로고    scopus 로고
    • T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR
    • Sauer S., et al. T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:7797-7802.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 7797-7802
    • Sauer, S.1
  • 35
    • 41149113441 scopus 로고    scopus 로고
    • The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells
    • Haxhinasto S., et al. The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. J. Exp. Med. 2008, 205:565-574.
    • (2008) J. Exp. Med. , vol.205 , pp. 565-574
    • Haxhinasto, S.1
  • 36
    • 0031821875 scopus 로고    scopus 로고
    • CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production
    • Thornton A.M., Shevach E.M. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med. 1998, 188:287-296.
    • (1998) J. Exp. Med. , vol.188 , pp. 287-296
    • Thornton, A.M.1    Shevach, E.M.2
  • 37
    • 0035525739 scopus 로고    scopus 로고
    • Human CD4(+)CD25(+) cells: a naturally occurring population of regulatory T cells
    • Ng W.F., et al. Human CD4(+)CD25(+) cells: a naturally occurring population of regulatory T cells. Blood 2001, 98:2736-2744.
    • (2001) Blood , vol.98 , pp. 2736-2744
    • Ng, W.F.1
  • 38
    • 20444373376 scopus 로고    scopus 로고
    • Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells
    • Battaglia M., et al. Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. Blood 2005, 105:4743-4748.
    • (2005) Blood , vol.105 , pp. 4743-4748
    • Battaglia, M.1
  • 39
    • 33746368487 scopus 로고    scopus 로고
    • Induction of tolerance in type 1 diabetes via both CD4+CD25+ T regulatory cells and T regulatory type 1 cells
    • Battaglia M., et al. Induction of tolerance in type 1 diabetes via both CD4+CD25+ T regulatory cells and T regulatory type 1 cells. Diabetes 2006, 55:1571-1580.
    • (2006) Diabetes , vol.55 , pp. 1571-1580
    • Battaglia, M.1
  • 40
    • 33845915103 scopus 로고    scopus 로고
    • Selective survival of naturally occurring human CD4+CD25+Foxp3+ regulatory T cells cultured with rapamycin
    • Strauss L., et al. Selective survival of naturally occurring human CD4+CD25+Foxp3+ regulatory T cells cultured with rapamycin. J. Immunol. 2007, 178:320-329.
    • (2007) J. Immunol. , vol.178 , pp. 320-329
    • Strauss, L.1
  • 41
    • 38049177784 scopus 로고    scopus 로고
    • Differential impact of mammalian target of rapamycin inhibition on CD4+CD25+Foxp3+ regulatory T cells compared with conventional CD4+ T cells
    • Zeiser R., et al. Differential impact of mammalian target of rapamycin inhibition on CD4+CD25+Foxp3+ regulatory T cells compared with conventional CD4+ T cells. Blood 2008, 111:453-462.
    • (2008) Blood , vol.111 , pp. 453-462
    • Zeiser, R.1
  • 42
    • 33845935950 scopus 로고    scopus 로고
    • IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells
    • Burchill M.A., et al. IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J. Immunol. 2007, 178:280-290.
    • (2007) J. Immunol. , vol.178 , pp. 280-290
    • Burchill, M.A.1
  • 43
    • 34247564147 scopus 로고    scopus 로고
    • Nonredundant roles for Stat5a/b in directly regulating Foxp3
    • Yao Z., et al. Nonredundant roles for Stat5a/b in directly regulating Foxp3. Blood 2007, 109:4368-4375.
    • (2007) Blood , vol.109 , pp. 4368-4375
    • Yao, Z.1
  • 44
    • 44449100271 scopus 로고    scopus 로고
    • Cutting edge: Foxp3-mediated induction of pim 2 allows human T regulatory cells to preferentially expand in rapamycin
    • Basu S., et al. Cutting edge: Foxp3-mediated induction of pim 2 allows human T regulatory cells to preferentially expand in rapamycin. J. Immunol. 2008, 180:5794-5798.
    • (2008) J. Immunol. , vol.180 , pp. 5794-5798
    • Basu, S.1
  • 45
    • 33745861719 scopus 로고    scopus 로고
    • Rapamycin-mediated enrichment of T cells with regulatory activity in stimulated CD4+ T cell cultures is not due to the selective expansion of naturally occurring regulatory T cells but to the induction of regulatory functions in conventional CD4+ T cells
    • Valmori D., et al. Rapamycin-mediated enrichment of T cells with regulatory activity in stimulated CD4+ T cell cultures is not due to the selective expansion of naturally occurring regulatory T cells but to the induction of regulatory functions in conventional CD4+ T cells. J. Immunol. 2006, 177:944-949.
    • (2006) J. Immunol. , vol.177 , pp. 944-949
    • Valmori, D.1
  • 46
    • 77952280516 scopus 로고    scopus 로고
    • Anergic T cells are metabolically anergic
    • Zheng Y., et al. Anergic T cells are metabolically anergic. J. Immunol. 2009, 183:6095-6101.
    • (2009) J. Immunol. , vol.183 , pp. 6095-6101
    • Zheng, Y.1
  • 47
    • 77951234655 scopus 로고    scopus 로고
    • Generation and accumulation of immunosuppressive adenosine by human CD4+CD25highFOXP3+ regulatory T cells
    • Mandapathi M., et al. Generation and accumulation of immunosuppressive adenosine by human CD4+CD25highFOXP3+ regulatory T cells. J. Biol. Chem. 2010, 285:7176-7186.
    • (2010) J. Biol. Chem. , vol.285 , pp. 7176-7186
    • Mandapathi, M.1
  • 48
    • 33749448575 scopus 로고    scopus 로고
    • Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo
    • Vukmanovic-Stejic M., et al. Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo. J. Clin. Invest. 2006, 116:2829-2830.
    • (2006) J. Clin. Invest. , vol.116 , pp. 2829-2830
    • Vukmanovic-Stejic, M.1
  • 49
    • 70450161700 scopus 로고    scopus 로고
    • Impact of culture medium on the expansion of T cells for immunotherapy
    • Sato K., et al. Impact of culture medium on the expansion of T cells for immunotherapy. Cytotherapy 2009, 11:936-946.
    • (2009) Cytotherapy , vol.11 , pp. 936-946
    • Sato, K.1
  • 50
    • 70350339508 scopus 로고    scopus 로고
    • Nutritional programming of the metabolic syndrome
    • Symonds M.E., et al. Nutritional programming of the metabolic syndrome. Nat. Rev. Endocrinol. 2009, 5:604-610.
    • (2009) Nat. Rev. Endocrinol. , vol.5 , pp. 604-610
    • Symonds, M.E.1
  • 51
    • 70350188297 scopus 로고    scopus 로고
    • Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome
    • Maury E., et al. Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol. Cell Endocrinol. 2010, 15:1-16.
    • (2010) Mol. Cell Endocrinol. , vol.15 , pp. 1-16
    • Maury, E.1
  • 52
    • 33845866857 scopus 로고    scopus 로고
    • Inflammation and metabolic disorders
    • Hotamisligil G.S. Inflammation and metabolic disorders. Nature 2006, 14:860-867.
    • (2006) Nature , vol.14 , pp. 860-867
    • Hotamisligil, G.S.1
  • 53
    • 55849114349 scopus 로고    scopus 로고
    • Adipocytokines and the metabolic complications of obesity
    • Rasouli N., et al. Adipocytokines and the metabolic complications of obesity. J. Clin. Endocrinol. Metab. 2008, 93:64-73.
    • (2008) J. Clin. Endocrinol. Metab. , vol.93 , pp. 64-73
    • Rasouli, N.1
  • 54
    • 58149347247 scopus 로고    scopus 로고
    • Adipokines and the immune system: an adipocentric view
    • MacLaren R., et al. Adipokines and the immune system: an adipocentric view. Adv. Exp. Med. Biol. 2008, 632:1-21.
    • (2008) Adv. Exp. Med. Biol. , vol.632 , pp. 1-21
    • MacLaren, R.1
  • 55
    • 54249149973 scopus 로고    scopus 로고
    • Adipose-immune interactions during obesity and caloric restriction: reciprocal mechanisms regulating immunity and health span
    • Dixit V.D. Adipose-immune interactions during obesity and caloric restriction: reciprocal mechanisms regulating immunity and health span. J. Leukoc. Biol. 2008, 84:882-892.
    • (2008) J. Leukoc. Biol. , vol.84 , pp. 882-892
    • Dixit, V.D.1
  • 56
    • 0036905264 scopus 로고    scopus 로고
    • Move over protein kinase C, you've got company: alternative cellular effectors of diacylglycerol and phorbol esters
    • Brose N., Rosenmund C. Move over protein kinase C, you've got company: alternative cellular effectors of diacylglycerol and phorbol esters. J. Cell Sci. 2002, 115:4399-4411.
    • (2002) J. Cell Sci. , vol.115 , pp. 4399-4411
    • Brose, N.1    Rosenmund, C.2
  • 57
    • 0141844653 scopus 로고    scopus 로고
    • Reciprocal modulation of Toll-like receptor-4 signaling pathways involving MyD88 and phosphatidylinositol 3-kinase/AKT by saturated and polyunsaturated fatty acids
    • Lee J.Y., et al. Reciprocal modulation of Toll-like receptor-4 signaling pathways involving MyD88 and phosphatidylinositol 3-kinase/AKT by saturated and polyunsaturated fatty acids. J. Biol. Chem. 2003, 278:37041-37051.
    • (2003) J. Biol. Chem. , vol.278 , pp. 37041-37051
    • Lee, J.Y.1
  • 58
    • 2642561229 scopus 로고    scopus 로고
    • Palmitate, but not unsaturated fatty acids, induces the expression of interleukin-6 in human myotubes through proteasome-dependent activation of nuclear factor kappa B
    • Weigert C., et al. Palmitate, but not unsaturated fatty acids, induces the expression of interleukin-6 in human myotubes through proteasome-dependent activation of nuclear factor kappa B. J. Biol. Chem. 2004, 279:23942-23952.
    • (2004) J. Biol. Chem. , vol.279 , pp. 23942-23952
    • Weigert, C.1
  • 59
    • 3442895916 scopus 로고    scopus 로고
    • Inhibition of insulin sensitivity by free fatty acids requires activation of multiple serine kinases in 3T3-L1 adipocytes
    • Gao Z., et al. Inhibition of insulin sensitivity by free fatty acids requires activation of multiple serine kinases in 3T3-L1 adipocytes. Mol. Endocrinol. 2004, 18:2024-2034.
    • (2004) Mol. Endocrinol. , vol.18 , pp. 2024-2034
    • Gao, Z.1
  • 60
    • 5644231992 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes
    • Ozcan U., et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 2004, 306:457-461.
    • (2004) Science , vol.306 , pp. 457-461
    • Ozcan, U.1
  • 62
  • 63
    • 70449348631 scopus 로고    scopus 로고
    • Direct and macrophage-mediated actions of fatty acids causing insulin resistance in muscle cells
    • Bilan P.J., et al. Direct and macrophage-mediated actions of fatty acids causing insulin resistance in muscle cells. Arch. Physiol. Biochem. 2009, 115:176-190.
    • (2009) Arch. Physiol. Biochem. , vol.115 , pp. 176-190
    • Bilan, P.J.1
  • 64
    • 70349395711 scopus 로고    scopus 로고
    • Role of macrophage tissue infiltration in obesity and insulin resistance
    • Bourlier V., et al. Role of macrophage tissue infiltration in obesity and insulin resistance. Diabetes Metab. 2009, 35:251-260.
    • (2009) Diabetes Metab. , vol.35 , pp. 251-260
    • Bourlier, V.1
  • 65
    • 68349127290 scopus 로고    scopus 로고
    • T-ing up inflammation in fat
    • Lumeng C.N., et al. T-ing up inflammation in fat. Nat. Med. 2009, 15:846-847.
    • (2009) Nat. Med. , vol.15 , pp. 846-847
    • Lumeng, C.N.1
  • 66
    • 0037562083 scopus 로고    scopus 로고
    • Reversal of behavioral and metabolic abnormalities, and insulin resistance syndrome, by dietary restriction in mice deficient in brain-derived neurotrophic factor
    • Duan W., et al. Reversal of behavioral and metabolic abnormalities, and insulin resistance syndrome, by dietary restriction in mice deficient in brain-derived neurotrophic factor. Endocrinology 2003, 144:2446-2453.
    • (2003) Endocrinology , vol.144 , pp. 2446-2453
    • Duan, W.1
  • 67
    • 19944427435 scopus 로고    scopus 로고
    • Caloric restriction increases neurotrophic factor levels and attenuates neurochemical and behavioral deficits in a primate model of Parkinson's disease
    • Maswood N., et al. Caloric restriction increases neurotrophic factor levels and attenuates neurochemical and behavioral deficits in a primate model of Parkinson's disease. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:18171-18176.
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 18171-18176
    • Maswood, N.1
  • 68
    • 0026507725 scopus 로고
    • The effects of dietary restriction on immune function and development of autoimmune disease in BXSB mice
    • Kubo C., et al. The effects of dietary restriction on immune function and development of autoimmune disease in BXSB mice. Proc. Natl. Acad. Sci. U.S.A. 1992, 89:3145-3149.
    • (1992) Proc. Natl. Acad. Sci. U.S.A. , vol.89 , pp. 3145-3149
    • Kubo, C.1
  • 69
    • 4544375557 scopus 로고    scopus 로고
    • Age associated alterations in costimulatory and adhesion molecule expression in lupus-prone mice are attenuated by food restriction with n-6 and n-3 fatty acids
    • Muthukumar A. Age associated alterations in costimulatory and adhesion molecule expression in lupus-prone mice are attenuated by food restriction with n-6 and n-3 fatty acids. J. Clin. Immunol. 2004, 24:471-480.
    • (2004) J. Clin. Immunol. , vol.24 , pp. 471-480
    • Muthukumar, A.1
  • 70
    • 78650667165 scopus 로고    scopus 로고
    • Leptin modulates the survival of autoreactive CD4+ T cells through the nutrient/energy-sensing mammalian target of rapamycin signaling pathway
    • Galgani M., et al. Leptin modulates the survival of autoreactive CD4+ T cells through the nutrient/energy-sensing mammalian target of rapamycin signaling pathway. J. Immunol. 2010, 185:7474-7479.
    • (2010) J. Immunol. , vol.185 , pp. 7474-7479
    • Galgani, M.1
  • 71
    • 54249147709 scopus 로고    scopus 로고
    • Chronic calorie restriction attenuates experimental autoimmune encephalomyelitis
    • Piccio L., et al. Chronic calorie restriction attenuates experimental autoimmune encephalomyelitis. J. Leukoc. Biol. 2008, 8:940-948.
    • (2008) J. Leukoc. Biol. , vol.8 , pp. 940-948
    • Piccio, L.1
  • 72
    • 67650944993 scopus 로고    scopus 로고
    • Rapamycin fed late in life extends lifespan in genetically heterogeneous mice
    • Harrison D.E., et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 2009, 460:392-395.
    • (2009) Nature , vol.460 , pp. 392-395
    • Harrison, D.E.1
  • 73
    • 33745630063 scopus 로고    scopus 로고
    • Leptin is a link between adipose tissue and inflammation
    • Härle P., Straub R.H. Leptin is a link between adipose tissue and inflammation. Ann. N. Y. Acad. Sci. 2006, 1069:454-462.
    • (2006) Ann. N. Y. Acad. Sci. , vol.1069 , pp. 454-462
    • Härle, P.1    Straub, R.H.2
  • 74
    • 68249124611 scopus 로고    scopus 로고
    • Treatment with rapamycin ameliorates clinical and histological signs of protracted relapsing experimental allergic encephalomyelitis in Dark Agouti rats and induces expansion of peripheral CD4+CD25+Foxp3+ regulatory T cells
    • Donia M., et al. Treatment with rapamycin ameliorates clinical and histological signs of protracted relapsing experimental allergic encephalomyelitis in Dark Agouti rats and induces expansion of peripheral CD4+CD25+Foxp3+ regulatory T cells. J. Autoimmun. 2009, 33:135-140.
    • (2009) J. Autoimmun. , vol.33 , pp. 135-140
    • Donia, M.1
  • 75
    • 77949264184 scopus 로고    scopus 로고
    • Rapamycin inhibits relapsing experimental autoimmune encephalomyelitis by both effector and regulatory T cells modulation
    • Esposito M., et al. Rapamycin inhibits relapsing experimental autoimmune encephalomyelitis by both effector and regulatory T cells modulation. J. Neuroimmunol. 2010, 220:52-63.
    • (2010) J. Neuroimmunol. , vol.220 , pp. 52-63
    • Esposito, M.1
  • 76
    • 70349156338 scopus 로고    scopus 로고
    • Use of a cocktail regimen consisting of soluble galectin-1, rapamycin and histone deacetylase inhibitor may effectively prevent type 1 diabetes
    • Jiang G.X., et al. Use of a cocktail regimen consisting of soluble galectin-1, rapamycin and histone deacetylase inhibitor may effectively prevent type 1 diabetes. Arch. Med. Res. 2009, 40:424-426.
    • (2009) Arch. Med. Res. , vol.40 , pp. 424-426
    • Jiang, G.X.1
  • 77
    • 75149154705 scopus 로고    scopus 로고
    • FOXO-dependent regulation of innate immune homeostasis
    • Becker T., et al. FOXO-dependent regulation of innate immune homeostasis. Nature 2010, 463:369-373.
    • (2010) Nature , vol.463 , pp. 369-373
    • Becker, T.1
  • 78
    • 10944247187 scopus 로고    scopus 로고
    • The AMP-activated protein kinase pathway-new players upstream and downstream
    • Hardie D.G. The AMP-activated protein kinase pathway-new players upstream and downstream. J. Cell Sci. 2004, 117:5479-5487.
    • (2004) J. Cell Sci. , vol.117 , pp. 5479-5487
    • Hardie, D.G.1
  • 79
    • 10744230065 scopus 로고    scopus 로고
    • LKB1 is the upstream kinase in the AMP-activated protein kinase cascade
    • Woods A., et al. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr. Biol. 2003, 13:2004-2008.
    • (2003) Curr. Biol. , vol.13 , pp. 2004-2008
    • Woods, A.1
  • 80
    • 0345107247 scopus 로고    scopus 로고
    • Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade
    • Hawley S.A., et al. Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J. Biol. 2003, 2:28.
    • (2003) J. Biol. , vol.2 , pp. 28
    • Hawley, S.A.1
  • 81
    • 67649196932 scopus 로고    scopus 로고
    • Metformin attenuated the autoimmune disease of the central nervous system in animal models of multiple sclerosis
    • Nath N., et al. Metformin attenuated the autoimmune disease of the central nervous system in animal models of multiple sclerosis. J. Immunol. 2009, 182:8005-8014.
    • (2009) J. Immunol. , vol.182 , pp. 8005-8014
    • Nath, N.1
  • 82
    • 16344384026 scopus 로고    scopus 로고
    • Suppression of FOXO1 activity by FHL2 through SIRT1-mediated deacetylation
    • Yang Y., et al. Suppression of FOXO1 activity by FHL2 through SIRT1-mediated deacetylation. EMBO J. 2005, 24:1021-1032.
    • (2005) EMBO J. , vol.24 , pp. 1021-1032
    • Yang, Y.1
  • 83
    • 33645221885 scopus 로고    scopus 로고
    • Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival following DNA damage
    • Solomon J.M., et al. Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival following DNA damage. Mol. Cell Biol. 2006, 26:28-38.
    • (2006) Mol. Cell Biol. , vol.26 , pp. 28-38
    • Solomon, J.M.1
  • 84
    • 3242719545 scopus 로고    scopus 로고
    • Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase
    • Yeung F., et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 2004, 23:2369-2380.
    • (2004) EMBO J. , vol.23 , pp. 2369-2380
    • Yeung, F.1
  • 85
    • 14544282413 scopus 로고    scopus 로고
    • Nutrient control of glucose homeostasis through a complex of PGC-1a and SIRT1
    • Rodgers J.T., et al. Nutrient control of glucose homeostasis through a complex of PGC-1a and SIRT1. Nature 2005, 3:113-118.
    • (2005) Nature , vol.3 , pp. 113-118
    • Rodgers, J.T.1
  • 86
    • 33244486764 scopus 로고    scopus 로고
    • SIRT1 regulates insulin secretion by repressing UCP-2 in pancreatic beta cells
    • Bordone L., et al. SIRT1 regulates insulin secretion by repressing UCP-2 in pancreatic beta cells. PLoS Biol. 2006, 4:e31.
    • (2006) PLoS Biol. , vol.4
    • Bordone, L.1
  • 87
    • 3042681042 scopus 로고    scopus 로고
    • SIRT1 promotes fat mobilization in white adipocytes by repressing PPAR-γ
    • Picard F., et al. SIRT1 promotes fat mobilization in white adipocytes by repressing PPAR-γ. Nature 2004, 17:771-776.
    • (2004) Nature , vol.17 , pp. 771-776
    • Picard, F.1
  • 88
    • 0035503936 scopus 로고    scopus 로고
    • Immunomodulatory activity of resveratrol: suppression of lymphocyte proliferation, development of cell-mediated cytotoxicity, and cytokine production
    • Gao X., et al. Immunomodulatory activity of resveratrol: suppression of lymphocyte proliferation, development of cell-mediated cytotoxicity, and cytokine production. Biochem. Pharmacol. 2001, 62:1299-1308.
    • (2001) Biochem. Pharmacol. , vol.62 , pp. 1299-1308
    • Gao, X.1
  • 89
    • 70349440053 scopus 로고    scopus 로고
    • The type III histone deacetylase Sirt1 is essential for maintenance of T cell tolerance in mice
    • Zhang J., et al. The type III histone deacetylase Sirt1 is essential for maintenance of T cell tolerance in mice. J. Clin. Invest. 2009, 119:3048-3058.
    • (2009) J. Clin. Invest. , vol.119 , pp. 3048-3058
    • Zhang, J.1
  • 90
    • 77649225958 scopus 로고    scopus 로고
    • Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization
    • van Loosdregt J., et al. Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization. Blood 2010, 115:965-974.
    • (2010) Blood , vol.115 , pp. 965-974
    • van Loosdregt, J.1
  • 91
    • 41849128523 scopus 로고    scopus 로고
    • The FoxO code
    • Calnan D.R., Brunet A. The FoxO code. Oncogene 2008, 27:2276-2288.
    • (2008) Oncogene , vol.27 , pp. 2276-2288
    • Calnan, D.R.1    Brunet, A.2
  • 92
    • 4143129696 scopus 로고    scopus 로고
    • Regulation of NF-kappaB, Th activation, and autoinflammation by the forkhead transcription factor Foxo3a
    • Lin L., et al. Regulation of NF-kappaB, Th activation, and autoinflammation by the forkhead transcription factor Foxo3a. Immunity 2004, 21:203-213.
    • (2004) Immunity , vol.21 , pp. 203-213
    • Lin, L.1
  • 93
    • 58449102260 scopus 로고    scopus 로고
    • Foxo1 links homing and survival of naive T cells by regulating L-selectin, CCR7 and interleukin 7 receptor
    • Kerdiles Y.M., et al. Foxo1 links homing and survival of naive T cells by regulating L-selectin, CCR7 and interleukin 7 receptor. Nat. Immunol. 2009, 10:176-184.
    • (2009) Nat. Immunol. , vol.10 , pp. 176-184
    • Kerdiles, Y.M.1
  • 94
    • 62049086102 scopus 로고    scopus 로고
    • An essential role of the Forkhead-box transcription factor Foxo1 in control of T cell homeostasis and tolerance
    • Ouyang W., et al. An essential role of the Forkhead-box transcription factor Foxo1 in control of T cell homeostasis and tolerance. Immunity 2009, 30:358-371.
    • (2009) Immunity , vol.30 , pp. 358-371
    • Ouyang, W.1
  • 95
    • 78650085394 scopus 로고    scopus 로고
    • Foxo transcription factors control regulatory T cell development and function
    • Kerdiles Y.M., et al. Foxo transcription factors control regulatory T cell development and function. Immunity 2010, 33:890-904.
    • (2010) Immunity , vol.33 , pp. 890-904
    • Kerdiles, Y.M.1
  • 96
    • 77953811224 scopus 로고    scopus 로고
    • Foxo proteins cooperatively control the differentiation of Foxp3+ regulatory T cells
    • Ouyang W., et al. Foxo proteins cooperatively control the differentiation of Foxp3+ regulatory T cells. Nat. Immunol. 2010, 11:618-627.
    • (2010) Nat. Immunol. , vol.11 , pp. 618-627
    • Ouyang, W.1
  • 97
    • 77954395996 scopus 로고    scopus 로고
    • Transcription factors Foxo3a and Foxo1 couple the E3 ligase Cbl-b to the induction of Foxp3 expression in induced regulatory T cells
    • Harada Y., et al. Transcription factors Foxo3a and Foxo1 couple the E3 ligase Cbl-b to the induction of Foxp3 expression in induced regulatory T cells. J. Exp. Med. 2010, 207:1381-1391.
    • (2010) J. Exp. Med. , vol.207 , pp. 1381-1391
    • Harada, Y.1
  • 98
    • 0029761275 scopus 로고    scopus 로고
    • TRAF6 is a signal transducer for interleukin-1
    • Cao Z., et al. TRAF6 is a signal transducer for interleukin-1. Nature 1996, 383:443-446.
    • (1996) Nature , vol.383 , pp. 443-446
    • Cao, Z.1
  • 99
    • 0242720415 scopus 로고    scopus 로고
    • TRAF6, a molecular bridge spanning adaptive immunity, innate immunity and osteoimmunology
    • Wu H., Arron J.R. TRAF6, a molecular bridge spanning adaptive immunity, innate immunity and osteoimmunology. Bioessays 2003, 25:1096-1105.
    • (2003) Bioessays , vol.25 , pp. 1096-1105
    • Wu, H.1    Arron, J.R.2
  • 100
    • 18444390259 scopus 로고    scopus 로고
    • Distinct molecular mechanism for initiating TRAF6 signalling
    • Ye H., et al. Distinct molecular mechanism for initiating TRAF6 signalling. Nature 2002, 418:443-447.
    • (2002) Nature , vol.418 , pp. 443-447
    • Ye, H.1
  • 101
    • 0034644474 scopus 로고    scopus 로고
    • Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain
    • Deng L., et al. Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 2000, 103:351-361.
    • (2000) Cell , vol.103 , pp. 351-361
    • Deng, L.1
  • 102
    • 40449139114 scopus 로고    scopus 로고
    • Cutting edge: requirement for TRAF6 in the induction of T cell anergy
    • King C.G., et al. Cutting edge: requirement for TRAF6 in the induction of T cell anergy. J. Immunol. 2008, 180:34-38.
    • (2008) J. Immunol. , vol.180 , pp. 34-38
    • King, C.G.1
  • 103
    • 67650096912 scopus 로고    scopus 로고
    • Enhancing CD8 T-cell memory by modulating fatty acid metabolism
    • Pearce E.L., et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 2009, 460:103-107.
    • (2009) Nature , vol.460 , pp. 103-107
    • Pearce, E.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.