메뉴 건너뛰기




Volumn 39, Issue 10, 2014, Pages 437-446

Emerging concepts in the regulation of the EGF receptor and other receptor tyrosine kinases

Author keywords

Allostery; Epidermal growth factor receptor; Receptor tyrosine kinases; Signal transduction

Indexed keywords

EPHRIN A4; EPHRIN A5; EPIDERMAL GROWTH FACTOR RECEPTOR; PROTEIN TYROSINE KINASE; EPIDERMAL GROWTH FACTOR DERIVATIVE; LIGAND;

EID: 84914142936     PISSN: 09680004     EISSN: 13624326     Source Type: Journal    
DOI: 10.1016/j.tibs.2014.08.001     Document Type: Review
Times cited : (71)

References (92)
  • 1
    • 0032925147 scopus 로고    scopus 로고
    • Structural analysis of receptor tyrosine kinases
    • Hubbard S.R. Structural analysis of receptor tyrosine kinases. Prog. Biophys. Mol. Biol. 1999, 71:343-358.
    • (1999) Prog. Biophys. Mol. Biol. , vol.71 , pp. 343-358
    • Hubbard, S.R.1
  • 2
    • 77953896432 scopus 로고    scopus 로고
    • Cell signaling by receptor tyrosine kinases
    • Lemmon M.A., Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2010, 141:1117-1134.
    • (2010) Cell , vol.141 , pp. 1117-1134
    • Lemmon, M.A.1    Schlessinger, J.2
  • 3
    • 0028838012 scopus 로고
    • Dimerization of cell surface receptors in signal transduction
    • Heldin C-H. Dimerization of cell surface receptors in signal transduction. Cell 1995, 80:213-223.
    • (1995) Cell , vol.80 , pp. 213-223
    • Heldin, C.-H.1
  • 4
    • 0023100261 scopus 로고
    • Epidermal growth factor induces rapid, reversible aggregation of the purified epidermal growth factor receptor
    • Yarden Y., Schlessinger J. Epidermal growth factor induces rapid, reversible aggregation of the purified epidermal growth factor receptor. Biochemistry 1987, 26:1443-1451.
    • (1987) Biochemistry , vol.26 , pp. 1443-1451
    • Yarden, Y.1    Schlessinger, J.2
  • 5
    • 0023156382 scopus 로고
    • Self-phosphorylation of epidermal growth factor receptor: evidence for a model of intermolecular allosteric activation
    • Yarden Y., Schlessinger J. Self-phosphorylation of epidermal growth factor receptor: evidence for a model of intermolecular allosteric activation. Biochemistry 1987, 26:1434-1442.
    • (1987) Biochemistry , vol.26 , pp. 1434-1442
    • Yarden, Y.1    Schlessinger, J.2
  • 6
    • 10744230127 scopus 로고    scopus 로고
    • An open-and-shut case? Recent insights into the activation of EGF/ErbB receptors
    • Burgess A.W., et al. An open-and-shut case? Recent insights into the activation of EGF/ErbB receptors. Mol. Cell 2003, 12:541-552.
    • (2003) Mol. Cell , vol.12 , pp. 541-552
    • Burgess, A.W.1
  • 7
    • 0033539065 scopus 로고    scopus 로고
    • Crystal structure of nerve growth factor in complex with the ligand-binding domain of the TrkA receptor
    • Wiesmann C., et al. Crystal structure of nerve growth factor in complex with the ligand-binding domain of the TrkA receptor. Nature 1999, 401:184-188.
    • (1999) Nature , vol.401 , pp. 184-188
    • Wiesmann, C.1
  • 8
    • 79953308071 scopus 로고    scopus 로고
    • Catalytic control in the EGF receptor and its connection to general kinase regulatory mechanisms
    • Jura N., et al. Catalytic control in the EGF receptor and its connection to general kinase regulatory mechanisms. Mol. Cell 2011, 42:9-22.
    • (2011) Mol. Cell , vol.42 , pp. 9-22
    • Jura, N.1
  • 9
    • 0033786922 scopus 로고    scopus 로고
    • Protein tyrosine kinase structure and function
    • Hubbard S.R., Till J.H. Protein tyrosine kinase structure and function. Annu. Rev. Biochem. 2000, 69:373-398.
    • (2000) Annu. Rev. Biochem. , vol.69 , pp. 373-398
    • Hubbard, S.R.1    Till, J.H.2
  • 10
    • 4444353636 scopus 로고    scopus 로고
    • Regulation of protein kinases; controlling activity through activation segment conformation
    • Nolen B., et al. Regulation of protein kinases; controlling activity through activation segment conformation. Mol. Cell 2004, 15:661-675.
    • (2004) Mol. Cell , vol.15 , pp. 661-675
    • Nolen, B.1
  • 11
    • 0030766163 scopus 로고    scopus 로고
    • Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog
    • Hubbard S.R. Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J. 1997, 16:5572-5581.
    • (1997) EMBO J. , vol.16 , pp. 5572-5581
    • Hubbard, S.R.1
  • 12
    • 0035929146 scopus 로고    scopus 로고
    • Structural basis for autoinhibition of the Ephb2 receptor tyrosine kinase by the unphosphorylated juxtamembrane region
    • Wybenga-Groot L.E., et al. Structural basis for autoinhibition of the Ephb2 receptor tyrosine kinase by the unphosphorylated juxtamembrane region. Cell 2001, 106:745-757.
    • (2001) Cell , vol.106 , pp. 745-757
    • Wybenga-Groot, L.E.1
  • 13
    • 0842310394 scopus 로고    scopus 로고
    • The structural basis for autoinhibition of FLT3 by the juxtamembrane domain
    • Griffith J., et al. The structural basis for autoinhibition of FLT3 by the juxtamembrane domain. Mol. Cell 2004, 13:169-178.
    • (2004) Mol. Cell , vol.13 , pp. 169-178
    • Griffith, J.1
  • 14
    • 2942594298 scopus 로고    scopus 로고
    • Juxtamembrane autoinhibition in receptor tyrosine kinases
    • Hubbard S.R. Juxtamembrane autoinhibition in receptor tyrosine kinases. Nat. Rev. Mol. Cell Biol. 2004, 5:464-471.
    • (2004) Nat. Rev. Mol. Cell Biol. , vol.5 , pp. 464-471
    • Hubbard, S.R.1
  • 15
    • 0034435424 scopus 로고    scopus 로고
    • Structure of the Tie2 RTK domain: self-inhibition by the nucleotide binding loop, activation loop, and C-terminal tail
    • Shewchuk L.M., et al. Structure of the Tie2 RTK domain: self-inhibition by the nucleotide binding loop, activation loop, and C-terminal tail. Structure 2000, 8:1105-1113.
    • (2000) Structure , vol.8 , pp. 1105-1113
    • Shewchuk, L.M.1
  • 16
    • 33745002702 scopus 로고    scopus 로고
    • An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor
    • Zhang X., et al. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 2006, 125:1137-1149.
    • (2006) Cell , vol.125 , pp. 1137-1149
    • Zhang, X.1
  • 17
    • 0037013143 scopus 로고    scopus 로고
    • The conformational plasticity of protein kinases
    • Huse M., Kuriyan J. The conformational plasticity of protein kinases. Cell 2002, 109:275-282.
    • (2002) Cell , vol.109 , pp. 275-282
    • Huse, M.1    Kuriyan, J.2
  • 18
    • 75349091799 scopus 로고    scopus 로고
    • Defining the conserved internal architecture of a protein kinase
    • Kornev A.P., Taylor S.S. Defining the conserved internal architecture of a protein kinase. Biochim. Biophys. Acta 2010, 1804:440-444.
    • (2010) Biochim. Biophys. Acta , vol.1804 , pp. 440-444
    • Kornev, A.P.1    Taylor, S.S.2
  • 19
    • 0028582185 scopus 로고
    • Crystal structure of the tyrosine kinase domain of the human insulin receptor
    • Hubbard S.R., et al. Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature 1994, 372:746-754.
    • (1994) Nature , vol.372 , pp. 746-754
    • Hubbard, S.R.1
  • 20
    • 34548250374 scopus 로고    scopus 로고
    • A molecular brake in the kinase hinge region regulates the activity of receptor tyrosine kinases
    • Chen H., et al. A molecular brake in the kinase hinge region regulates the activity of receptor tyrosine kinases. Mol. Cell 2007, 27:717-730.
    • (2007) Mol. Cell , vol.27 , pp. 717-730
    • Chen, H.1
  • 21
    • 33847406095 scopus 로고    scopus 로고
    • Structures of lung cancer-derived EGFR mutants and inhibitor complexes: Mechanism of activation and insights into differential inhibitor sensitivity
    • Yun C-H., et al. Structures of lung cancer-derived EGFR mutants and inhibitor complexes: Mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell 2007, 11:217-227.
    • (2007) Cancer Cell , vol.11 , pp. 217-227
    • Yun, C.-H.1
  • 22
    • 40049099220 scopus 로고    scopus 로고
    • The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP
    • Yun C-H., et al. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:2070-2075.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 2070-2075
    • Yun, C.-H.1
  • 23
    • 70449379413 scopus 로고    scopus 로고
    • Sequence and structure signatures of cancer mutation hotspots in protein kinases
    • Dixit A., et al. Sequence and structure signatures of cancer mutation hotspots in protein kinases. PLoS ONE 2009, 4:e7485.
    • (2009) PLoS ONE , vol.4
    • Dixit, A.1
  • 25
    • 84873292211 scopus 로고    scopus 로고
    • Architecture and membrane interactions of the EGF receptor
    • Arkhipov A., et al. Architecture and membrane interactions of the EGF receptor. Cell 2013, 152:557-569.
    • (2013) Cell , vol.152 , pp. 557-569
    • Arkhipov, A.1
  • 26
    • 84880633751 scopus 로고    scopus 로고
    • Her2 activation mechanism reflects evolutionary preservation of asymmetric ectodomain dimers in the human EGFR family
    • Arkhipov A., et al. Her2 activation mechanism reflects evolutionary preservation of asymmetric ectodomain dimers in the human EGFR family. Elife 2013, 2:e00708.
    • (2013) Elife , vol.2
    • Arkhipov, A.1
  • 27
    • 84860870716 scopus 로고    scopus 로고
    • Oncogenic mutations counteract intrinsic disorder in the EGFR kinase and promote receptor dimerization
    • Shan Y., et al. Oncogenic mutations counteract intrinsic disorder in the EGFR kinase and promote receptor dimerization. Cell 2012, 149:860-870.
    • (2012) Cell , vol.149 , pp. 860-870
    • Shan, Y.1
  • 28
    • 84876902448 scopus 로고    scopus 로고
    • Transitions to catalytically inactive conformations in EGFR kinase
    • Shan Y., et al. Transitions to catalytically inactive conformations in EGFR kinase. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:7270-7275.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 7270-7275
    • Shan, Y.1
  • 29
    • 84873406911 scopus 로고    scopus 로고
    • Insights into the aberrant activity of mutant EGFR kinase domain and drug recognition
    • Gajiwala K.S., et al. Insights into the aberrant activity of mutant EGFR kinase domain and drug recognition. Structure 2013, 21:209-219.
    • (2013) Structure , vol.21 , pp. 209-219
    • Gajiwala, K.S.1
  • 30
    • 84879510153 scopus 로고    scopus 로고
    • Effects of oncogenic mutations on the conformational free-energy landscape of EGFR kinase
    • Sutto L., Gervasio F.L. Effects of oncogenic mutations on the conformational free-energy landscape of EGFR kinase. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:10616-10621.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 10616-10621
    • Sutto, L.1    Gervasio, F.L.2
  • 31
    • 4644289313 scopus 로고    scopus 로고
    • A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells
    • Wood E.R., et al. A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer Res. 2004, 64:6652-6659.
    • (2004) Cancer Res. , vol.64 , pp. 6652-6659
    • Wood, E.R.1
  • 32
    • 82955249253 scopus 로고    scopus 로고
    • Mechanistic insights into the activation of oncogenic forms of EGF receptor
    • Wang Z., et al. Mechanistic insights into the activation of oncogenic forms of EGF receptor. Nat. Struct. Mol. Biol. 2011, 10.1038/nsmb.2168.
    • (2011) Nat. Struct. Mol. Biol.
    • Wang, Z.1
  • 33
    • 36749011864 scopus 로고    scopus 로고
    • Inhibition of the EGF receptor by binding of MIG6 to an activating kinase domain interface
    • Zhang X., et al. Inhibition of the EGF receptor by binding of MIG6 to an activating kinase domain interface. Nature 2007, 450:741-744.
    • (2007) Nature , vol.450 , pp. 741-744
    • Zhang, X.1
  • 34
    • 84884308133 scopus 로고    scopus 로고
    • Mechanism for activation of mutated epidermal growth factor receptors in lung cancer
    • Red Brewer M., et al. Mechanism for activation of mutated epidermal growth factor receptors in lung cancer. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:E3595-E3604.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. E3595-E3604
    • Red Brewer, M.1
  • 35
    • 84880806523 scopus 로고    scopus 로고
    • Cracking the molecular origin of intrinsic tyrosine kinase activity through analysis of pathogenic gain-of-function mutations
    • Chen H., et al. Cracking the molecular origin of intrinsic tyrosine kinase activity through analysis of pathogenic gain-of-function mutations. Cell Rep. 2013, 4:376-384.
    • (2013) Cell Rep. , vol.4 , pp. 376-384
    • Chen, H.1
  • 36
    • 80053588204 scopus 로고    scopus 로고
    • The energy landscape analysis of cancer mutations in protein kinases
    • Dixit A., Verkhivker G.M. The energy landscape analysis of cancer mutations in protein kinases. PLoS ONE 2011, 6:e26071.
    • (2011) PLoS ONE , vol.6
    • Dixit, A.1    Verkhivker, G.M.2
  • 37
    • 0023686033 scopus 로고
    • Signal transduction by allosteric receptor oligomerization
    • Schlessinger J. Signal transduction by allosteric receptor oligomerization. Trends Biochem. Sci. 1988, 13:443-447.
    • (1988) Trends Biochem. Sci. , vol.13 , pp. 443-447
    • Schlessinger, J.1
  • 38
    • 78049239930 scopus 로고    scopus 로고
    • Distribution of resting and ligand-bound ErbB1 and ErbB2 receptor tyrosine kinases in living cells using number and brightness analysis
    • Nagy P., et al. Distribution of resting and ligand-bound ErbB1 and ErbB2 receptor tyrosine kinases in living cells using number and brightness analysis. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:16524-16529.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 16524-16529
    • Nagy, P.1
  • 39
    • 18644386251 scopus 로고    scopus 로고
    • Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains
    • Ogiso H., et al. Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell 2002, 110:775-787.
    • (2002) Cell , vol.110 , pp. 775-787
    • Ogiso, H.1
  • 40
    • 18644370411 scopus 로고    scopus 로고
    • Crystal structure of a truncated epidermal growth factor receptor extracellular domain bound to transforming growth factor alpha
    • Garrett T.P.J., et al. Crystal structure of a truncated epidermal growth factor receptor extracellular domain bound to transforming growth factor alpha. Cell 2002, 110:763-773.
    • (2002) Cell , vol.110 , pp. 763-773
    • Garrett, T.P.J.1
  • 41
    • 0037291769 scopus 로고    scopus 로고
    • EGF activates its receptor by removing interactions that autoinhibit ectodomain dimerization
    • Ferguson K.M., et al. EGF activates its receptor by removing interactions that autoinhibit ectodomain dimerization. Mol. Cell 2003, 11:507-517.
    • (2003) Mol. Cell , vol.11 , pp. 507-517
    • Ferguson, K.M.1
  • 42
    • 84855775666 scopus 로고    scopus 로고
    • The alternatively spliced acid box region plays a key role in FGF receptor autoinhibition
    • Kalinina J., et al. The alternatively spliced acid box region plays a key role in FGF receptor autoinhibition. Structure 2012, 20:77-88.
    • (2012) Structure , vol.20 , pp. 77-88
    • Kalinina, J.1
  • 43
    • 78049323813 scopus 로고    scopus 로고
    • EGFRvIV: a previously uncharacterized oncogenic mutant reveals a kinase autoinhibitory mechanism
    • Pines G., et al. EGFRvIV: a previously uncharacterized oncogenic mutant reveals a kinase autoinhibitory mechanism. Oncogene 2010, 29:5850-5860.
    • (2010) Oncogene , vol.29 , pp. 5850-5860
    • Pines, G.1
  • 44
    • 67549145398 scopus 로고    scopus 로고
    • Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment
    • Jura N., et al. Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment. Cell 2009, 137:1293-1307.
    • (2009) Cell , vol.137 , pp. 1293-1307
    • Jura, N.1
  • 45
    • 67449146917 scopus 로고    scopus 로고
    • The juxtamembrane region of the EGF receptor functions as an activation domain
    • Red Brewer M., et al. The juxtamembrane region of the EGF receptor functions as an activation domain. Mol. Cell 2009, 34:641-651.
    • (2009) Mol. Cell , vol.34 , pp. 641-651
    • Red Brewer, M.1
  • 46
    • 84873280409 scopus 로고    scopus 로고
    • Conformational coupling across the plasma membrane in activation of the EGF receptor
    • Endres N.F., et al. Conformational coupling across the plasma membrane in activation of the EGF receptor. Cell 2013, 152:543-556.
    • (2013) Cell , vol.152 , pp. 543-556
    • Endres, N.F.1
  • 47
    • 22244449320 scopus 로고    scopus 로고
    • An electrostatic engine model for autoinhibition and activation of the epidermal growth factor receptor (EGFR/ErbB) family
    • McLaughlin S., et al. An electrostatic engine model for autoinhibition and activation of the epidermal growth factor receptor (EGFR/ErbB) family. J. Gen. Physiol. 2005, 126:41-53.
    • (2005) J. Gen. Physiol. , vol.126 , pp. 41-53
    • McLaughlin, S.1
  • 48
    • 84889072451 scopus 로고    scopus 로고
    • Mutations in the polybasic juxtamembrane sequence of both plasma membrane- and endoplasmic reticulum-localized epidermal growth factor receptors confer ligand-independent cell transformation
    • Bryant K.L., et al. Mutations in the polybasic juxtamembrane sequence of both plasma membrane- and endoplasmic reticulum-localized epidermal growth factor receptors confer ligand-independent cell transformation. J. Biol. Chem. 2013, 288:34930-34942.
    • (2013) J. Biol. Chem. , vol.288 , pp. 34930-34942
    • Bryant, K.L.1
  • 49
    • 0035902180 scopus 로고    scopus 로고
    • Oncogenic kinase signalling
    • Blume-Jensen P., Hunter T. Oncogenic kinase signalling. Nature 2001, 411:355-365.
    • (2001) Nature , vol.411 , pp. 355-365
    • Blume-Jensen, P.1    Hunter, T.2
  • 50
    • 35949000487 scopus 로고    scopus 로고
    • Functional analysis of cancer-associated EGFR mutants using a cellular assay with YFP-tagged EGFR intracellular domain
    • de Gunst M.M., et al. Functional analysis of cancer-associated EGFR mutants using a cellular assay with YFP-tagged EGFR intracellular domain. Mol. Cancer 2007, 6:56.
    • (2007) Mol. Cancer , vol.6 , pp. 56
    • de Gunst, M.M.1
  • 51
    • 77950460037 scopus 로고    scopus 로고
    • Spatial control of EGF receptor activation by reversible dimerization on living cells
    • Chung I., et al. Spatial control of EGF receptor activation by reversible dimerization on living cells. Nature 2010, 464:783-787.
    • (2010) Nature , vol.464 , pp. 783-787
    • Chung, I.1
  • 52
    • 80555148149 scopus 로고    scopus 로고
    • ErbB1 dimerization is promoted by domain co-confinement and stabilized by ligand binding
    • Low-Nam S.T., et al. ErbB1 dimerization is promoted by domain co-confinement and stabilized by ligand binding. Nat. Struct. Mol. Biol. 2011, 18:1244-1249.
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 1244-1249
    • Low-Nam, S.T.1
  • 53
    • 84877154358 scopus 로고    scopus 로고
    • Ligand-independent Tie2 dimers mediate kinase activity stimulated by high dose angiopoietin-1
    • Yamakawa D., et al. Ligand-independent Tie2 dimers mediate kinase activity stimulated by high dose angiopoietin-1. J. Biol. Chem. 2013, 288:12469-12477.
    • (2013) J. Biol. Chem. , vol.288 , pp. 12469-12477
    • Yamakawa, D.1
  • 54
    • 27444447376 scopus 로고    scopus 로고
    • Uncoupling ligand-dependent and -independent mechanisms for mitogen-activated protein kinase activation by the murine Ron receptor tyrosine kinase
    • Wei X., et al. Uncoupling ligand-dependent and -independent mechanisms for mitogen-activated protein kinase activation by the murine Ron receptor tyrosine kinase. J. Biol. Chem. 2005, 280:35098-35107.
    • (2005) J. Biol. Chem. , vol.280 , pp. 35098-35107
    • Wei, X.1
  • 55
    • 84971507710 scopus 로고    scopus 로고
    • Single-molecule photobleaching reveals increased MET receptor dimerization upon ligand binding in intact cells
    • Dietz M.S., et al. Single-molecule photobleaching reveals increased MET receptor dimerization upon ligand binding in intact cells. BMC Biophys. 2013, 6:6.
    • (2013) BMC Biophys. , vol.6 , pp. 6
    • Dietz, M.S.1
  • 56
    • 58149096469 scopus 로고    scopus 로고
    • Mapping of DDR1 distribution and oligomerization on the cell surface by FRET microscopy
    • Mihai C., et al. Mapping of DDR1 distribution and oligomerization on the cell surface by FRET microscopy. J. Mol. Biol. 2009, 385:432-445.
    • (2009) J. Mol. Biol. , vol.385 , pp. 432-445
    • Mihai, C.1
  • 57
    • 78651372868 scopus 로고    scopus 로고
    • Nerve growth factor receptor TrkA exists as a preformed, yet inactive, dimer in living cells
    • Shen J., Maruyama I.N. Nerve growth factor receptor TrkA exists as a preformed, yet inactive, dimer in living cells. FEBS Lett. 2011, 585:295-299.
    • (2011) FEBS Lett. , vol.585 , pp. 295-299
    • Shen, J.1    Maruyama, I.N.2
  • 58
    • 77950516909 scopus 로고    scopus 로고
    • An extracellular steric seeding mechanism for Eph-ephrin signaling platform assembly
    • Seiradake E., et al. An extracellular steric seeding mechanism for Eph-ephrin signaling platform assembly. Nat. Struct. Mol. Biol. 2010, 17:398-402.
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , pp. 398-402
    • Seiradake, E.1
  • 59
    • 77954627688 scopus 로고    scopus 로고
    • Architecture of Eph receptor clusters
    • Himanen J.P., et al. Architecture of Eph receptor clusters. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:10860-10865.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 10860-10865
    • Himanen, J.P.1
  • 60
    • 1442358805 scopus 로고    scopus 로고
    • Recruitment of Eph receptors into signaling clusters does not require ephrin contact
    • Wimmer-Kleikamp S.H., et al. Recruitment of Eph receptors into signaling clusters does not require ephrin contact. J. Cell Biol. 2004, 164:661-666.
    • (2004) J. Cell Biol. , vol.164 , pp. 661-666
    • Wimmer-Kleikamp, S.H.1
  • 61
    • 84883325814 scopus 로고    scopus 로고
    • Insights into Eph receptor tyrosine kinase activation from crystal structures of the EphA4 ectodomain and its complex with ephrin-A5
    • Xu K., et al. Insights into Eph receptor tyrosine kinase activation from crystal structures of the EphA4 ectodomain and its complex with ephrin-A5. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:14634-14639.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 14634-14639
    • Xu, K.1
  • 62
    • 34447313361 scopus 로고    scopus 로고
    • Oligomerization of the EGF receptor investigated by live cell fluorescence intensity distribution analysis
    • Saffarian S., et al. Oligomerization of the EGF receptor investigated by live cell fluorescence intensity distribution analysis. Biophys. J. 2007, 93:1021-1031.
    • (2007) Biophys. J. , vol.93 , pp. 1021-1031
    • Saffarian, S.1
  • 63
    • 84856437490 scopus 로고    scopus 로고
    • Roles of the cytoskeleton in regulating EphA2 signals
    • Salaita K., Groves J.T. Roles of the cytoskeleton in regulating EphA2 signals. Commun. Integr. Biol. 2010, 3:454-457.
    • (2010) Commun. Integr. Biol. , vol.3 , pp. 454-457
    • Salaita, K.1    Groves, J.T.2
  • 64
    • 84861520898 scopus 로고    scopus 로고
    • Spatial regulation of receptor tyrosine kinases in development and cancer
    • Casaletto J.B., McClatchey A.I. Spatial regulation of receptor tyrosine kinases in development and cancer. Nat. Rev. Cancer 2012, 12:387-400.
    • (2012) Nat. Rev. Cancer , vol.12 , pp. 387-400
    • Casaletto, J.B.1    McClatchey, A.I.2
  • 65
    • 77955289201 scopus 로고    scopus 로고
    • Epidermal growth factor receptor activation remodels the plasma membrane lipid environment to induce nanocluster formation
    • Ariotti N., et al. Epidermal growth factor receptor activation remodels the plasma membrane lipid environment to induce nanocluster formation. Mol. Cell. Biol. 2010, 30:3795-3804.
    • (2010) Mol. Cell. Biol. , vol.30 , pp. 3795-3804
    • Ariotti, N.1
  • 66
    • 77949412667 scopus 로고    scopus 로고
    • Restriction of receptor movement alters cellular response: physical force sensing by EphA2
    • Salaita K., et al. Restriction of receptor movement alters cellular response: physical force sensing by EphA2. Science 2010, 327:1380-1385.
    • (2010) Science , vol.327 , pp. 1380-1385
    • Salaita, K.1
  • 67
    • 57249084132 scopus 로고    scopus 로고
    • Predominance of activated EGFR higher-order oligomers on the cell surface
    • Clayton A.H.A., et al. Predominance of activated EGFR higher-order oligomers on the cell surface. Growth Factors 2008, 26:316-324.
    • (2008) Growth Factors , vol.26 , pp. 316-324
    • Clayton, A.H.A.1
  • 68
    • 33748639228 scopus 로고    scopus 로고
    • Structure of the insulin receptor ectodomain reveals a folded-over conformation
    • McKern N.M., et al. Structure of the insulin receptor ectodomain reveals a folded-over conformation. Nature 2006, 443:218-221.
    • (2006) Nature , vol.443 , pp. 218-221
    • McKern, N.M.1
  • 69
    • 84863884698 scopus 로고    scopus 로고
    • α-Helical element at the hormone-binding surface of the insulin receptor functions as a signaling element to activate its tyrosine kinase
    • Whittaker J., et al. α-Helical element at the hormone-binding surface of the insulin receptor functions as a signaling element to activate its tyrosine kinase. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:11166-11171.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 11166-11171
    • Whittaker, J.1
  • 70
    • 84872162672 scopus 로고    scopus 로고
    • How insulin engages its primary binding site on the insulin receptor
    • Menting J.G., et al. How insulin engages its primary binding site on the insulin receptor. Nature 2013, 493:241-245.
    • (2013) Nature , vol.493 , pp. 241-245
    • Menting, J.G.1
  • 71
    • 77951058594 scopus 로고    scopus 로고
    • Structural resolution of a tandem hormone-binding element in the insulin receptor and its implications for design of peptide agonists
    • Smith B.J., et al. Structural resolution of a tandem hormone-binding element in the insulin receptor and its implications for design of peptide agonists. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:6771-6776.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 6771-6776
    • Smith, B.J.1
  • 72
    • 84867855247 scopus 로고    scopus 로고
    • Extracellular assembly and activation principles of oncogenic class III receptor tyrosine kinases
    • Verstraete K., Savvides S.N. Extracellular assembly and activation principles of oncogenic class III receptor tyrosine kinases. Nat. Rev. Cancer 2012, 12:753-766.
    • (2012) Nat. Rev. Cancer , vol.12 , pp. 753-766
    • Verstraete, K.1    Savvides, S.N.2
  • 73
    • 84859414321 scopus 로고    scopus 로고
    • Structure of the discoidin domain receptor 1 extracellular region bound to an inhibitory Fab fragment reveals features important for signaling
    • Carafoli F., et al. Structure of the discoidin domain receptor 1 extracellular region bound to an inhibitory Fab fragment reveals features important for signaling. Structure 2012, 20:688-697.
    • (2012) Structure , vol.20 , pp. 688-697
    • Carafoli, F.1
  • 74
    • 70350503425 scopus 로고    scopus 로고
    • Cytoplasmic relaxation of active Eph controls ephrin shedding by ADAM10
    • Janes P.W., et al. Cytoplasmic relaxation of active Eph controls ephrin shedding by ADAM10. PLoS Biol. 2009, 7:e1000215.
    • (2009) PLoS Biol. , vol.7
    • Janes, P.W.1
  • 75
    • 84887100172 scopus 로고    scopus 로고
    • Structural basis for KIT receptor tyrosine kinase inhibition by antibodies targeting the D4 membrane-proximal region
    • Reshetnyak A.V., et al. Structural basis for KIT receptor tyrosine kinase inhibition by antibodies targeting the D4 membrane-proximal region. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:17832-17837.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 17832-17837
    • Reshetnyak, A.V.1
  • 76
    • 77953603192 scopus 로고    scopus 로고
    • Receptor tyrosine kinase transmembrane domains: function, dimer structure and dimerization energetics
    • Li E., Hristova K. Receptor tyrosine kinase transmembrane domains: function, dimer structure and dimerization energetics. Cell Adh. Migr. 2010, 4:249-254.
    • (2010) Cell Adh. Migr. , vol.4 , pp. 249-254
    • Li, E.1    Hristova, K.2
  • 77
    • 84861837644 scopus 로고    scopus 로고
    • Structural and thermodynamic insight into the process of "weak" dimerization of the ErbB4 transmembrane domain by solution NMR
    • Bocharov E.V., et al. Structural and thermodynamic insight into the process of "weak" dimerization of the ErbB4 transmembrane domain by solution NMR. Biochim. Biophys. Acta 2012, 1818:2158-2170.
    • (2012) Biochim. Biophys. Acta , vol.1818 , pp. 2158-2170
    • Bocharov, E.V.1
  • 78
    • 18744378545 scopus 로고    scopus 로고
    • A putative molecular-activation switch in the transmembrane domain of erbB2
    • Fleishman S.J., et al. A putative molecular-activation switch in the transmembrane domain of erbB2. Proc. Natl. Acad. Sci. U.S.A. 2002, 99:15937-15940.
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , pp. 15937-15940
    • Fleishman, S.J.1
  • 79
    • 84870823045 scopus 로고    scopus 로고
    • Consequences of replacing EGFR juxtamembrane domain with an unstructured sequence
    • He L., Hristova K. Consequences of replacing EGFR juxtamembrane domain with an unstructured sequence. Sci. Rep. 2012, 2:854.
    • (2012) Sci. Rep. , vol.2 , pp. 854
    • He, L.1    Hristova, K.2
  • 80
    • 84865238071 scopus 로고    scopus 로고
    • Bipartite tetracysteine display reveals allosteric control of ligand-specific EGFR activation
    • Scheck R.A.R., et al. Bipartite tetracysteine display reveals allosteric control of ligand-specific EGFR activation. ACS Chem. Biol. 2012, 7:1367-1376.
    • (2012) ACS Chem. Biol. , vol.7 , pp. 1367-1376
    • Scheck, R.A.R.1
  • 81
    • 78649548465 scopus 로고    scopus 로고
    • Structural evidence for loose linkage between ligand binding and kinase activation in the epidermal growth factor receptor
    • Lu C., et al. Structural evidence for loose linkage between ligand binding and kinase activation in the epidermal growth factor receptor. Mol. Cell. Biol. 2010, 30:5432-5443.
    • (2010) Mol. Cell. Biol. , vol.30 , pp. 5432-5443
    • Lu, C.1
  • 82
    • 73349087177 scopus 로고    scopus 로고
    • The single transmembrane domains of human receptor tyrosine kinases encode self-interactions
    • Finger C., et al. The single transmembrane domains of human receptor tyrosine kinases encode self-interactions. Sci. Signal. 2009, 2:ra56.
    • (2009) Sci. Signal. , vol.2 , pp. ra56
    • Finger, C.1
  • 83
    • 84887406746 scopus 로고    scopus 로고
    • Structure of FGFR3 transmembrane domain dimer: implications for signaling and human pathologies
    • Bocharov E.V., et al. Structure of FGFR3 transmembrane domain dimer: implications for signaling and human pathologies. Structure 2013, 21:2087-2093.
    • (2013) Structure , vol.21 , pp. 2087-2093
    • Bocharov, E.V.1
  • 84
    • 84892774971 scopus 로고    scopus 로고
    • Primary and secondary dimer interfaces of the fibroblast growth factor receptor 3 transmembrane domain: characterization via multiscale molecular dynamics simulations
    • Reddy T., et al. Primary and secondary dimer interfaces of the fibroblast growth factor receptor 3 transmembrane domain: characterization via multiscale molecular dynamics simulations. Biochemistry 2014, 53:323-332.
    • (2014) Biochemistry , vol.53 , pp. 323-332
    • Reddy, T.1
  • 85
    • 75149176738 scopus 로고    scopus 로고
    • Transmembrane domain-mediated orientation of receptor monomers in active VEGFR-2 dimers
    • Dosch D.D., Ballmer-Hofer K. Transmembrane domain-mediated orientation of receptor monomers in active VEGFR-2 dimers. FASEB J. 2010, 24:32-38.
    • (2010) FASEB J. , vol.24 , pp. 32-38
    • Dosch, D.D.1    Ballmer-Hofer, K.2
  • 86
    • 84876893871 scopus 로고    scopus 로고
    • Structural basis for angiopoietin-1-mediated signaling initiation
    • Yu X., et al. Structural basis for angiopoietin-1-mediated signaling initiation. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:7205-7210.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 7205-7210
    • Yu, X.1
  • 87
    • 77649258840 scopus 로고    scopus 로고
    • Tie1-Tie2 interactions mediate functional differences between angiopoietin ligands
    • Seegar T.C.M., et al. Tie1-Tie2 interactions mediate functional differences between angiopoietin ligands. Mol. Cell 2010, 37:643-655.
    • (2010) Mol. Cell , vol.37 , pp. 643-655
    • Seegar, T.C.M.1
  • 88
    • 77955627615 scopus 로고    scopus 로고
    • Structural basis for negative cooperativity in growth factor binding to an EGF receptor
    • Alvarado D., et al. Structural basis for negative cooperativity in growth factor binding to an EGF receptor. Cell 2010, 142:568-579.
    • (2010) Cell , vol.142 , pp. 568-579
    • Alvarado, D.1
  • 89
    • 84863601338 scopus 로고    scopus 로고
    • A single ligand is sufficient to activate EGFR dimers
    • Liu P., et al. A single ligand is sufficient to activate EGFR dimers. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:10861-10866.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 10861-10866
    • Liu, P.1
  • 90
    • 38349190632 scopus 로고    scopus 로고
    • Heterogeneity in EGF-binding affinities arises from negative cooperativity in an aggregating system
    • Macdonald J.L., Pike L.J. Heterogeneity in EGF-binding affinities arises from negative cooperativity in an aggregating system. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:112-117.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 112-117
    • Macdonald, J.L.1    Pike, L.J.2
  • 91
    • 79251564386 scopus 로고    scopus 로고
    • High- and low-affinity epidermal growth factor receptor-ligand interactions activate distinct signaling pathways
    • Krall J.A., et al. High- and low-affinity epidermal growth factor receptor-ligand interactions activate distinct signaling pathways. PLoS ONE 2011, 6:e15945.
    • (2011) PLoS ONE , vol.6
    • Krall, J.A.1
  • 92
    • 79952672026 scopus 로고    scopus 로고
    • Signaling from the living plasma membrane
    • Grecco H.E., et al. Signaling from the living plasma membrane. Cell 2011, 144:897-909.
    • (2011) Cell , vol.144 , pp. 897-909
    • Grecco, H.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.