-
1
-
-
84881011161
-
A model for the set statistics of RRAM inspired in the percolation model of oxide breakdown
-
Aug.
-
S. Long et al., "A model for the set statistics of RRAM inspired in the percolation model of oxide breakdown," IEEE Electron Device Lett., vol. 34, no. 8, pp. 999-1001, Aug. 2013.
-
(2013)
IEEE Electron Device Lett.
, vol.34
, Issue.8
, pp. 999-1001
-
-
Long, S.1
-
2
-
-
84855250778
-
Developments in nanocrystal memory
-
Dec.
-
T. C. Chang et al., "Developments in nanocrystal memory," Mater. Today, vol. 14, no. 12, pp. 608-615, Dec. 2011.
-
(2011)
Mater. Today
, vol.14
, Issue.12
, pp. 608-615
-
-
Chang, T.C.1
-
3
-
-
78649444385
-
A phenomenological model for the reset mechanism of metal oxide RRAM
-
Dec.
-
S. Yu and H.-S. P. Wong, "A phenomenological model for the reset mechanism of metal oxide RRAM," IEEE Electron Device Lett., vol. 31, no. 12, pp. 1455-1457, Dec. 2010.
-
(2010)
IEEE Electron Device Lett.
, vol.31
, Issue.12
, pp. 1455-1457
-
-
Yu, S.1
Wong, H.-S.P.2
-
4
-
-
84876971083
-
Origin of hopping conduction in graphene-oxidedoped silicon oxide resistance random access memory devices
-
May
-
K. C. Chang et al., "Origin of hopping conduction in graphene-oxidedoped silicon oxide resistance random access memory devices," IEEE Electron Device Lett., vol. 34, no. 5, pp. 677-679, May 2013.
-
(2013)
IEEE Electron Device Lett.
, vol.34
, Issue.5
, pp. 677-679
-
-
Chang, K.C.1
-
5
-
-
70450245086
-
Improvement of resistive switching properties in ZrO2- based ReRAM with implanted Ti ions
-
Dec.
-
Q. Liu et al., "Improvement of resistive switching properties in ZrO2- based ReRAM with implanted Ti ions," IEEE Electron Device Lett., vol. 30, no. 12, pp. 1335-1337, Dec. 2009.
-
(2009)
IEEE Electron Device Lett.
, vol.30
, Issue.12
, pp. 1335-1337
-
-
Liu, Q.1
-
6
-
-
84879851808
-
Performance and characteristics of double layer porous silicon oxide resistance random access memory
-
T.-M. Tsai et al., "Performance and characteristics of double layer porous silicon oxide resistance random access memory," Appl. Phys. Lett., vol. 102, no. 25, p. 253509, 2013.
-
(2013)
Appl. Phys. Lett.
, vol.102
, Issue.25
-
-
Tsai, T.-M.1
-
7
-
-
84881001732
-
Nanometer-scale hfox ream
-
Apr.
-
Z. Zhang et al., "Nanometer-scale HfOx RRAM," IEEE Electron Device Lett., vol. 34, no. 8, pp. 1005-1007, Apr. 2013.
-
(2013)
IEEE Electron Device Lett.
, vol.34
, Issue.8
, pp. 1005-1007
-
-
Zhang, Z.1
-
8
-
-
84876966134
-
Cycle-to-cycle intrinsic RESET statistics in HfO2-based unipolar RRAM devices
-
May
-
S. Long et al., "Cycle-to-cycle intrinsic RESET statistics in HfO2-based unipolar RRAM devices," IEEE Electron Device Lett., vol. 34, no. 4, pp. 623-625, May 2013.
-
(2013)
IEEE Electron Device Lett.
, vol.34
, Issue.4
, pp. 623-625
-
-
Long, S.1
-
9
-
-
79955383135
-
High-performance gateall- around polycrystalline silicon nanowire with silicon nanocrystals nonvolatile memory
-
Apr.
-
M. F. Hung, Y. C. Wu, and Z. Y. Tang, "High-performance gateall- around polycrystalline silicon nanowire with silicon nanocrystals nonvolatile memory," Appl. Phys. Lett., vol. 98, no. 16, pp. 162108-1-162108-3, Apr. 2011.
-
(2011)
Appl. Phys. Lett.
, vol.98
, Issue.16
, pp. 1621081-1621083
-
-
Hung, M.F.1
Wu, Y.C.2
Tang, Z.Y.3
-
10
-
-
84883421119
-
Electrical conduction mechanism of Zn:SiOx resistance random access memory with supercritical CO2 fluid process
-
K. C. Chang et al., "Electrical conduction mechanism of Zn:SiOx resistance random access memory with supercritical CO2 fluid process," Appl. Phys. Lett., vol. 103, no. 8, p. 083509, 2013.
-
(2013)
Appl. Phys. Lett.
, vol.103
, Issue.8
-
-
Chang, K.C.1
-
11
-
-
80053197764
-
Fabrication and characterization of nanoscale NiO resistance change memory (RRAM) cells with confined conduction paths
-
Oct.
-
B. Lee and H.-S. P.Wong, "Fabrication and characterization of nanoscale NiO resistance change memory (RRAM) cells with confined conduction paths," IEEE Trans. Electron Devices, vol. 58, no. 10, pp. 3270-3275, Oct. 2011.
-
(2011)
IEEE Trans. Electron Devices
, vol.58
, Issue.10
, pp. 3270-3275
-
-
Lee, B.1
Wong, H.-S.P.2
-
12
-
-
80054950125
-
Nanoscale bipolar and complementary resistive switching memory based on amorphous carbon
-
Nov.
-
C. Yang et al., "Nanoscale bipolar and complementary resistive switching memory based on amorphous carbon," IEEE Trans. Electron Devices, vol. 58, no. 11, pp. 3933-3939, Nov. 2011.
-
(2011)
IEEE Trans. Electron Devices
, vol.58
, Issue.11
, pp. 3933-3939
-
-
Yang, C.1
-
13
-
-
79251545182
-
Resistance switching at the nanometre scale in amorphous carbon
-
Jan.
-
A. Sebastian et al., "Resistance switching at the nanometre scale in amorphous carbon," New J. Phys., vol. 13, p. 013020, Jan. 2011.
-
(2011)
New J. Phys.
, vol.13
-
-
Sebastian, A.1
-
14
-
-
84866978272
-
A physics/circuit-based switching model for carbon-based resistive memory with sp2/sp3 cluster conversion
-
Oct.
-
S. Qin et al., "A physics/circuit-based switching model for carbon-based resistive memory with sp2/sp3 cluster conversion," Nanoscale, vol. 4, no. 20, pp. 6658-6663, Oct. 2012
-
(2012)
Nanoscale
, vol.4
, Issue.20
, pp. 6658-6663
-
-
Qin, S.1
-
15
-
-
84897805430
-
Hydrogen induced redox mechanism in amorphous carbon resistive random access memory
-
Y. J. Chen et al., "Hydrogen induced redox mechanism in amorphous carbon resistive random access memory," Nanoscale Res. Lett., vol. 9, no. 1, p. 52, 2014.
-
(2014)
Nanoscale Res. Lett.
, vol.9
, Issue.1
-
-
Chen, Y.J.1
-
16
-
-
84877273642
-
Atomic-level quantized reaction of HfOx memristor
-
Y. E. Syu et al., "Atomic-level quantized reaction of HfOx memristor," Appl. Phys. Lett., vol. 102, no. 17, p. 172903, 2013.
-
(2013)
Appl. Phys. Lett.
, vol.102
, Issue.17
-
-
Syu, Y.E.1
-
18
-
-
34548647299
-
Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices
-
D. Ielmini and Y. Zhang, "Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices," J. Appl. Phys., vol. 102, no. 5, p. 054517, 2007.
-
(2007)
J. Appl. Phys.
, vol.102
, Issue.5
-
-
Ielmini, D.1
Zhang, Y.2
|