메뉴 건너뛰기




Volumn 25, Issue , 2014, Pages 159-173

Construction of robust dynamic genome-scale metabolic model structures of Saccharomyces cerevisiae through iterative re-parameterization

Author keywords

Dynamic flux balance analysis; Genome scale metabolic models; Metaheuristic optimization; Parameter estimation; Sensitivity analysis; Yeast

Indexed keywords

GENE EXPRESSION; ITERATIVE METHODS; METABOLISM; MODEL STRUCTURES; PARAMETER ESTIMATION; SENSITIVITY ANALYSIS;

EID: 84907316784     PISSN: 10967176     EISSN: 10967184     Source Type: Journal    
DOI: 10.1016/j.ymben.2014.07.004     Document Type: Article
Times cited : (26)

References (90)
  • 1
    • 84870856370 scopus 로고    scopus 로고
    • Oxygen response of the wine yeast Saccharomyces cerevisiae EC1118 grown under carbon-sufficient, nitrogen-limited enological conditions
    • Aceituno F.F., Orellana M., Torres J., Mendoza S., Slater A.W., Melo F., Agosin E. Oxygen response of the wine yeast Saccharomyces cerevisiae EC1118 grown under carbon-sufficient, nitrogen-limited enological conditions. Appl. Environ. Microbiol. 2012, 78:8340-8352.
    • (2012) Appl. Environ. Microbiol. , vol.78 , pp. 8340-8352
    • Aceituno, F.F.1    Orellana, M.2    Torres, J.3    Mendoza, S.4    Slater, A.W.5    Melo, F.6    Agosin, E.7
  • 2
    • 6044265058 scopus 로고    scopus 로고
    • Integration of gene expression data into genome-scale metabolic models
    • Åkesson M., Förster J., Nielsen J. Integration of gene expression data into genome-scale metabolic models. Metab. Eng. 2004, 6:285-293.
    • (2004) Metab. Eng. , vol.6 , pp. 285-293
    • Åkesson, M.1    Förster, J.2    Nielsen, J.3
  • 4
    • 18844392599 scopus 로고    scopus 로고
    • Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli
    • Alper H., Jin Y.-S., Moxley J.F., Stephanopoulos G. Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab. Eng. 2005, 7:155-164.
    • (2005) Metab. Eng. , vol.7 , pp. 155-164
    • Alper, H.1    Jin, Y.-S.2    Moxley, J.F.3    Stephanopoulos, G.4
  • 5
    • 77949475400 scopus 로고    scopus 로고
    • An iterative identification procedure for dynamic modeling of biochemical networks
    • (Article no. 11)
    • Balsa-Canto E., Alonso A., Banga J. An iterative identification procedure for dynamic modeling of biochemical networks. BMC Syst. Biol. 2010, 4. (Article no. 11).
    • (2010) BMC Syst. Biol. , vol.4
    • Balsa-Canto, E.1    Alonso, A.2    Banga, J.3
  • 6
    • 34147164139 scopus 로고    scopus 로고
    • Optimal design of dynamic experiments for improved estimation of kinetic parameters of thermal degradation
    • Balsa-Canto E., Rodriguez-Fernandez M., Banga J. Optimal design of dynamic experiments for improved estimation of kinetic parameters of thermal degradation. J. Food Eng. 2007, 82:178-188.
    • (2007) J. Food Eng. , vol.82 , pp. 178-188
    • Balsa-Canto, E.1    Rodriguez-Fernandez, M.2    Banga, J.3
  • 7
    • 34347258175 scopus 로고    scopus 로고
    • Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox
    • Becker S.A., Feist A.M., Mo M.L., Hannum G., Palsson B.Ø., Herrgard M.J. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat. Protoc. 2007, 2:727-738.
    • (2007) Nat. Protoc. , vol.2 , pp. 727-738
    • Becker, S.A.1    Feist, A.M.2    Mo, M.L.3    Hannum, G.4    Palsson, B.Ø.5    Herrgard, M.J.6
  • 8
    • 2642579686 scopus 로고
    • A reagent for the detection of reducing sugars
    • Benedict S.R. A reagent for the detection of reducing sugars. J. Biol. Chem. 1909, 5:485-487.
    • (1909) J. Biol. Chem. , vol.5 , pp. 485-487
    • Benedict, S.R.1
  • 10
    • 33644832381 scopus 로고    scopus 로고
    • In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production
    • Bro C., Regenberg B., Förster J., Nielsen J. In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab. Eng. 2006, 8:102-111.
    • (2006) Metab. Eng. , vol.8 , pp. 102-111
    • Bro, C.1    Regenberg, B.2    Förster, J.3    Nielsen, J.4
  • 13
    • 52649139002 scopus 로고    scopus 로고
    • Integrating parameter selection with experimental design under uncertainty for nonlinear dynamic systems
    • Chu Y., Hahn J. Integrating parameter selection with experimental design under uncertainty for nonlinear dynamic systems. AIChE J. 2008, 54:2310-2320.
    • (2008) AIChE J. , vol.54 , pp. 2310-2320
    • Chu, Y.1    Hahn, J.2
  • 15
    • 2342648924 scopus 로고    scopus 로고
    • Integrating high-throughput and computational data elucidates bacterial networks
    • Covert M.W., Knight E.M., Reed J.L., Herrgård M.J., Palsson B.Ø. Integrating high-throughput and computational data elucidates bacterial networks. Nature 2004, 429:92-96.
    • (2004) Nature , vol.429 , pp. 92-96
    • Covert, M.W.1    Knight, E.M.2    Reed, J.L.3    Herrgård, M.J.4    Palsson, B.Ø.5
  • 16
    • 0035824029 scopus 로고    scopus 로고
    • Regulation of gene expression in flux balance models of metabolism
    • Covert M.W., Schilling C.H., Palsson B.Ø. Regulation of gene expression in flux balance models of metabolism. J. Theor. Biol. 2001, 213:73-88.
    • (2001) J. Theor. Biol. , vol.213 , pp. 73-88
    • Covert, M.W.1    Schilling, C.H.2    Palsson, B.Ø.3
  • 17
    • 51749113592 scopus 로고    scopus 로고
    • Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli
    • Covert M.W., Xiao N., Chen T.J., Karr J.R. Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli. Bioinformatics 2008, 24:2044-2050.
    • (2008) Bioinformatics , vol.24 , pp. 2044-2050
    • Covert, M.W.1    Xiao, N.2    Chen, T.J.3    Karr, J.R.4
  • 18
    • 84855875953 scopus 로고    scopus 로고
    • Using flux balance analysis to guide microbial metabolic engineering
    • Curran K.A., Crook N.C., Alper H.S. Using flux balance analysis to guide microbial metabolic engineering. Methods Mol. Biol. 2012, 834:197-216.
    • (2012) Methods Mol. Biol. , vol.834 , pp. 197-216
    • Curran, K.A.1    Crook, N.C.2    Alper, H.S.3
  • 20
    • 77950368645 scopus 로고    scopus 로고
    • Global sensitivity analysis in dynamic metabolic networks
    • Di Maggio J., Diaz Ricci J.C., Diaz M.S. Global sensitivity analysis in dynamic metabolic networks. Comput. Chem. Eng. 2010, 34:770-781.
    • (2010) Comput. Chem. Eng. , vol.34 , pp. 770-781
    • Di Maggio, J.1    Diaz Ricci, J.C.2    Diaz, M.S.3
  • 23
    • 0034625143 scopus 로고    scopus 로고
    • The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities
    • Edwards J.S., Palsson B.Ø. The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc. Natl. Acad. Sci. U. S. A. 2000, 97:5528-5533.
    • (2000) Proc. Natl. Acad. Sci. U. S. A. , vol.97 , pp. 5528-5533
    • Edwards, J.S.1    Palsson, B.Ø.2
  • 24
    • 67049088428 scopus 로고    scopus 로고
    • Dynamic optimization of nonlinear processes with an enhanced scatter search method
    • Egea J.A., Balsa-Canto E. Dynamic optimization of nonlinear processes with an enhanced scatter search method. Ind. Eng. Chem. Res. 2009, 48:4388-4401.
    • (2009) Ind. Eng. Chem. Res. , vol.48 , pp. 4388-4401
    • Egea, J.A.1    Balsa-Canto, E.2
  • 25
    • 84861149640 scopus 로고    scopus 로고
    • Integrating flux balance analysis into kinetic models to decipher the dynamic metabolism of Shewanella oneidensis MR-1
    • (Article no. 2)
    • Feng X., Xu Y., Chen Y., Tang Y.J. Integrating flux balance analysis into kinetic models to decipher the dynamic metabolism of Shewanella oneidensis MR-1. PLoS Comput. Biol. 2012, 8. (Article no. 2).
    • (2012) PLoS Comput. Biol. , vol.8
    • Feng, X.1    Xu, Y.2    Chen, Y.3    Tang, Y.J.4
  • 26
    • 0037313750 scopus 로고    scopus 로고
    • Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network
    • Förster J., Famili I., Fu P., Palsson B.Ø., Nielsen J. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 2003, 13:244-253.
    • (2003) Genome Res. , vol.13 , pp. 244-253
    • Förster, J.1    Famili, I.2    Fu, P.3    Palsson, B.Ø.4    Nielsen, J.5
  • 29
    • 84907340837 scopus 로고    scopus 로고
    • Gurobi. version 5.5.0. Gurobi Optimization, Inc., Houston, Texas.
    • Gurobi, 2013. version 5.5.0. Gurobi Optimization, Inc., Houston, Texas.
    • (2013)
  • 30
    • 78650215306 scopus 로고    scopus 로고
    • Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures
    • Hanly T.J., Henson M.A. Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures. Biotechnol. Bioeng. 2011, 108:376-385.
    • (2011) Biotechnol. Bioeng. , vol.108 , pp. 376-385
    • Hanly, T.J.1    Henson, M.A.2
  • 31
    • 84875495658 scopus 로고    scopus 로고
    • Dynamic metabolic modeling of a microaerobic yeast co-culture: predicting and optimizing ethanol production from glucose/xylose mixtures
    • (Article no. 44)
    • Hanly T.J., Henson M.A. Dynamic metabolic modeling of a microaerobic yeast co-culture: predicting and optimizing ethanol production from glucose/xylose mixtures. Biotechnol. Biofuels 2013, 6. (Article no. 44).
    • (2013) Biotechnol. Biofuels , vol.6
    • Hanly, T.J.1    Henson, M.A.2
  • 32
    • 84862272463 scopus 로고    scopus 로고
    • Dynamic flux balance modeling of S. cerevisiae and E. coli co-cultures for efficient consumption of glucose/xylose mixtures
    • Hanly T.J., Urello M., Henson M.A. Dynamic flux balance modeling of S. cerevisiae and E. coli co-cultures for efficient consumption of glucose/xylose mixtures. Appl. Microbiol. Biotechnol. 2012, 93:2529-2541.
    • (2012) Appl. Microbiol. Biotechnol. , vol.93 , pp. 2529-2541
    • Hanly, T.J.1    Urello, M.2    Henson, M.A.3
  • 33
    • 33646146411 scopus 로고    scopus 로고
    • Modeling the VPAC2-activated cAMP/PKA signaling pathway: from receptor to circadian clock gene induction
    • Hao H., Zak D., Sauter T., Schwaber J., Ogunnaike B. Modeling the VPAC2-activated cAMP/PKA signaling pathway: from receptor to circadian clock gene induction. Biophys. J. 2006, 90:1560-1571.
    • (2006) Biophys. J. , vol.90 , pp. 1560-1571
    • Hao, H.1    Zak, D.2    Sauter, T.3    Schwaber, J.4    Ogunnaike, B.5
  • 34
    • 84861744439 scopus 로고    scopus 로고
    • Yeast 5-an expanded reconstruction of the Saccharomyces cerevisiae metabolic network
    • (Article no. 55)
    • Heavner B.D., Smallbone K., Barker B., Mendes P., Walker L.P. Yeast 5-an expanded reconstruction of the Saccharomyces cerevisiae metabolic network. BMC Syst. Biol. 2012, 6. (Article no. 55).
    • (2012) BMC Syst. Biol. , vol.6
    • Heavner, B.D.1    Smallbone, K.2    Barker, B.3    Mendes, P.4    Walker, L.P.5
  • 35
    • 84885911432 scopus 로고    scopus 로고
    • Version 6 of the consensus yeast metabolic network refines biochemical coverage and improves model performance
    • (Article ID bat059)
    • Heavner B.D., Smallbone K., Price N.D., Walker L.P. Version 6 of the consensus yeast metabolic network refines biochemical coverage and improves model performance. Database 2013, 2013. (Article ID bat059).
    • (2013) Database , vol.2013
    • Heavner, B.D.1    Smallbone, K.2    Price, N.D.3    Walker, L.P.4
  • 38
    • 35748950713 scopus 로고    scopus 로고
    • Exploring the functional landscape of gene expression: directed search of large microarray compendia
    • Hibbs M.A., Hess D.C., Myers C.L., Huttenhower C., Li K., Troyanskaya O.G. Exploring the functional landscape of gene expression: directed search of large microarray compendia. Bioinformatics 2007, 23:2692-2699.
    • (2007) Bioinformatics , vol.23 , pp. 2692-2699
    • Hibbs, M.A.1    Hess, D.C.2    Myers, C.L.3    Huttenhower, C.4    Li, K.5    Troyanskaya, O.G.6
  • 39
    • 33749996165 scopus 로고    scopus 로고
    • Optimization of fed-batch Saccharomyces cerevisiae fermentation using dynamic flux balance models
    • Hjersted J.L., Henson M.A. Optimization of fed-batch Saccharomyces cerevisiae fermentation using dynamic flux balance models. Biotechnol. Prog. 2006, 22:1239-1248.
    • (2006) Biotechnol. Prog. , vol.22 , pp. 1239-1248
    • Hjersted, J.L.1    Henson, M.A.2
  • 40
    • 66249096326 scopus 로고    scopus 로고
    • Steady-state and dynamic flux balance analysis of ethanol production by Saccharomyces cerevisiae
    • Hjersted J.L., Henson M.A. Steady-state and dynamic flux balance analysis of ethanol production by Saccharomyces cerevisiae. IET Syst. Biol. 2009, 3:167-179.
    • (2009) IET Syst. Biol. , vol.3 , pp. 167-179
    • Hjersted, J.L.1    Henson, M.A.2
  • 41
    • 34447308322 scopus 로고    scopus 로고
    • Genome-scale analysis of Saccharomyces cerevisiae metabolism and ethanol production in fed-batch culture
    • Hjersted J.L., Henson M.A., Mahadevan R. Genome-scale analysis of Saccharomyces cerevisiae metabolism and ethanol production in fed-batch culture. Biotechnol. Bioeng. 2007, 97:1190-1204.
    • (2007) Biotechnol. Bioeng. , vol.97 , pp. 1190-1204
    • Hjersted, J.L.1    Henson, M.A.2    Mahadevan, R.3
  • 42
    • 84872663560 scopus 로고    scopus 로고
    • A reliable simulator for dynamic flux balance analysis
    • Höffner K., Harwood S.M., Barton P.I. A reliable simulator for dynamic flux balance analysis. Biotechnol. Bioeng. 2013, 110:792-802.
    • (2013) Biotechnol. Bioeng. , vol.110 , pp. 792-802
    • Höffner, K.1    Harwood, S.M.2    Barton, P.I.3
  • 43
    • 3242795003 scopus 로고    scopus 로고
    • The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks
    • Holzhütter H. The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks. Eur. J. Biochem. 2004, 271:2905-2922.
    • (2004) Eur. J. Biochem. , vol.271 , pp. 2905-2922
    • Holzhütter, H.1
  • 44
    • 0022361161 scopus 로고
    • Numerical parameter identifiability and estimability: integrating identifiability, estimability, and optimal sampling design
    • Jacquez J.A., Greif P. Numerical parameter identifiability and estimability: integrating identifiability, estimability, and optimal sampling design. Math. Biosci. 1985, 77:201-227.
    • (1985) Math. Biosci. , vol.77 , pp. 201-227
    • Jacquez, J.A.1    Greif, P.2
  • 45
  • 46
    • 84865978199 scopus 로고    scopus 로고
    • Dynamic flux balance analysis of the metabolism of Saccharomyces cerevisiae during the shift from fully respirative or respirofermentative metabolic states to anaerobiosis
    • Jouhten P., Wiebe M., Penttilä M. Dynamic flux balance analysis of the metabolism of Saccharomyces cerevisiae during the shift from fully respirative or respirofermentative metabolic states to anaerobiosis. FEBS J. 2012, 279:3338-3354.
    • (2012) FEBS J. , vol.279 , pp. 3338-3354
    • Jouhten, P.1    Wiebe, M.2    Penttilä, M.3
  • 49
    • 0036500993 scopus 로고    scopus 로고
    • Systems biology: a brief overview
    • Kitano H. Systems biology: a brief overview. Science 2002, 295:1662-1664.
    • (2002) Science , vol.295 , pp. 1662-1664
    • Kitano, H.1
  • 50
    • 84874020076 scopus 로고    scopus 로고
    • Advances and selected recent developments in state and parameter estimation
    • Kravaris C., Hahn J., Chu Y. Advances and selected recent developments in state and parameter estimation. Comput. Chem. Eng. 2013, 51:111-123.
    • (2013) Comput. Chem. Eng. , vol.51 , pp. 111-123
    • Kravaris, C.1    Hahn, J.2    Chu, Y.3
  • 51
    • 34547684426 scopus 로고    scopus 로고
    • Computational approaches to the topology, stability and dynamics of metabolic networks
    • Kruger N., Ratcliffe G., Steuer R. Computational approaches to the topology, stability and dynamics of metabolic networks. Phytochemistry 2007, 68:2139-2151.
    • (2007) Phytochemistry , vol.68 , pp. 2139-2151
    • Kruger, N.1    Ratcliffe, G.2    Steuer, R.3
  • 52
    • 33748852396 scopus 로고    scopus 로고
    • Metabolic-state-dependent remodeling of the transcriptome in response to anoxia and subsequent reoxygenation in Saccharomyces cerevisiae
    • Lai L.-C., Kosorukoff A.L., Burke P.V., Kwast K.E. Metabolic-state-dependent remodeling of the transcriptome in response to anoxia and subsequent reoxygenation in Saccharomyces cerevisiae. Eukaryot. Cell 2006, 5:1468-1489.
    • (2006) Eukaryot. Cell , vol.5 , pp. 1468-1489
    • Lai, L.-C.1    Kosorukoff, A.L.2    Burke, P.V.3    Kwast, K.E.4
  • 53
    • 0021431509 scopus 로고
    • Multiexponential, multicompartmental, and noncompartmental modeling. II. Data analysis and statistical considerations
    • Landaw E.M., DiStefano J.J. Multiexponential, multicompartmental, and noncompartmental modeling. II. Data analysis and statistical considerations. Am. J. Physiol. 1984, 246:R665-R677.
    • (1984) Am. J. Physiol. , vol.246
    • Landaw, E.M.1    DiStefano, J.J.2
  • 54
    • 84884346032 scopus 로고    scopus 로고
    • Identification of parameter correlations for parameter estimation in dynamic biological models
    • (Article no. 91)
    • Li P., Vu Q.D. Identification of parameter correlations for parameter estimation in dynamic biological models. BMC Syst. Biol. 2013, 7. (Article no. 91).
    • (2013) BMC Syst. Biol. , vol.7
    • Li, P.1    Vu, Q.D.2
  • 55
    • 84898538483 scopus 로고    scopus 로고
    • Dynamic flux balance analysis of batch fermentation: effect of genetic manipulations on ethanol production
    • Lisha K.P., Sarkar D. Dynamic flux balance analysis of batch fermentation: effect of genetic manipulations on ethanol production. Bioprocess Biosyst. Eng. 2014, 37:617-627.
    • (2014) Bioprocess Biosyst. Eng. , vol.37 , pp. 617-627
    • Lisha, K.P.1    Sarkar, D.2
  • 56
    • 0036708443 scopus 로고    scopus 로고
    • Dynamic flux balance analysis of diauxic growth in Escherichia coli
    • Mahadevan R., Edwards J.S., Doyle F.J. Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys. J. 2002, 83:1331-1340.
    • (2002) Biophys. J. , vol.83 , pp. 1331-1340
    • Mahadevan, R.1    Edwards, J.S.2    Doyle, F.J.3
  • 57
    • 84907320598 scopus 로고    scopus 로고
    • MATLAB. version 8.1 (R2013a). The MathWorks Inc., Natick, Massachusetts.
    • MATLAB, 2013. version 8.1 (R2013a). The MathWorks Inc., Natick, Massachusetts.
    • (2013)
  • 58
    • 76749149000 scopus 로고    scopus 로고
    • Application of dynamic flux balance analysis to an industrial Escherichia coli fermentation
    • Meadows A.L., Karnik R., Lam H., Forestell S., Snedecor B. Application of dynamic flux balance analysis to an industrial Escherichia coli fermentation. Metab. Eng. 2010, 12:150-160.
    • (2010) Metab. Eng. , vol.12 , pp. 150-160
    • Meadows, A.L.1    Karnik, R.2    Lam, H.3    Forestell, S.4    Snedecor, B.5
  • 59
    • 0347132484 scopus 로고    scopus 로고
    • Insights into the relation between mRNA and protein expression patterns: I. Theoretical considerations
    • Mehra A., Lee K.H., Hatzimanikatis V. Insights into the relation between mRNA and protein expression patterns: I. Theoretical considerations. Biotechnol. Bioeng. 2003, 84:822-833.
    • (2003) Biotechnol. Bioeng. , vol.84 , pp. 822-833
    • Mehra, A.1    Lee, K.H.2    Hatzimanikatis, V.3
  • 60
    • 3042712918 scopus 로고    scopus 로고
    • Production of fungal α-amylase by Saccharomyces kluyveri in glucose-limited cultivations
    • Møller K., Sharif M.Z., Olsson L. Production of fungal α-amylase by Saccharomyces kluyveri in glucose-limited cultivations. J. Biotechnol. 2004, 111:311-318.
    • (2004) J. Biotechnol. , vol.111 , pp. 311-318
    • Møller, K.1    Sharif, M.Z.2    Olsson, L.3
  • 61
    • 78650525718 scopus 로고    scopus 로고
    • Dynamic model of CHO cell metabolism
    • Nolan R.P., Lee K. Dynamic model of CHO cell metabolism. Metab. Eng. 2011, 13:108-124.
    • (2011) Metab. Eng. , vol.13 , pp. 108-124
    • Nolan, R.P.1    Lee, K.2
  • 63
    • 73149122136 scopus 로고    scopus 로고
    • Applications of genome-scale metabolic reconstructions
    • (Article no. 320)
    • Oberhardt M.A., Palsson B.Ø., Papin J.A. Applications of genome-scale metabolic reconstructions. Mol. Syst. Biol. 2009, 5. (Article no. 320).
    • (2009) Mol. Syst. Biol. , vol.5
    • Oberhardt, M.A.1    Palsson, B.Ø.2    Papin, J.A.3
  • 64
    • 70449521460 scopus 로고    scopus 로고
    • A dynamic, genome-scale flux model of Lactococcus lactis to increase specific recombinant protein expression
    • Oddone G.M., Mills D.A., Block D.E. A dynamic, genome-scale flux model of Lactococcus lactis to increase specific recombinant protein expression. Metab. Eng. 2009, 11:367-381.
    • (2009) Metab. Eng. , vol.11 , pp. 367-381
    • Oddone, G.M.1    Mills, D.A.2    Block, D.E.3
  • 65
    • 84899968949 scopus 로고    scopus 로고
    • Metabolic and transcriptomic response of the wine yeast Saccharomyces cerevisiae strain EC1118 after an oxygen impulse under carbon-sufficient, nitrogen-limited fermentative conditions
    • Orellana M., Aceituno F.F., Slater A.W., Almonacid L.I., Melo F., Agosin E. Metabolic and transcriptomic response of the wine yeast Saccharomyces cerevisiae strain EC1118 after an oxygen impulse under carbon-sufficient, nitrogen-limited fermentative conditions. FEMS Yeast Res. 2014, 14:412-424.
    • (2014) FEMS Yeast Res. , vol.14 , pp. 412-424
    • Orellana, M.1    Aceituno, F.F.2    Slater, A.W.3    Almonacid, L.I.4    Melo, F.5    Agosin, E.6
  • 67
    • 84864932596 scopus 로고    scopus 로고
    • Fifteen years of large scale metabolic modeling of yeast: developments and impacts
    • Osterlund T., Nookaew I., Nielsen J. Fifteen years of large scale metabolic modeling of yeast: developments and impacts. Biotechnol. Adv. 2012, 30:979-988.
    • (2012) Biotechnol. Adv. , vol.30 , pp. 979-988
    • Osterlund, T.1    Nookaew, I.2    Nielsen, J.3
  • 68
    • 70349770739 scopus 로고    scopus 로고
    • Constraints-based genome-scale metabolic simulation for systems metabolic engineering
    • Park J.M., Kim T.Y., Lee S.Y. Constraints-based genome-scale metabolic simulation for systems metabolic engineering. Biotechnol. Adv. 2009, 27:979-988.
    • (2009) Biotechnol. Adv. , vol.27 , pp. 979-988
    • Park, J.M.1    Kim, T.Y.2    Lee, S.Y.3
  • 69
    • 0035000446 scopus 로고    scopus 로고
    • Practical identifiability of model parameters by combined respirometric-titrimetric measurements
    • Petersen B., Gernaey K., Vanrolleghem P.A. Practical identifiability of model parameters by combined respirometric-titrimetric measurements. Water Sci. Technol. 2001, 43:347-355.
    • (2001) Water Sci. Technol. , vol.43 , pp. 347-355
    • Petersen, B.1    Gernaey, K.2    Vanrolleghem, P.A.3
  • 71
    • 2342452470 scopus 로고    scopus 로고
    • Dynamic metabolic modelling under the balanced growth condition
    • Provost A., Bastin G. Dynamic metabolic modelling under the balanced growth condition. J. Process Control 2004, 14:717-728.
    • (2004) J. Process Control , vol.14 , pp. 717-728
    • Provost, A.1    Bastin, G.2
  • 72
    • 33751303229 scopus 로고    scopus 로고
    • Metabolic design of macroscopic bioreaction models: application to Chinese hamster ovary cells
    • Provost A., Bastin G., Agathos S.N., Schneider Y.-J. Metabolic design of macroscopic bioreaction models: application to Chinese hamster ovary cells. Bioprocess Biosyst. Eng. 2006, 29:349-366.
    • (2006) Bioprocess Biosyst. Eng. , vol.29 , pp. 349-366
    • Provost, A.1    Bastin, G.2    Agathos, S.N.3    Schneider, Y.-J.4
  • 73
    • 84865369848 scopus 로고    scopus 로고
    • Modeling oxygen dissolution and biological uptake during pulse oxygen additions in oenological fermentations
    • Saa P.A., Moenne M.I., Pérez-Correa J.R., Agosin E. Modeling oxygen dissolution and biological uptake during pulse oxygen additions in oenological fermentations. Bioprocess Biosyst. Eng. 2012, 35:1167-1178.
    • (2012) Bioprocess Biosyst. Eng. , vol.35 , pp. 1167-1178
    • Saa, P.A.1    Moenne, M.I.2    Pérez-Correa, J.R.3    Agosin, E.4
  • 75
    • 0037473205 scopus 로고    scopus 로고
    • Modeling of yeast metabolism and process dynamics in batch fermentation
    • Sainz J., Pizarro F., Pérez-Correa J.R., Agosin E. Modeling of yeast metabolism and process dynamics in batch fermentation. Biotechnol. Bioeng. 2003, 81:818-828.
    • (2003) Biotechnol. Bioeng. , vol.81 , pp. 818-828
    • Sainz, J.1    Pizarro, F.2    Pérez-Correa, J.R.3    Agosin, E.4
  • 78
    • 2642571908 scopus 로고    scopus 로고
    • Sensitivity analysis in chemical education: part 1. Introduction and application to explicit models
    • Smith W.R., Missen R.W. Sensitivity analysis in chemical education: part 1. Introduction and application to explicit models. Chem. Eng. Educ. 2003, 2003:222-227.
    • (2003) Chem. Eng. Educ. , vol.2003 , pp. 222-227
    • Smith, W.R.1    Missen, R.W.2
  • 79
    • 84861138891 scopus 로고    scopus 로고
    • Modeling cortisol dynamics in the neuro-endocrine axis distinguishes normal, depression, and post-traumatic stress disorder (PTSD) in humans
    • (Article no. 2)
    • Sriram K., Rodriguez-Fernandez M., Doyle F.J. Modeling cortisol dynamics in the neuro-endocrine axis distinguishes normal, depression, and post-traumatic stress disorder (PTSD) in humans. PLoS Comput. Biol. 2012, 8. (Article no. 2).
    • (2012) PLoS Comput. Biol. , vol.8
    • Sriram, K.1    Rodriguez-Fernandez, M.2    Doyle, F.J.3
  • 81
    • 43049149800 scopus 로고    scopus 로고
    • A fuzzy logic approach for regulation in flux balance analysis
    • Tepeli A., Hortaçsu A. A fuzzy logic approach for regulation in flux balance analysis. Biochem. Eng. J. 2008, 39:137-148.
    • (2008) Biochem. Eng. J. , vol.39 , pp. 137-148
    • Tepeli, A.1    Hortaçsu, A.2
  • 82
    • 75149129569 scopus 로고    scopus 로고
    • A protocol for generating a high-quality genome-scale metabolic reconstruction
    • Thiele I., Palsson B.Ø. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat. Protoc. 2010, 5:93-121.
    • (2010) Nat. Protoc. , vol.5 , pp. 93-121
    • Thiele, I.1    Palsson, B.Ø.2
  • 83
    • 79955987608 scopus 로고    scopus 로고
    • Expanding a dynamic flux balance model of yeast fermentation to genome-scale
    • (Article no. 75)
    • Vargas F.A., Pizarro F., Pérez-Correa J.R., Agosin E. Expanding a dynamic flux balance model of yeast fermentation to genome-scale. BMC Syst. Biol. 2011, 5. (Article no. 75).
    • (2011) BMC Syst. Biol. , vol.5
    • Vargas, F.A.1    Pizarro, F.2    Pérez-Correa, J.R.3    Agosin, E.4
  • 84
    • 0027723421 scopus 로고
    • Metabolic capabilities of Escherichia coli II. Optimal growth patterns
    • Varma A., Palsson B.Ø. Metabolic capabilities of Escherichia coli II. Optimal growth patterns. J. Theor. Biol. 1993, 165:503-522.
    • (1993) J. Theor. Biol. , vol.165 , pp. 503-522
    • Varma, A.1    Palsson, B.Ø.2
  • 85
    • 0028146781 scopus 로고
    • Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110
    • Varma A., Palsson B.Ø. Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl. Environ. Microbiol. 1994, 60:3724-3731.
    • (1994) Appl. Environ. Microbiol. , vol.60 , pp. 3724-3731
    • Varma, A.1    Palsson, B.Ø.2
  • 86
    • 35048889542 scopus 로고    scopus 로고
    • Optimal fed-batch cultivation when mass transfer becomes limiting
    • Villadsen J., Patil K.R. Optimal fed-batch cultivation when mass transfer becomes limiting. Biotechnol. Bioeng. 2007, 98:706-710.
    • (2007) Biotechnol. Bioeng. , vol.98 , pp. 706-710
    • Villadsen, J.1    Patil, K.R.2
  • 87
    • 84907340702 scopus 로고    scopus 로고
    • Dynamic optimization of metabolic networks coupled with gene expression [WWW Document]. Cornell Univ. Libr. URL (accessed 1.2.14.).
    • Waldherr, S., Oyarzún, D.A., Bockmayr, A., 2013. Dynamic optimization of metabolic networks coupled with gene expression [WWW Document]. Cornell Univ. Libr. URL (accessed 1.2.14.). http://arxiv.org/abs/1309.4936.
    • (2013)
    • Waldherr, S.1    Oyarzún, D.A.2    Bockmayr, A.3
  • 88
    • 84907320597 scopus 로고    scopus 로고
    • Gurobi Mex: A MATLAB interface for Gurobi.
    • Yin, W., 2011. Gurobi Mex: A MATLAB interface for Gurobi.
    • (2011)
    • Yin, W.1
  • 89
    • 78751584992 scopus 로고    scopus 로고
    • Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments
    • Zhuang K., Izallalen M., Mouser P., Richter H., Risso C., Mahadevan R., Lovley D.R. Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. ISME J. 2011, 5:305-316.
    • (2011) ISME J. , vol.5 , pp. 305-316
    • Zhuang, K.1    Izallalen, M.2    Mouser, P.3    Richter, H.4    Risso, C.5    Mahadevan, R.6    Lovley, D.R.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.