메뉴 건너뛰기




Volumn 118, Issue 3, 2014, Pages 263-269

Importance of glucose-6-phosphate dehydrogenase (G6PDH) for vanillin tolerance in Saccharomyces cerevisiae

Author keywords

Furfural; G6PDH; Lignocellulosic biomass; Pentose phosphate pathway; Saccharomyces cerevisiae; Vanillin

Indexed keywords

ALDEHYDES; BIOCONVERSION; BIOMASS; CELLS; CYTOLOGY; FURFURAL; GRANULATION; OXIDATIVE STRESS;

EID: 84905586406     PISSN: 13891723     EISSN: 13474421     Source Type: Journal    
DOI: 10.1016/j.jbiosc.2014.02.025     Document Type: Article
Times cited : (28)

References (60)
  • 1
    • 0025707819 scopus 로고
    • Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from d-fructose and sucrose
    • Antal M.J., Mok W.S., Richards G.N. Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from d-fructose and sucrose. Carbohydr. Res. 1990, 199:91-109.
    • (1990) Carbohydr. Res. , vol.199 , pp. 91-109
    • Antal, M.J.1    Mok, W.S.2    Richards, G.N.3
  • 3
    • 12544249147 scopus 로고    scopus 로고
    • Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass
    • Klinke H.B., Thomsen A.B., Ahring B.K. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl. Microbiol. Biotechnol. 2004, 66:10-26.
    • (2004) Appl. Microbiol. Biotechnol. , vol.66 , pp. 10-26
    • Klinke, H.B.1    Thomsen, A.B.2    Ahring, B.K.3
  • 4
    • 70350599774 scopus 로고    scopus 로고
    • Two-step hydrolysis of Japanese beech as treated by semi-flow hot-compressed water
    • Lu X., Yamauchi K., Phaiiboonsilpa N., Saka S. Two-step hydrolysis of Japanese beech as treated by semi-flow hot-compressed water. J. Wood Sci. 2009, 55:367-375.
    • (2009) J. Wood Sci. , vol.55 , pp. 367-375
    • Lu, X.1    Yamauchi, K.2    Phaiiboonsilpa, N.3    Saka, S.4
  • 6
    • 78651418870 scopus 로고    scopus 로고
    • Identification of glycolaldehyde as the key inhibitor of bioethanol fermentation by yeast and genome-wide analysis of its toxicity
    • Jayakody L.N., Hayashi N., Kitagaki H. Identification of glycolaldehyde as the key inhibitor of bioethanol fermentation by yeast and genome-wide analysis of its toxicity. Biotechnol. Lett. 2011, 33:285-292.
    • (2011) Biotechnol. Lett. , vol.33 , pp. 285-292
    • Jayakody, L.N.1    Hayashi, N.2    Kitagaki, H.3
  • 7
    • 0343618697 scopus 로고    scopus 로고
    • Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition
    • Palmqvist E., Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour. Technol. 2000, 74:25-33.
    • (2000) Bioresour. Technol. , vol.74 , pp. 25-33
    • Palmqvist, E.1    Hahn-Hägerdal, B.2
  • 8
    • 45149104923 scopus 로고    scopus 로고
    • Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae
    • Endo A., Nakamura T., Ando A., Tokuyasu K., Shima J. Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae. Biotechnol. Biofuels 2008, 1:3.
    • (2008) Biotechnol. Biofuels , vol.1 , pp. 3
    • Endo, A.1    Nakamura, T.2    Ando, A.3    Tokuyasu, K.4    Shima, J.5
  • 9
    • 69949164861 scopus 로고    scopus 로고
    • Involvement of ergosterol in tolerance to vanillin, a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae
    • Endo A., Nakamura T., Shima J. Involvement of ergosterol in tolerance to vanillin, a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae. FEMS Microbiol. Lett. 2009, 299:95-99.
    • (2009) FEMS Microbiol. Lett. , vol.299 , pp. 95-99
    • Endo, A.1    Nakamura, T.2    Shima, J.3
  • 10
    • 83055187798 scopus 로고    scopus 로고
    • Identification of candidate genes for yeast engineering to improve bioethanol production in very high gravity and lignocellulosic biomass industrial fermentations
    • Pereira F.B., Guimaraes P.M., Gomes D.G., Mira N.P., Teixeira M.C., Sá-Correia I., Domingues L. Identification of candidate genes for yeast engineering to improve bioethanol production in very high gravity and lignocellulosic biomass industrial fermentations. Biotechnol. Biofuels 2011, 4:57.
    • (2011) Biotechnol. Biofuels , vol.4 , pp. 57
    • Pereira, F.B.1    Guimaraes, P.M.2    Gomes, D.G.3    Mira, N.P.4    Teixeira, M.C.5    Sá-Correia, I.6    Domingues, L.7
  • 11
    • 84876591791 scopus 로고    scopus 로고
    • Vanillin inhibits translation and induces messenger ribonucleoprotein (mRNP) granule formation in Saccharomyces cerevisiae: application and validation of high-content, image-based profiling
    • Iwaki A., Ohnuki S., Suga Y., Izawa S., Ohya Y. Vanillin inhibits translation and induces messenger ribonucleoprotein (mRNP) granule formation in Saccharomyces cerevisiae: application and validation of high-content, image-based profiling. PLoS One 2013, 8:e61748.
    • (2013) PLoS One , vol.8
    • Iwaki, A.1    Ohnuki, S.2    Suga, Y.3    Izawa, S.4    Ohya, Y.5
  • 12
    • 84890116560 scopus 로고    scopus 로고
    • Vanillin causes the activation of Yap1 and mitochondrial fragmentation in Saccharomyces cerevisiae
    • Nguyen T.T.M., Iwaki A., Ohya Y., Izawa S. Vanillin causes the activation of Yap1 and mitochondrial fragmentation in Saccharomyces cerevisiae. J. Biosci. Bioeng. 2014, 117:33-38.
    • (2014) J. Biosci. Bioeng. , vol.117 , pp. 33-38
    • Nguyen, T.T.M.1    Iwaki, A.2    Ohya, Y.3    Izawa, S.4
  • 13
    • 0025670111 scopus 로고
    • Isolation and characterization of the ZWF1 gene of Saccharomyces cerevisiae, encoding glucose-6-phosphate dehydrogenase
    • Nogae I., Johnston M. Isolation and characterization of the ZWF1 gene of Saccharomyces cerevisiae, encoding glucose-6-phosphate dehydrogenase. Gene 1990, 96:161-169.
    • (1990) Gene , vol.96 , pp. 161-169
    • Nogae, I.1    Johnston, M.2
  • 14
    • 0026782586 scopus 로고
    • Induction of specific enzymes of the oxidative pentose phosphate pathway by glucono-delta-lactone in Saccharomyces cerevisiae
    • Sinha A., Maitra P.K. Induction of specific enzymes of the oxidative pentose phosphate pathway by glucono-delta-lactone in Saccharomyces cerevisiae. J. Gen. Microbiol. 1992, 138:1865-1873.
    • (1992) J. Gen. Microbiol. , vol.138 , pp. 1865-1873
    • Sinha, A.1    Maitra, P.K.2
  • 15
    • 0029828902 scopus 로고    scopus 로고
    • The yeast copper/zinc superoxide dismutase and the pentose phosphate pathway play overlapping roles in oxidative stress protection
    • Slekar K.H., Kosman D.J., Culotta V.C. The yeast copper/zinc superoxide dismutase and the pentose phosphate pathway play overlapping roles in oxidative stress protection. J. Biol. Chem. 1996, 271:28831-28836.
    • (1996) J. Biol. Chem. , vol.271 , pp. 28831-28836
    • Slekar, K.H.1    Kosman, D.J.2    Culotta, V.C.3
  • 16
    • 71749118125 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae YMR315W gene encodes an NADP(H)-specific oxidoreductase regulated by the transcription factor Stb5p in response to NADPH limitation
    • Hector R.E., Bowman M.J., Skory C.D., Cotta M.A. The Saccharomyces cerevisiae YMR315W gene encodes an NADP(H)-specific oxidoreductase regulated by the transcription factor Stb5p in response to NADPH limitation. New Biotechnol. 2009, 26:171-180.
    • (2009) New Biotechnol. , vol.26 , pp. 171-180
    • Hector, R.E.1    Bowman, M.J.2    Skory, C.D.3    Cotta, M.A.4
  • 17
    • 57249097175 scopus 로고    scopus 로고
    • Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae
    • Liu Z.L., Moon J., Andersh B.J., Slininger P.J., Weber S. Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2008, 81:743-753.
    • (2008) Appl. Microbiol. Biotechnol. , vol.81 , pp. 743-753
    • Liu, Z.L.1    Moon, J.2    Andersh, B.J.3    Slininger, P.J.4    Weber, S.5
  • 18
    • 84878836519 scopus 로고    scopus 로고
    • Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway
    • Ishii J., Yoshimura K., Hasunuma T., Kondo A. Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway. Appl. Microbiol. Biotechnol. 2013, 97:2597-2607.
    • (2013) Appl. Microbiol. Biotechnol. , vol.97 , pp. 2597-2607
    • Ishii, J.1    Yoshimura, K.2    Hasunuma, T.3    Kondo, A.4
  • 20
    • 0024393963 scopus 로고
    • Thioredoxin and glutaredoxin systems
    • Holmgren A. Thioredoxin and glutaredoxin systems. J. Biol. Chem. 1989, 264:13963-13966.
    • (1989) J. Biol. Chem. , vol.264 , pp. 13963-13966
    • Holmgren, A.1
  • 21
    • 0029829625 scopus 로고    scopus 로고
    • Mutants that show increased sensitivity to hydrogen peroxide reveal an important role for the pentose phosphate pathway in protection of yeast against oxidative stress
    • Juhnke H., Krems B., Kotter P., Entian K.D. Mutants that show increased sensitivity to hydrogen peroxide reveal an important role for the pentose phosphate pathway in protection of yeast against oxidative stress. Mol. Gen. Genet. 1996, 252:456-464.
    • (1996) Mol. Gen. Genet. , vol.252 , pp. 456-464
    • Juhnke, H.1    Krems, B.2    Kotter, P.3    Entian, K.D.4
  • 22
    • 0032030784 scopus 로고    scopus 로고
    • Importance of glucose-6-phosphate dehydrogenase in the adaptive response to hydrogen peroxide in Saccharomyces cerevisiae
    • Izawa S., Maeda K., Miki T., Mano J., Inoue Y., Kimura A. Importance of glucose-6-phosphate dehydrogenase in the adaptive response to hydrogen peroxide in Saccharomyces cerevisiae. Biochem. J. 1998, 330:811-817.
    • (1998) Biochem. J. , vol.330 , pp. 811-817
    • Izawa, S.1    Maeda, K.2    Miki, T.3    Mano, J.4    Inoue, Y.5    Kimura, A.6
  • 23
    • 33745667335 scopus 로고    scopus 로고
    • Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae
    • Gorsich S.W., Dien B.S., Nichols N.N., Slininger P.J., Liu Z.L., Skory C.D. Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2006, 71:339-349.
    • (2006) Appl. Microbiol. Biotechnol. , vol.71 , pp. 339-349
    • Gorsich, S.W.1    Dien, B.S.2    Nichols, N.N.3    Slininger, P.J.4    Liu, Z.L.5    Skory, C.D.6
  • 24
    • 0036182468 scopus 로고    scopus 로고
    • Characterization of the Saccharomyces cerevisiae YMR318C (ADH6) gene product as a broad specificity NADPH-dependent alcohol dehydrogenase: relevance in aldehyde reduction
    • Larroy C., Fernández F.R., González E., Parés X., Biosca J.A. Characterization of the Saccharomyces cerevisiae YMR318C (ADH6) gene product as a broad specificity NADPH-dependent alcohol dehydrogenase: relevance in aldehyde reduction. Biochem. J. 2002, 361:163-172.
    • (2002) Biochem. J. , vol.361 , pp. 163-172
    • Larroy, C.1    Fernández, F.R.2    González, E.3    Parés, X.4    Biosca, J.A.5
  • 25
    • 0036433309 scopus 로고    scopus 로고
    • Characterization of a Saccharomyces cerevisiae NADP(H)-dependent alcohol dehydrogenase (ADHVII), a member of the cinnamyl alcohol dehydrogenase family
    • Larroy C., Parés X., Biosca J.A. Characterization of a Saccharomyces cerevisiae NADP(H)-dependent alcohol dehydrogenase (ADHVII), a member of the cinnamyl alcohol dehydrogenase family. Eur. J. Biochem. 2002, 269:5738-5745.
    • (2002) Eur. J. Biochem. , vol.269 , pp. 5738-5745
    • Larroy, C.1    Parés, X.2    Biosca, J.A.3
  • 26
    • 27544466847 scopus 로고    scopus 로고
    • Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes
    • Okamoto K., Shaw J.M. Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu. Rev. Genet. 2005, 39:503-536.
    • (2005) Annu. Rev. Genet. , vol.39 , pp. 503-536
    • Okamoto, K.1    Shaw, J.M.2
  • 27
    • 0030942294 scopus 로고    scopus 로고
    • Regulation of yAP-1 nuclear localization in response to oxidative stress
    • Kuge S., Jones N., Nomoto A. Regulation of yAP-1 nuclear localization in response to oxidative stress. EMBO J. 1997, 16:1710-1720.
    • (1997) EMBO J. , vol.16 , pp. 1710-1720
    • Kuge, S.1    Jones, N.2    Nomoto, A.3
  • 28
    • 56149086182 scopus 로고    scopus 로고
    • P bodies promote stress granule assembly in Saccharomyces cerevisiae
    • Buchan J.R., Muhlrad D., Parker R. P bodies promote stress granule assembly in Saccharomyces cerevisiae. J. Cell Biol. 2008, 183:441-455.
    • (2008) J. Cell Biol. , vol.183 , pp. 441-455
    • Buchan, J.R.1    Muhlrad, D.2    Parker, R.3
  • 29
    • 36448960911 scopus 로고    scopus 로고
    • Formation of the cytoplasmic P-bodies in sake yeast during Japanese sake brewing and wine making
    • Izawa S., Kita T., Ikeda K., Miki T., Inoue Y. Formation of the cytoplasmic P-bodies in sake yeast during Japanese sake brewing and wine making. Biosci. Biotechnol. Biochem. 2007, 71:2800-2807.
    • (2007) Biosci. Biotechnol. Biochem. , vol.71 , pp. 2800-2807
    • Izawa, S.1    Kita, T.2    Ikeda, K.3    Miki, T.4    Inoue, Y.5
  • 30
    • 84865155373 scopus 로고    scopus 로고
    • Acidic stress induces the formation of P-bodies but not stress granules with mild attenuation of bulk translation in Saccharomyces cerevisiae
    • Iwaki A., Izawa S. Acidic stress induces the formation of P-bodies but not stress granules with mild attenuation of bulk translation in Saccharomyces cerevisiae. Biochem. J. 2012, 446:225-233.
    • (2012) Biochem. J. , vol.446 , pp. 225-233
    • Iwaki, A.1    Izawa, S.2
  • 31
    • 84874729026 scopus 로고    scopus 로고
    • Biomass conversion inhibitors furfural and 5-hydroxymethylfurfural induce formation of messenger RNP (mRNP) granules and attenuate translation activity in Saccharomyces cerevisiae
    • Iwaki A., Kawai T., Yamamoto Y., Izawa S. Biomass conversion inhibitors furfural and 5-hydroxymethylfurfural induce formation of messenger RNP (mRNP) granules and attenuate translation activity in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2013, 79:1661-1667.
    • (2013) Appl. Environ. Microbiol. , vol.79 , pp. 1661-1667
    • Iwaki, A.1    Kawai, T.2    Yamamoto, Y.3    Izawa, S.4
  • 32
  • 33
    • 79954762282 scopus 로고    scopus 로고
    • Severe ethanol stress induces assembly of stress granules in Saccharomyces cerevisiae
    • Kato K., Yamamoto Y., Izawa S. Severe ethanol stress induces assembly of stress granules in Saccharomyces cerevisiae. Yeast 2011, 28:339-347.
    • (2011) Yeast , vol.28 , pp. 339-347
    • Kato, K.1    Yamamoto, Y.2    Izawa, S.3
  • 34
    • 84886717236 scopus 로고    scopus 로고
    • Adaptive response in stress granule formation and bulk translational repression upon a combined stress of mild heat shock and mild ethanol stress in yeast
    • Yamamoto Y., Izawa S. Adaptive response in stress granule formation and bulk translational repression upon a combined stress of mild heat shock and mild ethanol stress in yeast. Genes Cells 2013, 18:974-984.
    • (2013) Genes Cells , vol.18 , pp. 974-984
    • Yamamoto, Y.1    Izawa, S.2
  • 35
    • 0025362399 scopus 로고
    • A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae
    • Schmitt M.E., Brown T.A., Trumpower B.L. A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res. 1990, 18:3091-3092.
    • (1990) Nucleic Acids Res. , vol.18 , pp. 3091-3092
    • Schmitt, M.E.1    Brown, T.A.2    Trumpower, B.L.3
  • 36
    • 77953254169 scopus 로고    scopus 로고
    • Quantitative transcription dynamic analysis reveals candidate genes and key regulators for ethanol tolerance in Saccharomyces cerevisiae
    • Ma M., Liu L.Z. Quantitative transcription dynamic analysis reveals candidate genes and key regulators for ethanol tolerance in Saccharomyces cerevisiae. BMC Microbiol. 2010, 10:169.
    • (2010) BMC Microbiol. , vol.10 , pp. 169
    • Ma, M.1    Liu, L.Z.2
  • 37
    • 78751477572 scopus 로고    scopus 로고
    • The yeast homolog of heme oxygenase-1 affords cellular antioxidant protection via the transcriptional regulation of known antioxidant genes
    • Collinson E.J., Wimmer-Kleikamp S., Gerega S.K., Yang Y.H., Parish C.R., Dawes I.W., Stocker R. The yeast homolog of heme oxygenase-1 affords cellular antioxidant protection via the transcriptional regulation of known antioxidant genes. J. Biol. Chem. 2011, 286:2205-2214.
    • (2011) J. Biol. Chem. , vol.286 , pp. 2205-2214
    • Collinson, E.J.1    Wimmer-Kleikamp, S.2    Gerega, S.K.3    Yang, Y.H.4    Parish, C.R.5    Dawes, I.W.6    Stocker, R.7
  • 39
    • 82855163179 scopus 로고    scopus 로고
    • A screening for essential cell growth-related genes involved in arsenite toxicity in Saccharomyces cerevisiae
    • Takahashi T., Satake S., Hirose K., Hwang G.H., Naganuma A. A screening for essential cell growth-related genes involved in arsenite toxicity in Saccharomyces cerevisiae. J. Toxicol. Sci. 2011, 36:859-861.
    • (2011) J. Toxicol. Sci. , vol.36 , pp. 859-861
    • Takahashi, T.1    Satake, S.2    Hirose, K.3    Hwang, G.H.4    Naganuma, A.5
  • 40
    • 18444393975 scopus 로고    scopus 로고
    • Translation of aberrant mRNAs lacking a termination codon or with a shortened 3'-UTR is repressed after initiation in yeast
    • Inada T., Aiba H. Translation of aberrant mRNAs lacking a termination codon or with a shortened 3'-UTR is repressed after initiation in yeast. EMBO J. 2005, 24:1584-1595.
    • (2005) EMBO J. , vol.24 , pp. 1584-1595
    • Inada, T.1    Aiba, H.2
  • 41
    • 0038131426 scopus 로고    scopus 로고
    • Analysis of the inhibition of food spoilage yeasts by vanillin
    • Fitzgerald D.J., Stratford M., Narbad A. Analysis of the inhibition of food spoilage yeasts by vanillin. Int. J. Food Microbiol. 2003, 86:113-122.
    • (2003) Int. J. Food Microbiol. , vol.86 , pp. 113-122
    • Fitzgerald, D.J.1    Stratford, M.2    Narbad, A.3
  • 42
    • 0028176627 scopus 로고
    • Glucose-6-phosphate dehydrogenase: a "housekeeping" enzyme subject to tissue-specific regulation by hormones, nutrients, and oxidant stress
    • Kletzien R.F., Harris P.K.W., Foellmi L.A. Glucose-6-phosphate dehydrogenase: a "housekeeping" enzyme subject to tissue-specific regulation by hormones, nutrients, and oxidant stress. FASEB J. 1994, 8:174-181.
    • (1994) FASEB J. , vol.8 , pp. 174-181
    • Kletzien, R.F.1    Harris, P.K.W.2    Foellmi, L.A.3
  • 43
    • 0028057226 scopus 로고
    • YAP1 dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides
    • Kuge S., Jones N. YAP1 dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides. EMBO J. 1994, 13:655-664.
    • (1994) EMBO J. , vol.13 , pp. 655-664
    • Kuge, S.1    Jones, N.2
  • 45
    • 0031048280 scopus 로고    scopus 로고
    • The Skn7 response regulator controls gene expression in the oxidative stress response of the budding yeast Saccharomyces cerevisiae
    • Morgan B.A., Banks G.R., Toone W.M., Raitt D., Kuge S., Johnston L.H. The Skn7 response regulator controls gene expression in the oxidative stress response of the budding yeast Saccharomyces cerevisiae. EMBO J. 1997, 16:1035-1044.
    • (1997) EMBO J. , vol.16 , pp. 1035-1044
    • Morgan, B.A.1    Banks, G.R.2    Toone, W.M.3    Raitt, D.4    Kuge, S.5    Johnston, L.H.6
  • 46
    • 2342657879 scopus 로고    scopus 로고
    • Regulation of the yeast phospholipid hydroperoxide glutathione peroxidase GPX2 by oxidative stress is mediated by Yap1 and Skn7
    • Tsuzi D., Maeta K., Takatsume Y., Izawa S., Inoue Y. Regulation of the yeast phospholipid hydroperoxide glutathione peroxidase GPX2 by oxidative stress is mediated by Yap1 and Skn7. FEBS Lett. 2004, 565:148-154.
    • (2004) FEBS Lett. , vol.565 , pp. 148-154
    • Tsuzi, D.1    Maeta, K.2    Takatsume, Y.3    Izawa, S.4    Inoue, Y.5
  • 47
    • 0031825456 scopus 로고    scopus 로고
    • A search in the genome of Saccharomyces cerevisiae for genes regulated via stress response elements
    • Moskvina E., Schüller C., Maurer C.T.C., Mager W.H., Ruis H. A search in the genome of Saccharomyces cerevisiae for genes regulated via stress response elements. Yeast 1998, 14:1041-1050.
    • (1998) Yeast , vol.14 , pp. 1041-1050
    • Moskvina, E.1    Schüller, C.2    Maurer, C.T.C.3    Mager, W.H.4    Ruis, H.5
  • 48
    • 84878393908 scopus 로고    scopus 로고
    • Oxidative stress and programmed cell death in yeast
    • Farrugia G., Balzan R. Oxidative stress and programmed cell death in yeast. Front. Oncol. 2012, 2:64.
    • (2012) Front. Oncol. , vol.2 , pp. 64
    • Farrugia, G.1    Balzan, R.2
  • 50
    • 79952520044 scopus 로고    scopus 로고
    • Mitochondrial oxidative stress causes mitochondrial fragmentation via differential modulation of mitochondrial fission-fusion proteins
    • Wu S., Zhou F., Zhang Z., Xing D. Mitochondrial oxidative stress causes mitochondrial fragmentation via differential modulation of mitochondrial fission-fusion proteins. FEBS J. 2012, 241:941-954.
    • (2012) FEBS J. , vol.241 , pp. 941-954
    • Wu, S.1    Zhou, F.2    Zhang, Z.3    Xing, D.4
  • 51
    • 66249103703 scopus 로고    scopus 로고
    • RNA granules: post-transcriptional and epigenetic modulators of gene expression
    • Anderson P., Kedersha N. RNA granules: post-transcriptional and epigenetic modulators of gene expression. Nat. Rev. Mol. Cell Biol. 2009, 10:430-436.
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 430-436
    • Anderson, P.1    Kedersha, N.2
  • 52
    • 66049158810 scopus 로고    scopus 로고
    • Polysomes, P bodies and stress granules: states and fates of eukaryotic mRNAs
    • Balagopal V., Parker R. Polysomes, P bodies and stress granules: states and fates of eukaryotic mRNAs. Curr. Opin. Cell Biol. 2009, 21:403-408.
    • (2009) Curr. Opin. Cell Biol. , vol.21 , pp. 403-408
    • Balagopal, V.1    Parker, R.2
  • 53
    • 72149095755 scopus 로고    scopus 로고
    • Eukaryotic stress granules: the ins and outs of translation
    • Buchan J.R., Parker R. Eukaryotic stress granules: the ins and outs of translation. Mol. Cell 2009, 36:932-940.
    • (2009) Mol. Cell , vol.36 , pp. 932-940
    • Buchan, J.R.1    Parker, R.2
  • 54
    • 15444379718 scopus 로고    scopus 로고
    • Processing bodies require RNA for assembly and contain nontranslating mRNAs
    • Teixeira D., Sheth U., Valencia-Sanchez M.A., Brengues M., Parker R. Processing bodies require RNA for assembly and contain nontranslating mRNAs. RNA 2005, 11:371-382.
    • (2005) RNA , vol.11 , pp. 371-382
    • Teixeira, D.1    Sheth, U.2    Valencia-Sanchez, M.A.3    Brengues, M.4    Parker, R.5
  • 56
    • 0037968357 scopus 로고    scopus 로고
    • Decapping and decay of messenger RNA occur in cytoplasmic processing bodies
    • Sheth U., Parker R. Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 2003, 300:805-808.
    • (2003) Science , vol.300 , pp. 805-808
    • Sheth, U.1    Parker, R.2
  • 57
  • 59
    • 79551580561 scopus 로고    scopus 로고
    • ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair
    • Cosentino C., Grieco D., Costanzo V. ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair. EMBO J. 2011, 30:546-555.
    • (2011) EMBO J. , vol.30 , pp. 546-555
    • Cosentino, C.1    Grieco, D.2    Costanzo, V.3
  • 60
    • 84879845922 scopus 로고    scopus 로고
    • Engineering redox cofactor utilization for detoxification of glycol aldehyde, a key inhibitor of bioethanol production, in yeast Saccharomyces cerevisiae
    • Jayakody L.N., Horie K., Hayashi N., Kitagaki H. Engineering redox cofactor utilization for detoxification of glycol aldehyde, a key inhibitor of bioethanol production, in yeast Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2013, 97:6589-6600.
    • (2013) Appl. Microbiol. Biotechnol. , vol.97 , pp. 6589-6600
    • Jayakody, L.N.1    Horie, K.2    Hayashi, N.3    Kitagaki, H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.