-
1
-
-
0025707819
-
Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from d-fructose and sucrose
-
Antal M.J., Mok W.S., Richards G.N. Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from d-fructose and sucrose. Carbohydr. Res. 1990, 199:91-109.
-
(1990)
Carbohydr. Res.
, vol.199
, pp. 91-109
-
-
Antal, M.J.1
Mok, W.S.2
Richards, G.N.3
-
2
-
-
0026221310
-
Mechanism of formation of 2-furaldehyde from d-xylose
-
Antal M.J., Leesomboon T., Mok W.S., Richards G.N. Mechanism of formation of 2-furaldehyde from d-xylose. Carbohydr. Res. 1991, 217:71-85.
-
(1991)
Carbohydr. Res.
, vol.217
, pp. 71-85
-
-
Antal, M.J.1
Leesomboon, T.2
Mok, W.S.3
Richards, G.N.4
-
3
-
-
12544249147
-
Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass
-
Klinke H.B., Thomsen A.B., Ahring B.K. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl. Microbiol. Biotechnol. 2004, 66:10-26.
-
(2004)
Appl. Microbiol. Biotechnol.
, vol.66
, pp. 10-26
-
-
Klinke, H.B.1
Thomsen, A.B.2
Ahring, B.K.3
-
4
-
-
70350599774
-
Two-step hydrolysis of Japanese beech as treated by semi-flow hot-compressed water
-
Lu X., Yamauchi K., Phaiiboonsilpa N., Saka S. Two-step hydrolysis of Japanese beech as treated by semi-flow hot-compressed water. J. Wood Sci. 2009, 55:367-375.
-
(2009)
J. Wood Sci.
, vol.55
, pp. 367-375
-
-
Lu, X.1
Yamauchi, K.2
Phaiiboonsilpa, N.3
Saka, S.4
-
5
-
-
67649819695
-
New improvements for lignocellulosic ethanol
-
Margeot A., Hahn-Hagerdal B., Edlund M., Slade R., Monot F. New improvements for lignocellulosic ethanol. Curr. Opin. Biotechnol. 2009, 20:372-380.
-
(2009)
Curr. Opin. Biotechnol.
, vol.20
, pp. 372-380
-
-
Margeot, A.1
Hahn-Hagerdal, B.2
Edlund, M.3
Slade, R.4
Monot, F.5
-
6
-
-
78651418870
-
Identification of glycolaldehyde as the key inhibitor of bioethanol fermentation by yeast and genome-wide analysis of its toxicity
-
Jayakody L.N., Hayashi N., Kitagaki H. Identification of glycolaldehyde as the key inhibitor of bioethanol fermentation by yeast and genome-wide analysis of its toxicity. Biotechnol. Lett. 2011, 33:285-292.
-
(2011)
Biotechnol. Lett.
, vol.33
, pp. 285-292
-
-
Jayakody, L.N.1
Hayashi, N.2
Kitagaki, H.3
-
7
-
-
0343618697
-
Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition
-
Palmqvist E., Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour. Technol. 2000, 74:25-33.
-
(2000)
Bioresour. Technol.
, vol.74
, pp. 25-33
-
-
Palmqvist, E.1
Hahn-Hägerdal, B.2
-
8
-
-
45149104923
-
Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae
-
Endo A., Nakamura T., Ando A., Tokuyasu K., Shima J. Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae. Biotechnol. Biofuels 2008, 1:3.
-
(2008)
Biotechnol. Biofuels
, vol.1
, pp. 3
-
-
Endo, A.1
Nakamura, T.2
Ando, A.3
Tokuyasu, K.4
Shima, J.5
-
9
-
-
69949164861
-
Involvement of ergosterol in tolerance to vanillin, a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae
-
Endo A., Nakamura T., Shima J. Involvement of ergosterol in tolerance to vanillin, a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae. FEMS Microbiol. Lett. 2009, 299:95-99.
-
(2009)
FEMS Microbiol. Lett.
, vol.299
, pp. 95-99
-
-
Endo, A.1
Nakamura, T.2
Shima, J.3
-
10
-
-
83055187798
-
Identification of candidate genes for yeast engineering to improve bioethanol production in very high gravity and lignocellulosic biomass industrial fermentations
-
Pereira F.B., Guimaraes P.M., Gomes D.G., Mira N.P., Teixeira M.C., Sá-Correia I., Domingues L. Identification of candidate genes for yeast engineering to improve bioethanol production in very high gravity and lignocellulosic biomass industrial fermentations. Biotechnol. Biofuels 2011, 4:57.
-
(2011)
Biotechnol. Biofuels
, vol.4
, pp. 57
-
-
Pereira, F.B.1
Guimaraes, P.M.2
Gomes, D.G.3
Mira, N.P.4
Teixeira, M.C.5
Sá-Correia, I.6
Domingues, L.7
-
11
-
-
84876591791
-
Vanillin inhibits translation and induces messenger ribonucleoprotein (mRNP) granule formation in Saccharomyces cerevisiae: application and validation of high-content, image-based profiling
-
Iwaki A., Ohnuki S., Suga Y., Izawa S., Ohya Y. Vanillin inhibits translation and induces messenger ribonucleoprotein (mRNP) granule formation in Saccharomyces cerevisiae: application and validation of high-content, image-based profiling. PLoS One 2013, 8:e61748.
-
(2013)
PLoS One
, vol.8
-
-
Iwaki, A.1
Ohnuki, S.2
Suga, Y.3
Izawa, S.4
Ohya, Y.5
-
12
-
-
84890116560
-
Vanillin causes the activation of Yap1 and mitochondrial fragmentation in Saccharomyces cerevisiae
-
Nguyen T.T.M., Iwaki A., Ohya Y., Izawa S. Vanillin causes the activation of Yap1 and mitochondrial fragmentation in Saccharomyces cerevisiae. J. Biosci. Bioeng. 2014, 117:33-38.
-
(2014)
J. Biosci. Bioeng.
, vol.117
, pp. 33-38
-
-
Nguyen, T.T.M.1
Iwaki, A.2
Ohya, Y.3
Izawa, S.4
-
13
-
-
0025670111
-
Isolation and characterization of the ZWF1 gene of Saccharomyces cerevisiae, encoding glucose-6-phosphate dehydrogenase
-
Nogae I., Johnston M. Isolation and characterization of the ZWF1 gene of Saccharomyces cerevisiae, encoding glucose-6-phosphate dehydrogenase. Gene 1990, 96:161-169.
-
(1990)
Gene
, vol.96
, pp. 161-169
-
-
Nogae, I.1
Johnston, M.2
-
14
-
-
0026782586
-
Induction of specific enzymes of the oxidative pentose phosphate pathway by glucono-delta-lactone in Saccharomyces cerevisiae
-
Sinha A., Maitra P.K. Induction of specific enzymes of the oxidative pentose phosphate pathway by glucono-delta-lactone in Saccharomyces cerevisiae. J. Gen. Microbiol. 1992, 138:1865-1873.
-
(1992)
J. Gen. Microbiol.
, vol.138
, pp. 1865-1873
-
-
Sinha, A.1
Maitra, P.K.2
-
15
-
-
0029828902
-
The yeast copper/zinc superoxide dismutase and the pentose phosphate pathway play overlapping roles in oxidative stress protection
-
Slekar K.H., Kosman D.J., Culotta V.C. The yeast copper/zinc superoxide dismutase and the pentose phosphate pathway play overlapping roles in oxidative stress protection. J. Biol. Chem. 1996, 271:28831-28836.
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 28831-28836
-
-
Slekar, K.H.1
Kosman, D.J.2
Culotta, V.C.3
-
16
-
-
71749118125
-
The Saccharomyces cerevisiae YMR315W gene encodes an NADP(H)-specific oxidoreductase regulated by the transcription factor Stb5p in response to NADPH limitation
-
Hector R.E., Bowman M.J., Skory C.D., Cotta M.A. The Saccharomyces cerevisiae YMR315W gene encodes an NADP(H)-specific oxidoreductase regulated by the transcription factor Stb5p in response to NADPH limitation. New Biotechnol. 2009, 26:171-180.
-
(2009)
New Biotechnol.
, vol.26
, pp. 171-180
-
-
Hector, R.E.1
Bowman, M.J.2
Skory, C.D.3
Cotta, M.A.4
-
17
-
-
57249097175
-
Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae
-
Liu Z.L., Moon J., Andersh B.J., Slininger P.J., Weber S. Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2008, 81:743-753.
-
(2008)
Appl. Microbiol. Biotechnol.
, vol.81
, pp. 743-753
-
-
Liu, Z.L.1
Moon, J.2
Andersh, B.J.3
Slininger, P.J.4
Weber, S.5
-
18
-
-
84878836519
-
Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway
-
Ishii J., Yoshimura K., Hasunuma T., Kondo A. Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway. Appl. Microbiol. Biotechnol. 2013, 97:2597-2607.
-
(2013)
Appl. Microbiol. Biotechnol.
, vol.97
, pp. 2597-2607
-
-
Ishii, J.1
Yoshimura, K.2
Hasunuma, T.3
Kondo, A.4
-
19
-
-
76749140881
-
Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae
-
Allen S.A., Clark W., Mccaffery J.M., Zhen C., Lanctot A., Slininger P.J., Liu Z.L., Gorsich S.W. Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnol. Biofuels 2010, 3:2.
-
(2010)
Biotechnol. Biofuels
, vol.3
, pp. 2
-
-
Allen, S.A.1
Clark, W.2
Mccaffery, J.M.3
Zhen, C.4
Lanctot, A.5
Slininger, P.J.6
Liu, Z.L.7
Gorsich, S.W.8
-
20
-
-
0024393963
-
Thioredoxin and glutaredoxin systems
-
Holmgren A. Thioredoxin and glutaredoxin systems. J. Biol. Chem. 1989, 264:13963-13966.
-
(1989)
J. Biol. Chem.
, vol.264
, pp. 13963-13966
-
-
Holmgren, A.1
-
21
-
-
0029829625
-
Mutants that show increased sensitivity to hydrogen peroxide reveal an important role for the pentose phosphate pathway in protection of yeast against oxidative stress
-
Juhnke H., Krems B., Kotter P., Entian K.D. Mutants that show increased sensitivity to hydrogen peroxide reveal an important role for the pentose phosphate pathway in protection of yeast against oxidative stress. Mol. Gen. Genet. 1996, 252:456-464.
-
(1996)
Mol. Gen. Genet.
, vol.252
, pp. 456-464
-
-
Juhnke, H.1
Krems, B.2
Kotter, P.3
Entian, K.D.4
-
22
-
-
0032030784
-
Importance of glucose-6-phosphate dehydrogenase in the adaptive response to hydrogen peroxide in Saccharomyces cerevisiae
-
Izawa S., Maeda K., Miki T., Mano J., Inoue Y., Kimura A. Importance of glucose-6-phosphate dehydrogenase in the adaptive response to hydrogen peroxide in Saccharomyces cerevisiae. Biochem. J. 1998, 330:811-817.
-
(1998)
Biochem. J.
, vol.330
, pp. 811-817
-
-
Izawa, S.1
Maeda, K.2
Miki, T.3
Mano, J.4
Inoue, Y.5
Kimura, A.6
-
23
-
-
33745667335
-
Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae
-
Gorsich S.W., Dien B.S., Nichols N.N., Slininger P.J., Liu Z.L., Skory C.D. Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2006, 71:339-349.
-
(2006)
Appl. Microbiol. Biotechnol.
, vol.71
, pp. 339-349
-
-
Gorsich, S.W.1
Dien, B.S.2
Nichols, N.N.3
Slininger, P.J.4
Liu, Z.L.5
Skory, C.D.6
-
24
-
-
0036182468
-
Characterization of the Saccharomyces cerevisiae YMR318C (ADH6) gene product as a broad specificity NADPH-dependent alcohol dehydrogenase: relevance in aldehyde reduction
-
Larroy C., Fernández F.R., González E., Parés X., Biosca J.A. Characterization of the Saccharomyces cerevisiae YMR318C (ADH6) gene product as a broad specificity NADPH-dependent alcohol dehydrogenase: relevance in aldehyde reduction. Biochem. J. 2002, 361:163-172.
-
(2002)
Biochem. J.
, vol.361
, pp. 163-172
-
-
Larroy, C.1
Fernández, F.R.2
González, E.3
Parés, X.4
Biosca, J.A.5
-
25
-
-
0036433309
-
Characterization of a Saccharomyces cerevisiae NADP(H)-dependent alcohol dehydrogenase (ADHVII), a member of the cinnamyl alcohol dehydrogenase family
-
Larroy C., Parés X., Biosca J.A. Characterization of a Saccharomyces cerevisiae NADP(H)-dependent alcohol dehydrogenase (ADHVII), a member of the cinnamyl alcohol dehydrogenase family. Eur. J. Biochem. 2002, 269:5738-5745.
-
(2002)
Eur. J. Biochem.
, vol.269
, pp. 5738-5745
-
-
Larroy, C.1
Parés, X.2
Biosca, J.A.3
-
26
-
-
27544466847
-
Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes
-
Okamoto K., Shaw J.M. Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu. Rev. Genet. 2005, 39:503-536.
-
(2005)
Annu. Rev. Genet.
, vol.39
, pp. 503-536
-
-
Okamoto, K.1
Shaw, J.M.2
-
27
-
-
0030942294
-
Regulation of yAP-1 nuclear localization in response to oxidative stress
-
Kuge S., Jones N., Nomoto A. Regulation of yAP-1 nuclear localization in response to oxidative stress. EMBO J. 1997, 16:1710-1720.
-
(1997)
EMBO J.
, vol.16
, pp. 1710-1720
-
-
Kuge, S.1
Jones, N.2
Nomoto, A.3
-
28
-
-
56149086182
-
P bodies promote stress granule assembly in Saccharomyces cerevisiae
-
Buchan J.R., Muhlrad D., Parker R. P bodies promote stress granule assembly in Saccharomyces cerevisiae. J. Cell Biol. 2008, 183:441-455.
-
(2008)
J. Cell Biol.
, vol.183
, pp. 441-455
-
-
Buchan, J.R.1
Muhlrad, D.2
Parker, R.3
-
29
-
-
36448960911
-
Formation of the cytoplasmic P-bodies in sake yeast during Japanese sake brewing and wine making
-
Izawa S., Kita T., Ikeda K., Miki T., Inoue Y. Formation of the cytoplasmic P-bodies in sake yeast during Japanese sake brewing and wine making. Biosci. Biotechnol. Biochem. 2007, 71:2800-2807.
-
(2007)
Biosci. Biotechnol. Biochem.
, vol.71
, pp. 2800-2807
-
-
Izawa, S.1
Kita, T.2
Ikeda, K.3
Miki, T.4
Inoue, Y.5
-
30
-
-
84865155373
-
Acidic stress induces the formation of P-bodies but not stress granules with mild attenuation of bulk translation in Saccharomyces cerevisiae
-
Iwaki A., Izawa S. Acidic stress induces the formation of P-bodies but not stress granules with mild attenuation of bulk translation in Saccharomyces cerevisiae. Biochem. J. 2012, 446:225-233.
-
(2012)
Biochem. J.
, vol.446
, pp. 225-233
-
-
Iwaki, A.1
Izawa, S.2
-
31
-
-
84874729026
-
Biomass conversion inhibitors furfural and 5-hydroxymethylfurfural induce formation of messenger RNP (mRNP) granules and attenuate translation activity in Saccharomyces cerevisiae
-
Iwaki A., Kawai T., Yamamoto Y., Izawa S. Biomass conversion inhibitors furfural and 5-hydroxymethylfurfural induce formation of messenger RNP (mRNP) granules and attenuate translation activity in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2013, 79:1661-1667.
-
(2013)
Appl. Environ. Microbiol.
, vol.79
, pp. 1661-1667
-
-
Iwaki, A.1
Kawai, T.2
Yamamoto, Y.3
Izawa, S.4
-
32
-
-
68949172267
-
Robust heat shock induces eIF2-phosphorylation-independent assembly of stress granules containing eIF3 and 40S ribosomal subunits in budding yeast, Saccharomyces cerevisiae
-
Grousl T., Ivanov P., Frydlova I., Vasicova P., Janda F., Vojtova J., Malinska K., Malcova I., Novakova L., Janoskova D., Valasek L., Hasek J. Robust heat shock induces eIF2-phosphorylation-independent assembly of stress granules containing eIF3 and 40S ribosomal subunits in budding yeast, Saccharomyces cerevisiae. J. Cell Sci. 2009, 122:2078-2088.
-
(2009)
J. Cell Sci.
, vol.122
, pp. 2078-2088
-
-
Grousl, T.1
Ivanov, P.2
Frydlova, I.3
Vasicova, P.4
Janda, F.5
Vojtova, J.6
Malinska, K.7
Malcova, I.8
Novakova, L.9
Janoskova, D.10
Valasek, L.11
Hasek, J.12
-
33
-
-
79954762282
-
Severe ethanol stress induces assembly of stress granules in Saccharomyces cerevisiae
-
Kato K., Yamamoto Y., Izawa S. Severe ethanol stress induces assembly of stress granules in Saccharomyces cerevisiae. Yeast 2011, 28:339-347.
-
(2011)
Yeast
, vol.28
, pp. 339-347
-
-
Kato, K.1
Yamamoto, Y.2
Izawa, S.3
-
34
-
-
84886717236
-
Adaptive response in stress granule formation and bulk translational repression upon a combined stress of mild heat shock and mild ethanol stress in yeast
-
Yamamoto Y., Izawa S. Adaptive response in stress granule formation and bulk translational repression upon a combined stress of mild heat shock and mild ethanol stress in yeast. Genes Cells 2013, 18:974-984.
-
(2013)
Genes Cells
, vol.18
, pp. 974-984
-
-
Yamamoto, Y.1
Izawa, S.2
-
35
-
-
0025362399
-
A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae
-
Schmitt M.E., Brown T.A., Trumpower B.L. A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res. 1990, 18:3091-3092.
-
(1990)
Nucleic Acids Res.
, vol.18
, pp. 3091-3092
-
-
Schmitt, M.E.1
Brown, T.A.2
Trumpower, B.L.3
-
36
-
-
77953254169
-
Quantitative transcription dynamic analysis reveals candidate genes and key regulators for ethanol tolerance in Saccharomyces cerevisiae
-
Ma M., Liu L.Z. Quantitative transcription dynamic analysis reveals candidate genes and key regulators for ethanol tolerance in Saccharomyces cerevisiae. BMC Microbiol. 2010, 10:169.
-
(2010)
BMC Microbiol.
, vol.10
, pp. 169
-
-
Ma, M.1
Liu, L.Z.2
-
37
-
-
78751477572
-
The yeast homolog of heme oxygenase-1 affords cellular antioxidant protection via the transcriptional regulation of known antioxidant genes
-
Collinson E.J., Wimmer-Kleikamp S., Gerega S.K., Yang Y.H., Parish C.R., Dawes I.W., Stocker R. The yeast homolog of heme oxygenase-1 affords cellular antioxidant protection via the transcriptional regulation of known antioxidant genes. J. Biol. Chem. 2011, 286:2205-2214.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 2205-2214
-
-
Collinson, E.J.1
Wimmer-Kleikamp, S.2
Gerega, S.K.3
Yang, Y.H.4
Parish, C.R.5
Dawes, I.W.6
Stocker, R.7
-
38
-
-
80053445278
-
Elevated proteasome capacity extends replicative lifespan in Saccharomyces cerevisiae
-
Kruegel U., Robison B., Dange T., Kahlert G., Delaney J.R., Kotireddy S., Tsuchiya M., Tsuchiyama S., Murakami C.J., Schleit J., other 7 authors Elevated proteasome capacity extends replicative lifespan in Saccharomyces cerevisiae. PLoS Genet. 2011, 7:e1002253.
-
(2011)
PLoS Genet.
, vol.7
-
-
Kruegel, U.1
Robison, B.2
Dange, T.3
Kahlert, G.4
Delaney, J.R.5
Kotireddy, S.6
Tsuchiya, M.7
Tsuchiyama, S.8
Murakami, C.J.9
Schleit, J.10
-
39
-
-
82855163179
-
A screening for essential cell growth-related genes involved in arsenite toxicity in Saccharomyces cerevisiae
-
Takahashi T., Satake S., Hirose K., Hwang G.H., Naganuma A. A screening for essential cell growth-related genes involved in arsenite toxicity in Saccharomyces cerevisiae. J. Toxicol. Sci. 2011, 36:859-861.
-
(2011)
J. Toxicol. Sci.
, vol.36
, pp. 859-861
-
-
Takahashi, T.1
Satake, S.2
Hirose, K.3
Hwang, G.H.4
Naganuma, A.5
-
40
-
-
18444393975
-
Translation of aberrant mRNAs lacking a termination codon or with a shortened 3'-UTR is repressed after initiation in yeast
-
Inada T., Aiba H. Translation of aberrant mRNAs lacking a termination codon or with a shortened 3'-UTR is repressed after initiation in yeast. EMBO J. 2005, 24:1584-1595.
-
(2005)
EMBO J.
, vol.24
, pp. 1584-1595
-
-
Inada, T.1
Aiba, H.2
-
42
-
-
0028176627
-
Glucose-6-phosphate dehydrogenase: a "housekeeping" enzyme subject to tissue-specific regulation by hormones, nutrients, and oxidant stress
-
Kletzien R.F., Harris P.K.W., Foellmi L.A. Glucose-6-phosphate dehydrogenase: a "housekeeping" enzyme subject to tissue-specific regulation by hormones, nutrients, and oxidant stress. FASEB J. 1994, 8:174-181.
-
(1994)
FASEB J.
, vol.8
, pp. 174-181
-
-
Kletzien, R.F.1
Harris, P.K.W.2
Foellmi, L.A.3
-
43
-
-
0028057226
-
YAP1 dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides
-
Kuge S., Jones N. YAP1 dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides. EMBO J. 1994, 13:655-664.
-
(1994)
EMBO J.
, vol.13
, pp. 655-664
-
-
Kuge, S.1
Jones, N.2
-
45
-
-
0031048280
-
The Skn7 response regulator controls gene expression in the oxidative stress response of the budding yeast Saccharomyces cerevisiae
-
Morgan B.A., Banks G.R., Toone W.M., Raitt D., Kuge S., Johnston L.H. The Skn7 response regulator controls gene expression in the oxidative stress response of the budding yeast Saccharomyces cerevisiae. EMBO J. 1997, 16:1035-1044.
-
(1997)
EMBO J.
, vol.16
, pp. 1035-1044
-
-
Morgan, B.A.1
Banks, G.R.2
Toone, W.M.3
Raitt, D.4
Kuge, S.5
Johnston, L.H.6
-
46
-
-
2342657879
-
Regulation of the yeast phospholipid hydroperoxide glutathione peroxidase GPX2 by oxidative stress is mediated by Yap1 and Skn7
-
Tsuzi D., Maeta K., Takatsume Y., Izawa S., Inoue Y. Regulation of the yeast phospholipid hydroperoxide glutathione peroxidase GPX2 by oxidative stress is mediated by Yap1 and Skn7. FEBS Lett. 2004, 565:148-154.
-
(2004)
FEBS Lett.
, vol.565
, pp. 148-154
-
-
Tsuzi, D.1
Maeta, K.2
Takatsume, Y.3
Izawa, S.4
Inoue, Y.5
-
47
-
-
0031825456
-
A search in the genome of Saccharomyces cerevisiae for genes regulated via stress response elements
-
Moskvina E., Schüller C., Maurer C.T.C., Mager W.H., Ruis H. A search in the genome of Saccharomyces cerevisiae for genes regulated via stress response elements. Yeast 1998, 14:1041-1050.
-
(1998)
Yeast
, vol.14
, pp. 1041-1050
-
-
Moskvina, E.1
Schüller, C.2
Maurer, C.T.C.3
Mager, W.H.4
Ruis, H.5
-
48
-
-
84878393908
-
Oxidative stress and programmed cell death in yeast
-
Farrugia G., Balzan R. Oxidative stress and programmed cell death in yeast. Front. Oncol. 2012, 2:64.
-
(2012)
Front. Oncol.
, vol.2
, pp. 64
-
-
Farrugia, G.1
Balzan, R.2
-
49
-
-
84856687068
-
Oxidative stress induces mitochondrial fragmentation in frataxin-deficient cells
-
Lefevre S., Sliwa D., Rustin P., Camadro J.M., Santos R. Oxidative stress induces mitochondrial fragmentation in frataxin-deficient cells. Biochem. Biophys. Res. Commun. 2012, 418:336-341.
-
(2012)
Biochem. Biophys. Res. Commun.
, vol.418
, pp. 336-341
-
-
Lefevre, S.1
Sliwa, D.2
Rustin, P.3
Camadro, J.M.4
Santos, R.5
-
50
-
-
79952520044
-
Mitochondrial oxidative stress causes mitochondrial fragmentation via differential modulation of mitochondrial fission-fusion proteins
-
Wu S., Zhou F., Zhang Z., Xing D. Mitochondrial oxidative stress causes mitochondrial fragmentation via differential modulation of mitochondrial fission-fusion proteins. FEBS J. 2012, 241:941-954.
-
(2012)
FEBS J.
, vol.241
, pp. 941-954
-
-
Wu, S.1
Zhou, F.2
Zhang, Z.3
Xing, D.4
-
51
-
-
66249103703
-
RNA granules: post-transcriptional and epigenetic modulators of gene expression
-
Anderson P., Kedersha N. RNA granules: post-transcriptional and epigenetic modulators of gene expression. Nat. Rev. Mol. Cell Biol. 2009, 10:430-436.
-
(2009)
Nat. Rev. Mol. Cell Biol.
, vol.10
, pp. 430-436
-
-
Anderson, P.1
Kedersha, N.2
-
52
-
-
66049158810
-
Polysomes, P bodies and stress granules: states and fates of eukaryotic mRNAs
-
Balagopal V., Parker R. Polysomes, P bodies and stress granules: states and fates of eukaryotic mRNAs. Curr. Opin. Cell Biol. 2009, 21:403-408.
-
(2009)
Curr. Opin. Cell Biol.
, vol.21
, pp. 403-408
-
-
Balagopal, V.1
Parker, R.2
-
53
-
-
72149095755
-
Eukaryotic stress granules: the ins and outs of translation
-
Buchan J.R., Parker R. Eukaryotic stress granules: the ins and outs of translation. Mol. Cell 2009, 36:932-940.
-
(2009)
Mol. Cell
, vol.36
, pp. 932-940
-
-
Buchan, J.R.1
Parker, R.2
-
54
-
-
15444379718
-
Processing bodies require RNA for assembly and contain nontranslating mRNAs
-
Teixeira D., Sheth U., Valencia-Sanchez M.A., Brengues M., Parker R. Processing bodies require RNA for assembly and contain nontranslating mRNAs. RNA 2005, 11:371-382.
-
(2005)
RNA
, vol.11
, pp. 371-382
-
-
Teixeira, D.1
Sheth, U.2
Valencia-Sanchez, M.A.3
Brengues, M.4
Parker, R.5
-
56
-
-
0037968357
-
Decapping and decay of messenger RNA occur in cytoplasmic processing bodies
-
Sheth U., Parker R. Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 2003, 300:805-808.
-
(2003)
Science
, vol.300
, pp. 805-808
-
-
Sheth, U.1
Parker, R.2
-
57
-
-
58149335385
-
Acetaldehyde tolerance in Saccharomyces cerevisiae involves the pentose phosphate pathway and oleic acid biosynthesis
-
Matsufuji Y., Fujimura S., Ito T., Nishizawa M., Miyaji T., Nakagawa J., Ohyama T., Tomizuka N., Nakagawa T. Acetaldehyde tolerance in Saccharomyces cerevisiae involves the pentose phosphate pathway and oleic acid biosynthesis. Yeast 2008, 25:825-833.
-
(2008)
Yeast
, vol.25
, pp. 825-833
-
-
Matsufuji, Y.1
Fujimura, S.2
Ito, T.3
Nishizawa, M.4
Miyaji, T.5
Nakagawa, J.6
Ohyama, T.7
Tomizuka, N.8
Nakagawa, T.9
-
58
-
-
79960888255
-
Exposure of Candida to p-anisaldehyde inhibits its growth and ergosterol biosynthesis
-
Shreaz S., Bhatia R., Khan N., Muralidhar S., Basir S.F., Manzoor N., Khan L.A. Exposure of Candida to p-anisaldehyde inhibits its growth and ergosterol biosynthesis. J. Gen. Appl. Microbiol. 2011, 57:129-136.
-
(2011)
J. Gen. Appl. Microbiol.
, vol.57
, pp. 129-136
-
-
Shreaz, S.1
Bhatia, R.2
Khan, N.3
Muralidhar, S.4
Basir, S.F.5
Manzoor, N.6
Khan, L.A.7
-
59
-
-
79551580561
-
ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair
-
Cosentino C., Grieco D., Costanzo V. ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair. EMBO J. 2011, 30:546-555.
-
(2011)
EMBO J.
, vol.30
, pp. 546-555
-
-
Cosentino, C.1
Grieco, D.2
Costanzo, V.3
-
60
-
-
84879845922
-
Engineering redox cofactor utilization for detoxification of glycol aldehyde, a key inhibitor of bioethanol production, in yeast Saccharomyces cerevisiae
-
Jayakody L.N., Horie K., Hayashi N., Kitagaki H. Engineering redox cofactor utilization for detoxification of glycol aldehyde, a key inhibitor of bioethanol production, in yeast Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2013, 97:6589-6600.
-
(2013)
Appl. Microbiol. Biotechnol.
, vol.97
, pp. 6589-6600
-
-
Jayakody, L.N.1
Horie, K.2
Hayashi, N.3
Kitagaki, H.4
|