-
1
-
-
0036567291
-
A re-weighting strategy for improving margins
-
F. Aiolli and A. Sperduti. A re-weighting strategy for improving margins. Artifiical Intelligence, 137:197-216, 2002.
-
(2002)
Artifiical Intelligence
, vol.137
, pp. 197-216
-
-
Aiolli, F.1
Sperduti, A.2
-
3
-
-
84894067307
-
Classification in high-dimensional spectral data: Accuracy vs. Interpretability vs. Model size
-
page in press
-
A. Backhaus and U. Seiffert. Classification in high-dimensional spectral data: Accuracy vs. interpretability vs. model size. Neurocomputing, page in press, 2014.
-
(2014)
Neurocomputing
-
-
Backhaus, A.1
Seiffert, U.2
-
6
-
-
84885435612
-
Adaptive distance measures in relevance Learning Vector Quantization
-
M. Biehl. Admire LVQ: Adaptive distance measures in relevance Learning Vector Quantization. KI -Künstliche Intelligenz, 26:391-395, 2012.
-
(2012)
KI -Künstliche Intelligenz
, vol.26
, pp. 391-395
-
-
Biehl, M.1
Admire, L.V.Q.2
-
7
-
-
84875060415
-
Analysis of flow cytometry data by matrix relevance learning vector quantization
-
M. Biehl, K. Bunte, and P. Schneider. Analysis of flow cytometry data by matrix relevance learning vector quantization. PLoS ONE, 8(3):e59401, 2013.
-
(2013)
PLoS ONE
, vol.8
, Issue.3
, pp. e59401
-
-
Biehl, M.1
Bunte, K.2
Schneider, P.3
-
9
-
-
84908105703
-
Distance measures for prototype based classification
-
N. Petkov, editor, Cetraro/Italy, page in press. Springer 2014
-
M. Biehl, B. Hammer, and T. Villmann. Distance measures for prototype based classification. In N. Petkov, editor, Proceedings of the International Workshop on Brain-Inspired Computing 2013 (Cetraro/Italy), page in press. Springer, 2014.
-
(2013)
Proceedings of the International Workshop on Brain-Inspired Computing
-
-
Biehl, M.1
Hammer, B.2
Villmann, T.3
-
10
-
-
84908105701
-
Statistical quality measures and ROC-optimization by learning vector quantization classifiers
-
H. Kestler, M. Schmid, H. Binder, and B. Bischl, editors, number 2014-xxx in Ulmer Informatik-Berichte, page accepted. University Ulm, Germany
-
M. Biehl, M. Kaden, and T. Villmann. Statistical quality measures and ROC-optimization by learning vector quantization classifiers. In H. Kestler, M. Schmid, H. Binder, and B. Bischl, editors, Proceedings of the 46th Workshop on Statistical Computing (Ulm/Reisensburg 2014), number 2014-xxx in Ulmer Informatik-Berichte, page accepted. University Ulm, Germany, 2014.
-
Proceedings of the 46th Workshop on Statistical Computing (Ulm/Reisensburg 2014)
, pp. 2014
-
-
Biehl, M.1
Kaden, M.2
Villmann, T.3
-
11
-
-
84947792616
-
Matrix relevance LVQ in steroid metabolomics based classification of adrenal tumors
-
M. Verleysen, editor, Louvain-La-Neuve, Belgium. i6doc.com
-
M. Biehl, P. Schneider, D. Smith, H. Stiekema, A. Taylor, B. Hughes, C. Shackleton, P. Stewart, and W. Arlt. Matrix relevance LVQ in steroid metabolomics based classification of adrenal tumors. In M. Verleysen, editor, Proc. of European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN'2012), pages 423-428, Louvain-La-Neuve, Belgium, 2012. i6doc.com.
-
(2012)
Proc. of European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN'2012)
, pp. 423-428
-
-
Biehl, M.1
Schneider, P.2
Smith, D.3
Stiekema, H.4
Taylor, A.5
Hughes, B.6
Shackleton, C.7
Stewart, P.8
Arlt, W.9
-
13
-
-
0002902870
-
Relevance determination in learning vector quantization
-
D-Facto, Evere, Belgium
-
T. Bojer, B. Hammer, D. Schunk, and T. von Toschanowitz K. Relevance determination in learning vector quantization. In 9th European Symposium on Artificial Neural Networks. ESANN'2001. Proceedings. D-Facto, Evere, Belgium, pages 271-6, 2001.
-
(2001)
9th European Symposium on Artificial Neural Networks. ESANN'2001. Proceedings
, pp. 271-276
-
-
Bojer, T.1
Hammer, B.2
Schunk, D.3
Von Toschanowitz K, T.4
-
14
-
-
34548201394
-
High-dimensional data clustering
-
C. Bouveyron, S. Girard, and C. Schmid. High-dimensional data clustering. Computational Statistics and Data Analysis, 57(1):502-519, 2007.
-
(2007)
Computational Statistics and Data Analysis
, vol.57
, Issue.1
, pp. 502-519
-
-
Bouveyron, C.1
Girard, S.2
Schmid, C.3
-
15
-
-
0031191630
-
The use of the area under the ROC curve in the evaluation of machine learning algorithms
-
A. Bradley. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30(7):1149-1155, 1997.
-
(1997)
Pattern Recognition
, vol.30
, Issue.7
, pp. 1149-1155
-
-
Bradley, A.1
-
16
-
-
84855962168
-
Limited rank matrix learning, discriminative dimension reduction and visualization
-
K. Bunte, P. Schneider, B. Hammer, F.-M. Schleif, T. Villmann, and M. Biehl. Limited rank matrix learning, discriminative dimension reduction and visualization. Neural Networks, 26(1):159-173, 2012.
-
(2012)
Neural Networks
, vol.26
, Issue.1
, pp. 159-173
-
-
Bunte, K.1
Schneider, P.2
Hammer, B.3
Schleif, F.-M.4
Villmann, T.5
Biehl, M.6
-
18
-
-
0018492515
-
The condensed nearest neighbor rule using the concept of mutual nearest neighborhood
-
K. Chidanananda and G. Krishna. The condensed nearest neighbor rule using the concept of mutual nearest neighborhood. IEEE Transactions on Information Theory, 25:488-490, 1979.
-
(1979)
IEEE Transactions on Information Theory
, vol.25
, pp. 488-490
-
-
Chidanananda, K.1
Krishna, G.2
-
19
-
-
0014710323
-
On optimum recognition error and reject tradeoff
-
C. Chow. On optimum recognition error and reject tradeoff. IEEE Transaction on Information Theory, 16(1):41-46, 1970.
-
(1970)
IEEE Transaction on Information Theory
, vol.16
, Issue.1
, pp. 41-46
-
-
Chow, C.1
-
23
-
-
79953842056
-
Margin analysis of the LVQ algorithm
-
S. Becker, S. Thrun, and K. Obermayer, editors, Cambridge, MA, MIT Press
-
K. Crammer, R. Gilad-Bachrach, A. Navot, and A.Tishby. Margin analysis of the LVQ algorithm. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information Processing (Proc. NIPS 2002), volume 15, pages 462-469, Cambridge, MA, 2003. MIT Press.
-
(2003)
Advances in Neural Information Processing (Proc. NIPS 2002)
, vol.15
, pp. 462-469
-
-
Crammer, K.1
Gilad-Bachrach, R.2
Navot, A.3
Tishby, A.4
-
25
-
-
33749249600
-
The relationship between precision-recall and ROC curves
-
New York, NY, USA, ACM
-
J. Davis and M. Goadrich. The relationship between precision-recall and ROC curves. In Proceedings of the 23rd International Conference on Machine Learning, ICML '06, pages 233-240, New York, NY, USA, 2006. ACM.
-
(2006)
Proceedings of the 23rd International Conference on Machine Learning, ICML '06
, pp. 233-240
-
-
Davis, J.1
Goadrich, M.2
-
27
-
-
33646023117
-
An introduction to ROC analysis
-
T. Fawcett. An introduction to ROC analysis. Pattern Recognition Letters, 27:861-874, 2006.
-
(2006)
Pattern Recognition Letters
, vol.27
, pp. 861-874
-
-
Fawcett, T.1
-
28
-
-
84903551243
-
Rejection strategies for learning vector quantization U a comparison of probabilistic and deterministic approaches
-
T. Villmann, F.-M. Schleif, M. Kaden, and M. Lange, editors, Advances in Intelligent Systems and Computing, page accepted, Berlin, Springer
-
L. Fischer, D. Nebel, T. Villmann, B. Hammer, and H. Wersing. Rejection strategies for learning vector quantization U a comparison of probabilistic and deterministic approaches. In T. Villmann, F.-M. Schleif, M. Kaden, and M. Lange, editors, Advances in Self-Organizing Maps: 10th International Workshop WSOM 2014 Mittweida, Advances in Intelligent Systems and Computing, page accepted, Berlin, 2014. Springer.
-
(2014)
Advances in Self-Organizing Maps: 10th International Workshop WSOM 2014 Mittweida
-
-
Fischer, L.1
Nebel, D.2
Villmann, T.3
Hammer, B.4
Wersing, H.5
-
29
-
-
0000764772
-
The use of multiple measurements in taxonomic problems
-
R. Fisher. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2):179-188, 1936.
-
(1936)
Annals of Eugenics
, vol.7
, Issue.2
, pp. 179-188
-
-
Fisher, R.1
-
30
-
-
84908099249
-
Extending RSLVQ to handle data points with uncertain class assignments
-
MLR-02-2009. ISSN:1865-3960
-
T. Geweniger, P. Schneider, F.-M. Schleif, M. Biehl, and T. Villmann. Extending RSLVQ to handle data points with uncertain class assignments. Machine Learning Reports, 3(MLR-02-2009):1-17, 2009. ISSN:1865-3960, http://www.uni-leipzig.de/~compint/mlr/mlr-02-2009.pdf.
-
(2009)
Machine Learning Reports
, vol.3
, pp. 1-17
-
-
Geweniger, T.1
Schneider, P.2
Schleif, F.-M.3
Biehl, M.4
Villmann, T.5
-
31
-
-
84887014094
-
Extending FSNPC to handle data points with fuzzy class assignments
-
M. Verleysen, editor, Evere, Belgium. d-side publications
-
T. Geweniger and T. Villmann. Extending FSNPC to handle data points with fuzzy class assignments. In M. Verleysen, editor, Proc. of European Symposium on Artificial Neural Networks (ESANN'2010), pages 399-404, Evere, Belgium, 2010. d-side publications.
-
(2010)
Proc. of European Symposium on Artificial Neural Networks (ESANN'2010)
, pp. 399-404
-
-
Geweniger, T.1
Villmann, T.2
-
32
-
-
77649237600
-
Median fuzzy c-means for clustering dissimilarity data
-
T. Geweniger, D. Zühlke, B. Hammer, and T. Villmann. Median fuzzy c-means for clustering dissimilarity data. Neurocomputing, 73(7-9):1109-1116, 2010.
-
(2010)
Neurocomputing
, vol.73
, Issue.7-9
, pp. 1109-1116
-
-
Geweniger, T.1
Zühlke, D.2
Hammer, B.3
Villmann, T.4
-
33
-
-
84874579252
-
Discriminative metric: Schatten norms vs. Vector norm
-
Z. Gu, M. Shao, L. Li, and Y. Fu. Discriminative metric: Schatten norms vs. vector norm. In Proc. of The 21st International Conference on Pattern Recognition (ICPR 2012), pages 1213-1216, 2012.
-
(2012)
Proc. of the 21st International Conference on Pattern Recognition (ICPR 2012)
, pp. 1213-1216
-
-
Gu, Z.1
Shao, M.2
Li, L.3
Fu, Y.4
-
34
-
-
9444220311
-
Relevance LVQ versus SVM
-
L. Rutkowski, J. Siekmann, R. Tadeusiewicz, and L. Zadeh, editors. Springer Verlag, Berlin-Heidelberg
-
B. Hammer, M. Strickert, and T. Villmann. Relevance LVQ versus SVM. In L. Rutkowski, J. Siekmann, R. Tadeusiewicz, and L. Zadeh, editors, Artificial Intelligence and Soft Computing (ICAISC 2004), Lecture Notes in Artificial Intelligence 3070, pages 592-597. Springer Verlag, Berlin-Heidelberg, 2004.
-
(2004)
Artificial Intelligence and Soft Computing (ICAISC 2004), Lecture Notes in Artificial Intelligence
, vol.3070
, pp. 592-597
-
-
Hammer, B.1
Strickert, M.2
Villmann, T.3
-
35
-
-
17444390516
-
On the generalization ability of GRLVQ networks
-
B. Hammer, M. Strickert, and T. Villmann. On the generalization ability of GRLVQ networks. Neural Processing Letters, 21(2):109-120, 2005.
-
(2005)
Neural Processing Letters
, vol.21
, Issue.2
, pp. 109-120
-
-
Hammer, B.1
Strickert, M.2
Villmann, T.3
-
36
-
-
12844250052
-
Supervised neural gas with general similarity measure
-
B. Hammer, M. Strickert, and T. Villmann. Supervised neural gas with general similarity measure. Neural Processing Letters, 21(1):21-44, 2005.
-
(2005)
Neural Processing Letters
, vol.21
, Issue.1
, pp. 21-44
-
-
Hammer, B.1
Strickert, M.2
Villmann, T.3
-
37
-
-
0036791938
-
Generalized relevance learning vector quantization
-
B. Hammer and T. Villmann. Generalized relevance learning vector quantization. Neural Networks, 15(8-9):1059-1068, 2002.
-
(2002)
Neural Networks
, vol.15
, Issue.8-9
, pp. 1059-1068
-
-
Hammer, B.1
Villmann, T.2
-
38
-
-
0020083498
-
The meaning and use of the area under a receiver operating characteristic
-
J. Hanley and B. McNeil. The meaning and use of the area under a receiver operating characteristic. Radiology, 143:29-36, 1982.
-
(1982)
Radiology
, vol.143
, pp. 29-36
-
-
Hanley, J.1
McNeil, B.2
-
42
-
-
0004151494
-
-
Cambridge University Press, 2nd edition
-
R. Horn and C. Johnson. Matrix Analysis. Cambridge University Press, 2nd edition, 2013.
-
(2013)
Matrix Analysis
-
-
Horn, R.1
Johnson, C.2
-
44
-
-
84962022990
-
Optimization of general statistical accuracy measures for classification based on learning vector quantization
-
M. Verleysen, editor, Louvain-La-Neuve, Belgium. i6doc.com
-
M. Kaden, W. Hermann, and T. Villmann. Optimization of general statistical accuracy measures for classification based on learning vector quantization. In M. Verleysen, editor, Proc. of European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN'2014), pages 47-52, Louvain-La-Neuve, Belgium, 2014. i6doc.com.
-
(2014)
Proc. of European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN'2014)
, pp. 47-52
-
-
Kaden, M.1
Hermann, W.2
Villmann, T.3
-
45
-
-
84908094536
-
A framework for optimization of statistical classification measures based on generalized learning vector quantization
-
MLR-02-2013. ISSN:1865-3960
-
M. Kaden and T. Villmann. A framework for optimization of statistical classification measures based on generalized learning vector quantization. Machine Learning Reports, 7(MLR-02-2013):69-76, 2013. ISSN:1865-3960, http://www.techfak.uni-bielefeld.de/~fschleif/mlr/mlr-02-2013.pdf.
-
(2013)
Machine Learning Reports
, vol.7
, pp. 69-76
-
-
Kaden, M.1
Villmann, T.2
-
46
-
-
84908105697
-
Attention based classification learning in GLVQ and asymmetric classification error assessment
-
T. Villmann, F.-M. Schleif, M. Kaden, and M. Lange, editors, Advances in Intelligent Systems and Computing, page accepted, Berlin, Springer
-
M. Kaden and T. Villmann. Attention based classification learning in GLVQ and asymmetric classification error assessment. In T. Villmann, F.-M. Schleif, M. Kaden, and M. Lange, editors, Advances in Self-Organizing Maps: 10th International Workshop WSOM 2014 Mittweida, Advances in Intelligent Systems and Computing, page accepted, Berlin, 2014. Springer.
-
Advances in Self-Organizing Maps: 10th International Workshop WSOM 2014 Mittweida
, pp. 2014
-
-
Kaden, M.1
Villmann, T.2
-
47
-
-
84873600155
-
Differentiable kernels in generalized matrix learning vector quantization
-
IEEE Computer Society Press
-
M. Kästner, D. Nebel, M. Riedel, M. Biehl, and T. Villmann. Differentiable kernels in generalized matrix learning vector quantization. In Proc. of the Internacional Conference of Machine Learning Applications (ICMLA'12), pages 1-6. IEEE Computer Society Press, 2012.
-
(2012)
Proc. of the Internacional Conference of Machine Learning Applications (ICMLA'12)
, pp. 1-6
-
-
Kästner, M.1
Nebel, D.2
Riedel, M.3
Biehl, M.4
Villmann, T.5
-
48
-
-
84880077984
-
Bordersensitive learning in kernelized learning vector quantization
-
I. Rojas, G. Joya, and J. Cabestany, editors, Berlin. Springer
-
M. Kästner, M. Riedel, M. Strickert, W. Hermann, and T. Villmann. Bordersensitive learning in kernelized learning vector quantization. In I. Rojas, G. Joya, and J. Cabestany, editors, Proc. of the 12th International Workshop on Artificial Neural Networks (IWANN), volume 7902 of LNCS, pages 357-366, Berlin, 2013. Springer.
-
(2013)
Proc. of the 12th International Workshop on Artificial Neural Networks (IWANN) of LNCS
, vol.7902
, pp. 357-366
-
-
Kästner, M.1
Riedel, M.2
Strickert, M.3
Hermann, W.4
Villmann, T.5
-
49
-
-
84887034400
-
Utilization of correlation measures in vector quantization for analysis of gene expression data - A review of recent developments
-
MLR-04-2012. ISSN:1865-3960
-
M. Kästner, M. Strickert, D. Labudde, M. Lange, S. Haase, and T. Villmann. Utilization of correlation measures in vector quantization for analysis of gene expression data -a review of recent developments. Machine Learning Reports, 6(MLR-04-2012):5-22, 2012. ISSN:1865-3960, http://www.techfak.unibielefeld.de/~fschleif/mlr/mlr-04-2012.pdf.
-
(2012)
Machine Learning Reports
, vol.6
, pp. 5-22
-
-
Kästner, M.1
Strickert, M.2
Labudde, D.3
Lange, M.4
Haase, S.5
Villmann, T.6
-
51
-
-
0006145981
-
Automatic formation of topological maps of patterns in a selforganizing system
-
E. Oja and O. Simula, editors, Helsinki, Finland. Suomen Hahmontunnistustutkimuksen Seura r. y
-
T. Kohonen. Automatic formation of topological maps of patterns in a selforganizing system. In E. Oja and O. Simula, editors, Proc. 2SCIA, Scand. Conf. on Image Analysis, pages 214-220, Helsinki, Finland, 1981. Suomen Hahmontunnistustutkimuksen Seura r. y.
-
(1981)
Proc. 2SCIA, Scand. Conf. on Image Analysis
, pp. 214-220
-
-
Kohonen, T.1
-
53
-
-
85132031017
-
LVQ-PAK: A program package for the correct application of Learning Vector Quantization algorithms
-
Piscataway, NJ, IEEE Service Center
-
T. Kohonen, J. Kangas, J. Laaksonen, and K. Torkkola. LVQ-PAK: A program package for the correct application of Learning Vector Quantization algorithms. In Proc. IJCNN'92, International Joint Conference on Neural Networks, volume I, pages 725-730, Piscataway, NJ, 1992. IEEE Service Center.
-
(1992)
Proc. IJCNN'92, International Joint Conference on Neural Networks
, vol.1
, pp. 725-730
-
-
Kohonen, T.1
Kangas, J.2
Laaksonen, J.3
Torkkola, K.4
-
55
-
-
84902579546
-
Non-Euclidean principal component analysis by Hebbian learning
-
in press
-
M. Lange, M. Biehl, and T. Villmann. Non-Euclidean principal component analysis by Hebbian learning. Neurocomputing, page in press, 2014.
-
(2014)
Neurocomputing, Page
-
-
Lange, M.1
Biehl, M.2
Villmann, T.3
-
56
-
-
84902584827
-
Non-Euclidean principal component analysis for matrices by Hebbian learning
-
L. Rutkowski, M. Korytkowski, R. Scherer, R. Tadeusiewicz, L. Zadeh, and J. Zurada, editors, Berlin Heidelberg, Springer
-
M. Lange, D. Nebel, and T. Villmann. Non-Euclidean principal component analysis for matrices by Hebbian learning. In L. Rutkowski, M. Korytkowski, R. Scherer, R. Tadeusiewicz, L. Zadeh, and J. Zurada, editors, Artificial Intelligence and Soft Computing -Proc. the International Conference ICAISC, Zakopane, volume 1 of LNAI 8467, pages 77-88, Berlin Heidelberg, 2014. Springer.
-
(2014)
Artificial Intelligence and Soft Computing -Proc. The International Conference ICAISC, Zakopane of LNAI 8467
, vol.1
, pp. 77-88
-
-
Lange, M.1
Nebel, D.2
Villmann, T.3
-
57
-
-
84903521448
-
Derivatives of lp-norms and their approximations
-
MLR-04-2013. ISSN:1865-3960
-
M. Lange and T. Villmann. Derivatives of lp-norms and their approximations. Machine Learning Reports, 7(MLR-04-2013):43-59, 2013. ISSN:1865-3960, http://www.techfak.uni-bielefeld.de/~fschleif/mlr/mlr-04-2013.pdf.
-
(2013)
Machine Learning Reports
, vol.7
, pp. 43-59
-
-
Lange, M.1
Villmann, T.2
-
58
-
-
84961992419
-
Applications of lp-norms and their smooth approximations for gradient based learning vector quantization
-
M. Verleysen, editor, Louvain-La-Neuve, Belgium. i6doc.com
-
M. Lange, D. Zühlke, O. Holz, and T. Villmann. Applications of lp-norms and their smooth approximations for gradient based learning vector quantization. In M. Verleysen, editor, Proc. of European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN'2014), pages 271-276, Louvain-La-Neuve, Belgium, 2014. i6doc.com.
-
(2014)
Proc. of European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN'2014)
, pp. 271-276
-
-
Lange, M.1
Zühlke, D.2
Holz, O.3
Villmann, T.4
-
60
-
-
0027632248
-
'Neural-gas' network for vector quantization and its application to time-series prediction
-
T. M. Martinetz, S. G. Berkovich, and K. J. Schulten. 'Neural-gas' network for vector quantization and its application to time-series prediction. IEEE Trans. on Neural Networks, 4(4):558-569, 1993.
-
(1993)
IEEE Trans. on Neural Networks
, vol.4
, Issue.4
, pp. 558-569
-
-
Martinetz, T.M.1
Berkovich, S.G.2
Schulten, K.J.3
-
62
-
-
84887127846
-
Multispectral image characterization by partial generalized covariance
-
M. Verleysen, editor, Louvain-La-Neuve, Belgium. i6doc.com
-
M.Strickert, B. Labitzke, A. Kolb, and T. Villmann. Multispectral image characterization by partial generalized covariance. In M. Verleysen, editor, Proc. of European Symposium on Artificial Neural Networks (ESANN'2011), pages 105-110, Louvain-La-Neuve, Belgium, 2011. i6doc.com.
-
(2011)
Proc. of European Symposium on Artificial Neural Networks (ESANN'2011)
, pp. 105-110
-
-
Strickert, M.1
Labitzke, B.2
Kolb, A.3
Villmann, T.4
-
63
-
-
79953107371
-
Divergence based classification in learning vector quantization
-
E. Mwebaze, P. Schneider, F.-M. Schleif, J. Aduwo, J. Quinn, S. Haase, T. Villmann, and M. Biehl. Divergence based classification in learning vector quantization. Neurocomputing, 74(9):1429-1435, 2011.
-
(2011)
Neurocomputing
, vol.74
, Issue.9
, pp. 1429-1435
-
-
Mwebaze, E.1
Schneider, P.2
Schleif, F.-M.3
Aduwo, J.4
Quinn, J.5
Haase, S.6
Villmann, T.7
Biehl, M.8
-
64
-
-
84962026959
-
Supervised generative models for learning dissimilarity data
-
M. Verleysen, editor, Louvain-La-Neuve, Belgium. i6doc.com
-
D. Nebel, B. Hammer, and T. Villmann. Supervised generative models for learning dissimilarity data. In M. Verleysen, editor, Proc. of European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN'2014), pages 35-40, Louvain-La-Neuve, Belgium, 2014. i6doc.com.
-
(2014)
Proc. of European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN'2014)
, pp. 35-40
-
-
Nebel, D.1
Hammer, B.2
Villmann, T.3
-
65
-
-
84908095306
-
About the equivalence of robust soft learning vector quantization and soft nearest prototype classification
-
MLR-02-2013. ISSN:1865-3960
-
D. Nebel and T. Villmann. About the equivalence of robust soft learning vector quantization and soft nearest prototype classification. Machine Learning Reports, 7(MLR-02-2013):114-118, 2013. ISSN:1865-3960, http://www.techfak.uni-bielefeld.de/~fschleif/mlr/mlr-02-2013.pdf.
-
(2013)
Machine Learning Reports
, vol.7
, pp. 114-118
-
-
Nebel, D.1
Villmann, T.2
-
66
-
-
84893386186
-
A median variant of generalized learning vector quantization
-
M. Lee, A. Hirose, Z.-G. Hou, and R. Kil, editors, Berlin. Springer-Verlag
-
D. Nebel and T. Villmann. A median variant of generalized learning vector quantization. In M. Lee, A. Hirose, Z.-G. Hou, and R. Kil, editors, Proceedings of International Conference on Neural Information Processing (ICONIP), volume II of LNCS, pages 19-26, Berlin, 2013. Springer-Verlag.
-
(2013)
Proceedings of International Conference on Neural Information Processing (ICONIP) of LNCS
, vol.2
, pp. 19-26
-
-
Nebel, D.1
Villmann, T.2
-
70
-
-
0000986833
-
Information theoretic learning
-
S. Haykin, editor, Wiley, New York, NY
-
J. C. Principe, J. F. III, and D. Xu. Information theoretic learning. In S. Haykin, editor, Unsupervised Adaptive Filtering. Wiley, New York, NY, 2000.
-
(2000)
Unsupervised Adaptive Filtering
-
-
Principe, J.C.1
Xu, D.2
-
73
-
-
84903538352
-
Generative versus discriminative prototype based classification
-
T. Villmann, F.-M. Schleif, M. Kaden, and M. Lange, editors, Advances in Intelligent Systems and Computing, page accepted, Berlin, Springer
-
M. Riedel, D. Nebel, T. Villmann, and B. Hammer. Generative versus discriminative prototype based classification. In T. Villmann, F.-M. Schleif, M. Kaden, and M. Lange, editors, Advances in Self-Organizing Maps: 10th International Workshop WSOM 2014 Mittweida, Advances in Intelligent Systems and Computing, page accepted, Berlin, 2014. Springer.
-
Advances in Self-Organizing Maps: 10th International Workshop WSOM 2014 Mittweida
, pp. 2014
-
-
Riedel, M.1
Nebel, D.2
Villmann, T.3
Hammer, B.4
-
74
-
-
0004217877
-
-
Butterworths, London, 2nd edition edition
-
C. Rijsbergen. Information Retrieval. Butterworths, London, 2nd edition edition, 1979.
-
(1979)
Information Retrieval
-
-
Rijsbergen, C.1
-
75
-
-
11144273669
-
The perceptron: A probabilistic model for information storage and organization in the brain
-
F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in the brain. Psych. Rev., 65:386-408, 1958.
-
(1958)
Psych. Rev.
, vol.65
, pp. 386-408
-
-
Rosenblatt, F.1
-
77
-
-
85156210800
-
Generalized learning vector quantization
-
D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, MIT Press, Cambridge, MA, USA
-
A. Sato and K. Yamada. Generalized learning vector quantization. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances in Neural Information Processing Systems 8. Proceedings of the 1995 Conference, pages 423-9. MIT Press, Cambridge, MA, USA, 1996.
-
(1996)
Advances in Neural Information Processing Systems 8. Proceedings of the 1995 Conference
, pp. 423-429
-
-
Sato, A.1
Yamada, K.2
-
79
-
-
36248958779
-
Prototype based fuzzy classification in clinical proteomics
-
F.-M. Schleif, T. Villmann, and B. Hammer. Prototype based fuzzy classification in clinical proteomics. International Journal of Approximate Reasoning, 47(1):4-16, 2008.
-
(2008)
International Journal of Approximate Reasoning
, vol.47
, Issue.1
, pp. 4-16
-
-
Schleif, F.-M.1
Villmann, T.2
Hammer, B.3
-
80
-
-
82655173326
-
Efficient kernelized prototype based classification
-
F.-M. Schleif, T. Villmann, B. Hammer, and P. Schneider. Efficient kernelized prototype based classification. International Journal of Neural Systems, 21(6):443-457, 2011.
-
(2011)
International Journal of Neural Systems
, vol.21
, Issue.6
, pp. 443-457
-
-
Schleif, F.-M.1
Villmann, T.2
Hammer, B.3
Schneider, P.4
-
81
-
-
61449263037
-
Cancer informatics by prototype networks in mass spectrometry
-
F.-M. Schleif, T. Villmann, M. Kostrzewa, B. Hammer, and A. Gammerman. Cancer informatics by prototype networks in mass spectrometry. Artificial Intelligence in Medicine, 45(2-3):215-228, 2009.
-
(2009)
Artificial Intelligence in Medicine
, vol.45
, Issue.2-3
, pp. 215-228
-
-
Schleif, F.-M.1
Villmann, T.2
Kostrzewa, M.3
Hammer, B.4
Gammerman, A.5
-
82
-
-
84870875312
-
A conformal classifier for dissimilarity data
-
L. I. I. Maglogiannis, H. Papadopoulos, K. Karatzas, and S. Siouta, editors, Berlin, Springer
-
F.-M. Schleif, X. Zhu, and B. Hammer. A conformal classifier for dissimilarity data. In L. I. I. Maglogiannis, H. Papadopoulos, K. Karatzas, and S. Siouta, editors, Proceedings of AIAI 2012, Halkidiki, Greece, volume 382 of IFIP Advances in Information and Communication Technology, pages 234-243, Berlin, 2012. Springer.
-
(2012)
Proceedings of AIAI 2012, Halkidiki, Greece of IFIP Advances in Information and Communication Technology
, vol.382
, pp. 234-243
-
-
Schleif, F.-M.1
Zhu, X.2
Hammer, B.3
-
84
-
-
77951917542
-
Regularization in matrix relevance learning
-
P. Schneider, K. Bunte, H. Stiekema, B. Hammer, T. Villmann, and M. Biehl. Regularization in matrix relevance learning. IEEE Transactions on Neural Networks, 21(5):831-840, 2010.
-
(2010)
IEEE Transactions on Neural Networks
, vol.21
, Issue.5
, pp. 831-840
-
-
Schneider, P.1
Bunte, K.2
Stiekema, H.3
Hammer, B.4
Villmann, T.5
Biehl, M.6
-
85
-
-
84887104624
-
Multivariate class labeling in Robust Soft LVQ
-
M. Verleysen, editor, Louvain-La-Neuve, Belgium. i6doc.com
-
P. Schneider, T. Geweniger, F.-M. Schleif, M. Biehl, and T. Villmann. Multivariate class labeling in Robust Soft LVQ. In M. Verleysen, editor, Proc. of European Symposium on Artificial Neural Networks (ESANN'2011), pages 17-22, Louvain-La-Neuve, Belgium, 2011. i6doc.com.
-
(2011)
Proc. of European Symposium on Artificial Neural Networks (ESANN'2011)
, pp. 17-22
-
-
Schneider, P.1
Geweniger, T.2
Schleif, F.-M.3
Biehl, M.4
Villmann, T.5
-
86
-
-
72249111970
-
Adaptive relevance matrices in learning vector quantization
-
P. Schneider, B. Hammer, and M. Biehl. Adaptive relevance matrices in learning vector quantization. Neural Computation, 21:3532-3561, 2009.
-
(2009)
Neural Computation
, vol.21
, pp. 3532-3561
-
-
Schneider, P.1
Hammer, B.2
Biehl, M.3
-
87
-
-
70449713460
-
Distance learning in discriminative vector quantization
-
P. Schneider, B. Hammer, and M. Biehl. Distance learning in discriminative vector quantization. Neural Computation, 21:2942-2969, 2009.
-
(2009)
Neural Computation
, vol.21
, pp. 2942-2969
-
-
Schneider, P.1
Hammer, B.2
Biehl, M.3
-
88
-
-
78049461371
-
Radial kernels and their reproducing kernel Hilbert spaces
-
C. Scovel, D. Hush, I. Steinwart, and J. Theiler. Radial kernels and their reproducing kernel Hilbert spaces. Journal of Complexity, 26:641-660, 2010.
-
(2010)
Journal of Complexity
, vol.26
, pp. 641-660
-
-
Scovel, C.1
Hush, D.2
Steinwart, I.3
Theiler, J.4
-
90
-
-
0038159964
-
Soft learning vector quantization
-
S. Seo and K. Obermayer. Soft learning vector quantization. Neural Computation, 15:1589-1604, 2003.
-
(2003)
Neural Computation
, vol.15
, pp. 1589-1604
-
-
Seo, S.1
Obermayer, K.2
-
92
-
-
0004979711
-
Probabilistic neural networks for chemical sensor array pattern recognition: Comparison studies, improvements and automated outlier rejection
-
Washington, DC
-
R. Shaffer, S. Rose-Pehrsson, and R. A. McGill. Probabilistic neural networks for chemical sensor array pattern recognition: Comparison studies, improvements and automated outlier rejection. Technical Report NRL/FR/6110-98-9879, Naval Research Laboratory, Washington, DC, 1998.
-
(1998)
Technical Report NRL/FR/6110-98-9879, Naval Research Laboratory
-
-
Shaffer, R.1
Rose-Pehrsson, S.2
McGill, R.A.3
-
94
-
-
0010786475
-
On the influence of the kernel on the consistency of support vector machines
-
I. Steinwart. On the influence of the kernel on the consistency of support vector machines. Journal of Machine Learning Research, 2:67-93, 2001.
-
(2001)
Journal of Machine Learning Research
, vol.2
, pp. 67-93
-
-
Steinwart, I.1
-
95
-
-
84887068040
-
Soft rank neighbor embeddings
-
M. Verleysen, editor, Louvain-La-Neuve, Belgium. i6doc.com
-
M. Strickert and K. Bunte. Soft rank neighbor embeddings. In M. Verleysen, editor, Proc. of European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN'2013), pages 77-82, Louvain-La-Neuve, Belgium, 2013. i6doc.com.
-
(2013)
Proc. of European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN'2013)
, pp. 77-82
-
-
Strickert, M.1
Bunte, K.2
-
96
-
-
49049096137
-
Derivatives of Pearson correlation for gradient-based analysis of biomedical data
-
M. Strickert, F.-M. Schleif, U. Seiffert, and T. Villmann. Derivatives of Pearson correlation for gradient-based analysis of biomedical data. Inteligencia Artificial, Revista Iberoamericana de Inteligencia Artificial, (37):37-44, 2008.
-
(2008)
Inteligencia Artificial, Revista Iberoamericana de Inteligencia Artificial
, Issue.37
, pp. 37-44
-
-
Strickert, M.1
Schleif, F.-M.2
Seiffert, U.3
Villmann, T.4
-
97
-
-
67650217945
-
Unleashing pearson correlation for faithful analysis of biomedical data
-
M. Biehl, B. Hammer, M. Verleysen, and T. Villmann, editors, Springer, Berlin
-
M. Strickert, F.-M. Schleif, T. Villmann, and U. Seiffert. Unleashing pearson correlation for faithful analysis of biomedical data. In M. Biehl, B. Hammer, M. Verleysen, and T. Villmann, editors, Similarity-based Clustering, volume 5400 of LNAI, pages 70-91. Springer, Berlin, 2009.
-
(2009)
Similarity-based Clustering of LNAI
, vol.5400
, pp. 70-91
-
-
Strickert, M.1
Schleif, F.-M.2
Villmann, T.3
Seiffert, U.4
-
98
-
-
1942450610
-
Feature extraction by non-parametric mutual information maximization
-
K. Torkkola. Feature extraction by non-parametric mutual information maximization. Journal of Machine Learning Research, 3:1415-1438, 2003.
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 1415-1438
-
-
Torkkola, K.1
-
99
-
-
48349140000
-
A critical analysis of variants of the AUC
-
S. Vanderlooy and E. Hüllermeier. A critical analysis of variants of the AUC. Machine Learning, 72:247-262, 2008.
-
(2008)
Machine Learning
, vol.72
, pp. 247-262
-
-
Vanderlooy, S.1
Hüllermeier, E.2
-
101
-
-
0001024505
-
On the uniform convergence of relative frequencies of events to their probabilities
-
V. Vapnik and A. Chervonenkis. On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Applications, 16(2):264-280, 1971.
-
(1971)
Theory of Probability and Its Applications
, vol.16
, Issue.2
, pp. 264-280
-
-
Vapnik, V.1
Chervonenkis, A.2
-
102
-
-
79958244935
-
Divergence based vector quantization
-
T. Villmann and S. Haase. Divergence based vector quantization. Neural Computation, 23(5):1343-1392, 2011.
-
(2011)
Neural Computation
, vol.23
, Issue.5
, pp. 1343-1392
-
-
Villmann, T.1
Haase, S.2
-
103
-
-
84903538735
-
Kernelized vector quantization in gradient-descent learning
-
in press
-
T. Villmann, S. Haase, and M. Kaden. Kernelized vector quantization in gradient-descent learning. Neurocomputing, page in press, 2014.
-
(2014)
Neurocomputing, Page
-
-
Villmann, T.1
Haase, S.2
Kaden, M.3
-
104
-
-
84872238020
-
Gradient based learning in vector quantization using differentiable kernels
-
P. Estevez, J. Principe, and P. Zegers, editors, Berlin, Springer
-
T. Villmann, S. Haase, and M. Kästner. Gradient based learning in vector quantization using differentiable kernels. In P. Estevez, J. Principe, and P. Zegers, editors, Advances in Self-Organizing Maps: 9th International Workshop WSOM 2012 Santiage de Chile, volume 198 of Advances in Intelligent Systems and Computing, pages 193-204, Berlin, 2013. Springer.
-
(2013)
Advances in Self-Organizing Maps: 9th International Workshop WSOM 2012 Santiage de Chile of Advances in Intelligent Systems and Computing
, vol.198
, pp. 193-204
-
-
Villmann, T.1
Haase, S.2
Kästner, M.3
-
105
-
-
33746602244
-
Fuzzy classification by fuzzy labeled neural gas
-
T. Villmann, B. Hammer, F.-M. Schleif, T. Geweniger, and W. Herrmann. Fuzzy classification by fuzzy labeled neural gas. Neural Networks, 19:772-779, 2006.
-
(2006)
Neural Networks
, vol.19
, pp. 772-779
-
-
Villmann, T.1
Hammer, B.2
Schleif, F.-M.3
Geweniger, T.4
Herrmann, W.5
-
106
-
-
56549083671
-
Fuzzy classification using information theoretic learning vector quantization
-
T. Villmann, B. Hammer, F.-M. Schleif, W. Hermann, and M. Cottrell. Fuzzy classification using information theoretic learning vector quantization. Neurocomputing, 71:3070-3076, 2008.
-
(2008)
Neurocomputing
, vol.71
, pp. 3070-3076
-
-
Villmann, T.1
Hammer, B.2
Schleif, F.-M.3
Hermann, W.4
Cottrell, M.5
-
107
-
-
33748423524
-
Prototype-based fuzzy classification with local relevance for proteomics
-
October
-
T. Villmann, F.-M. Schleif, and B. Hammer. Prototype-based fuzzy classification with local relevance for proteomics. Neurocomputing, 69(16-18):2425-2428, October 2006.
-
(2006)
Neurocomputing
, vol.69
, Issue.16-18
, pp. 2425-2428
-
-
Villmann, T.1
Schleif, F.-M.2
Hammer, B.3
-
109
-
-
78149322288
-
Windowbased example selection in learning vector quantization
-
A. Witoelar, A. Gosh, J. de Vries, B. Hammer, and M. Biehl. Windowbased example selection in learning vector quantization. Neural Computation, 22(11):2924-2961, 2010.
-
(2010)
Neural Computation
, vol.22
, Issue.11
, pp. 2924-2961
-
-
Witoelar, A.1
Gosh, A.2
De Vries, J.3
Hammer, B.4
Biehl, M.5
-
111
-
-
77649231281
-
Fuzzy Fleiss-Kappa for comparison of fuzzy classifiers
-
M. Verleysen, editor, Evere, Belgium. d-side publications
-
D. Zühlke, T. Geweniger, U. Heimann, and T. Villmann. Fuzzy Fleiss-Kappa for comparison of fuzzy classifiers. In M. Verleysen, editor, Proc. of the European Symposium on Artificial Neural Networks (ESANN'2009), pages 269-274, Evere, Belgium, 2009. d-side publications.
-
(2009)
Proc. of the European Symposium on Artificial Neural Networks (ESANN'2009)
, pp. 269-274
-
-
Zühlke, D.1
Geweniger, T.2
Heimann, U.3
Villmann, T.4
-
112
-
-
84887051683
-
Semi-supervised vector quantization for proximity data
-
M. Verleysen, editor, Louvain-La-Neuve, Belgium. i6doc.com
-
X. Zhu, F.-M. Schleif, and B. Hammer. Semi-supervised vector quantization for proximity data. In M. Verleysen, editor, Proc. of European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN'2013), pages 89-94, Louvain-La-Neuve, Belgium, 2013. i6doc.com.
-
(2013)
Proc. of European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN'2013)
, pp. 89-94
-
-
Zhu, X.1
Schleif, F.-M.2
Hammer, B.3
|