메뉴 건너뛰기




Volumn 39, Issue 2, 2014, Pages 79-105

Aspects in classification learning - Review of recent developments in learning vector quantization

Author keywords

classification; classification certainty; learning vector quantization; non standard metrics; statistics

Indexed keywords

CLASSIFICATION (OF INFORMATION); LEARNING SYSTEMS; STATISTICS; VECTORS;

EID: 84902579545     PISSN: 08676356     EISSN: 23003405     Source Type: Journal    
DOI: 10.2478/fcds-2014-0006     Document Type: Review
Times cited : (54)

References (112)
  • 1
    • 0036567291 scopus 로고    scopus 로고
    • A re-weighting strategy for improving margins
    • F. Aiolli and A. Sperduti. A re-weighting strategy for improving margins. Artifiical Intelligence, 137:197-216, 2002.
    • (2002) Artifiical Intelligence , vol.137 , pp. 197-216
    • Aiolli, F.1    Sperduti, A.2
  • 3
    • 84894067307 scopus 로고    scopus 로고
    • Classification in high-dimensional spectral data: Accuracy vs. Interpretability vs. Model size
    • page in press
    • A. Backhaus and U. Seiffert. Classification in high-dimensional spectral data: Accuracy vs. interpretability vs. model size. Neurocomputing, page in press, 2014.
    • (2014) Neurocomputing
    • Backhaus, A.1    Seiffert, U.2
  • 6
    • 84885435612 scopus 로고    scopus 로고
    • Adaptive distance measures in relevance Learning Vector Quantization
    • M. Biehl. Admire LVQ: Adaptive distance measures in relevance Learning Vector Quantization. KI -Künstliche Intelligenz, 26:391-395, 2012.
    • (2012) KI -Künstliche Intelligenz , vol.26 , pp. 391-395
    • Biehl, M.1    Admire, L.V.Q.2
  • 7
    • 84875060415 scopus 로고    scopus 로고
    • Analysis of flow cytometry data by matrix relevance learning vector quantization
    • M. Biehl, K. Bunte, and P. Schneider. Analysis of flow cytometry data by matrix relevance learning vector quantization. PLoS ONE, 8(3):e59401, 2013.
    • (2013) PLoS ONE , vol.8 , Issue.3 , pp. e59401
    • Biehl, M.1    Bunte, K.2    Schneider, P.3
  • 10
    • 84908105701 scopus 로고    scopus 로고
    • Statistical quality measures and ROC-optimization by learning vector quantization classifiers
    • H. Kestler, M. Schmid, H. Binder, and B. Bischl, editors, number 2014-xxx in Ulmer Informatik-Berichte, page accepted. University Ulm, Germany
    • M. Biehl, M. Kaden, and T. Villmann. Statistical quality measures and ROC-optimization by learning vector quantization classifiers. In H. Kestler, M. Schmid, H. Binder, and B. Bischl, editors, Proceedings of the 46th Workshop on Statistical Computing (Ulm/Reisensburg 2014), number 2014-xxx in Ulmer Informatik-Berichte, page accepted. University Ulm, Germany, 2014.
    • Proceedings of the 46th Workshop on Statistical Computing (Ulm/Reisensburg 2014) , pp. 2014
    • Biehl, M.1    Kaden, M.2    Villmann, T.3
  • 15
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • A. Bradley. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30(7):1149-1155, 1997.
    • (1997) Pattern Recognition , vol.30 , Issue.7 , pp. 1149-1155
    • Bradley, A.1
  • 16
    • 84855962168 scopus 로고    scopus 로고
    • Limited rank matrix learning, discriminative dimension reduction and visualization
    • K. Bunte, P. Schneider, B. Hammer, F.-M. Schleif, T. Villmann, and M. Biehl. Limited rank matrix learning, discriminative dimension reduction and visualization. Neural Networks, 26(1):159-173, 2012.
    • (2012) Neural Networks , vol.26 , Issue.1 , pp. 159-173
    • Bunte, K.1    Schneider, P.2    Hammer, B.3    Schleif, F.-M.4    Villmann, T.5    Biehl, M.6
  • 18
    • 0018492515 scopus 로고
    • The condensed nearest neighbor rule using the concept of mutual nearest neighborhood
    • K. Chidanananda and G. Krishna. The condensed nearest neighbor rule using the concept of mutual nearest neighborhood. IEEE Transactions on Information Theory, 25:488-490, 1979.
    • (1979) IEEE Transactions on Information Theory , vol.25 , pp. 488-490
    • Chidanananda, K.1    Krishna, G.2
  • 19
    • 0014710323 scopus 로고
    • On optimum recognition error and reject tradeoff
    • C. Chow. On optimum recognition error and reject tradeoff. IEEE Transaction on Information Theory, 16(1):41-46, 1970.
    • (1970) IEEE Transaction on Information Theory , vol.16 , Issue.1 , pp. 41-46
    • Chow, C.1
  • 27
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • T. Fawcett. An introduction to ROC analysis. Pattern Recognition Letters, 27:861-874, 2006.
    • (2006) Pattern Recognition Letters , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 28
    • 84903551243 scopus 로고    scopus 로고
    • Rejection strategies for learning vector quantization U a comparison of probabilistic and deterministic approaches
    • T. Villmann, F.-M. Schleif, M. Kaden, and M. Lange, editors, Advances in Intelligent Systems and Computing, page accepted, Berlin, Springer
    • L. Fischer, D. Nebel, T. Villmann, B. Hammer, and H. Wersing. Rejection strategies for learning vector quantization U a comparison of probabilistic and deterministic approaches. In T. Villmann, F.-M. Schleif, M. Kaden, and M. Lange, editors, Advances in Self-Organizing Maps: 10th International Workshop WSOM 2014 Mittweida, Advances in Intelligent Systems and Computing, page accepted, Berlin, 2014. Springer.
    • (2014) Advances in Self-Organizing Maps: 10th International Workshop WSOM 2014 Mittweida
    • Fischer, L.1    Nebel, D.2    Villmann, T.3    Hammer, B.4    Wersing, H.5
  • 29
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • R. Fisher. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2):179-188, 1936.
    • (1936) Annals of Eugenics , vol.7 , Issue.2 , pp. 179-188
    • Fisher, R.1
  • 30
    • 84908099249 scopus 로고    scopus 로고
    • Extending RSLVQ to handle data points with uncertain class assignments
    • MLR-02-2009. ISSN:1865-3960
    • T. Geweniger, P. Schneider, F.-M. Schleif, M. Biehl, and T. Villmann. Extending RSLVQ to handle data points with uncertain class assignments. Machine Learning Reports, 3(MLR-02-2009):1-17, 2009. ISSN:1865-3960, http://www.uni-leipzig.de/~compint/mlr/mlr-02-2009.pdf.
    • (2009) Machine Learning Reports , vol.3 , pp. 1-17
    • Geweniger, T.1    Schneider, P.2    Schleif, F.-M.3    Biehl, M.4    Villmann, T.5
  • 31
    • 84887014094 scopus 로고    scopus 로고
    • Extending FSNPC to handle data points with fuzzy class assignments
    • M. Verleysen, editor, Evere, Belgium. d-side publications
    • T. Geweniger and T. Villmann. Extending FSNPC to handle data points with fuzzy class assignments. In M. Verleysen, editor, Proc. of European Symposium on Artificial Neural Networks (ESANN'2010), pages 399-404, Evere, Belgium, 2010. d-side publications.
    • (2010) Proc. of European Symposium on Artificial Neural Networks (ESANN'2010) , pp. 399-404
    • Geweniger, T.1    Villmann, T.2
  • 32
    • 77649237600 scopus 로고    scopus 로고
    • Median fuzzy c-means for clustering dissimilarity data
    • T. Geweniger, D. Zühlke, B. Hammer, and T. Villmann. Median fuzzy c-means for clustering dissimilarity data. Neurocomputing, 73(7-9):1109-1116, 2010.
    • (2010) Neurocomputing , vol.73 , Issue.7-9 , pp. 1109-1116
    • Geweniger, T.1    Zühlke, D.2    Hammer, B.3    Villmann, T.4
  • 35
  • 36
    • 12844250052 scopus 로고    scopus 로고
    • Supervised neural gas with general similarity measure
    • B. Hammer, M. Strickert, and T. Villmann. Supervised neural gas with general similarity measure. Neural Processing Letters, 21(1):21-44, 2005.
    • (2005) Neural Processing Letters , vol.21 , Issue.1 , pp. 21-44
    • Hammer, B.1    Strickert, M.2    Villmann, T.3
  • 37
    • 0036791938 scopus 로고    scopus 로고
    • Generalized relevance learning vector quantization
    • B. Hammer and T. Villmann. Generalized relevance learning vector quantization. Neural Networks, 15(8-9):1059-1068, 2002.
    • (2002) Neural Networks , vol.15 , Issue.8-9 , pp. 1059-1068
    • Hammer, B.1    Villmann, T.2
  • 38
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic
    • J. Hanley and B. McNeil. The meaning and use of the area under a receiver operating characteristic. Radiology, 143:29-36, 1982.
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.1    McNeil, B.2
  • 42
    • 0004151494 scopus 로고    scopus 로고
    • Cambridge University Press, 2nd edition
    • R. Horn and C. Johnson. Matrix Analysis. Cambridge University Press, 2nd edition, 2013.
    • (2013) Matrix Analysis
    • Horn, R.1    Johnson, C.2
  • 45
    • 84908094536 scopus 로고    scopus 로고
    • A framework for optimization of statistical classification measures based on generalized learning vector quantization
    • MLR-02-2013. ISSN:1865-3960
    • M. Kaden and T. Villmann. A framework for optimization of statistical classification measures based on generalized learning vector quantization. Machine Learning Reports, 7(MLR-02-2013):69-76, 2013. ISSN:1865-3960, http://www.techfak.uni-bielefeld.de/~fschleif/mlr/mlr-02-2013.pdf.
    • (2013) Machine Learning Reports , vol.7 , pp. 69-76
    • Kaden, M.1    Villmann, T.2
  • 46
    • 84908105697 scopus 로고    scopus 로고
    • Attention based classification learning in GLVQ and asymmetric classification error assessment
    • T. Villmann, F.-M. Schleif, M. Kaden, and M. Lange, editors, Advances in Intelligent Systems and Computing, page accepted, Berlin, Springer
    • M. Kaden and T. Villmann. Attention based classification learning in GLVQ and asymmetric classification error assessment. In T. Villmann, F.-M. Schleif, M. Kaden, and M. Lange, editors, Advances in Self-Organizing Maps: 10th International Workshop WSOM 2014 Mittweida, Advances in Intelligent Systems and Computing, page accepted, Berlin, 2014. Springer.
    • Advances in Self-Organizing Maps: 10th International Workshop WSOM 2014 Mittweida , pp. 2014
    • Kaden, M.1    Villmann, T.2
  • 49
    • 84887034400 scopus 로고    scopus 로고
    • Utilization of correlation measures in vector quantization for analysis of gene expression data - A review of recent developments
    • MLR-04-2012. ISSN:1865-3960
    • M. Kästner, M. Strickert, D. Labudde, M. Lange, S. Haase, and T. Villmann. Utilization of correlation measures in vector quantization for analysis of gene expression data -a review of recent developments. Machine Learning Reports, 6(MLR-04-2012):5-22, 2012. ISSN:1865-3960, http://www.techfak.unibielefeld.de/~fschleif/mlr/mlr-04-2012.pdf.
    • (2012) Machine Learning Reports , vol.6 , pp. 5-22
    • Kästner, M.1    Strickert, M.2    Labudde, D.3    Lange, M.4    Haase, S.5    Villmann, T.6
  • 50
  • 51
    • 0006145981 scopus 로고
    • Automatic formation of topological maps of patterns in a selforganizing system
    • E. Oja and O. Simula, editors, Helsinki, Finland. Suomen Hahmontunnistustutkimuksen Seura r. y
    • T. Kohonen. Automatic formation of topological maps of patterns in a selforganizing system. In E. Oja and O. Simula, editors, Proc. 2SCIA, Scand. Conf. on Image Analysis, pages 214-220, Helsinki, Finland, 1981. Suomen Hahmontunnistustutkimuksen Seura r. y.
    • (1981) Proc. 2SCIA, Scand. Conf. on Image Analysis , pp. 214-220
    • Kohonen, T.1
  • 53
    • 85132031017 scopus 로고
    • LVQ-PAK: A program package for the correct application of Learning Vector Quantization algorithms
    • Piscataway, NJ, IEEE Service Center
    • T. Kohonen, J. Kangas, J. Laaksonen, and K. Torkkola. LVQ-PAK: A program package for the correct application of Learning Vector Quantization algorithms. In Proc. IJCNN'92, International Joint Conference on Neural Networks, volume I, pages 725-730, Piscataway, NJ, 1992. IEEE Service Center.
    • (1992) Proc. IJCNN'92, International Joint Conference on Neural Networks , vol.1 , pp. 725-730
    • Kohonen, T.1    Kangas, J.2    Laaksonen, J.3    Torkkola, K.4
  • 55
    • 84902579546 scopus 로고    scopus 로고
    • Non-Euclidean principal component analysis by Hebbian learning
    • in press
    • M. Lange, M. Biehl, and T. Villmann. Non-Euclidean principal component analysis by Hebbian learning. Neurocomputing, page in press, 2014.
    • (2014) Neurocomputing, Page
    • Lange, M.1    Biehl, M.2    Villmann, T.3
  • 56
    • 84902584827 scopus 로고    scopus 로고
    • Non-Euclidean principal component analysis for matrices by Hebbian learning
    • L. Rutkowski, M. Korytkowski, R. Scherer, R. Tadeusiewicz, L. Zadeh, and J. Zurada, editors, Berlin Heidelberg, Springer
    • M. Lange, D. Nebel, and T. Villmann. Non-Euclidean principal component analysis for matrices by Hebbian learning. In L. Rutkowski, M. Korytkowski, R. Scherer, R. Tadeusiewicz, L. Zadeh, and J. Zurada, editors, Artificial Intelligence and Soft Computing -Proc. the International Conference ICAISC, Zakopane, volume 1 of LNAI 8467, pages 77-88, Berlin Heidelberg, 2014. Springer.
    • (2014) Artificial Intelligence and Soft Computing -Proc. The International Conference ICAISC, Zakopane of LNAI 8467 , vol.1 , pp. 77-88
    • Lange, M.1    Nebel, D.2    Villmann, T.3
  • 57
    • 84903521448 scopus 로고    scopus 로고
    • Derivatives of lp-norms and their approximations
    • MLR-04-2013. ISSN:1865-3960
    • M. Lange and T. Villmann. Derivatives of lp-norms and their approximations. Machine Learning Reports, 7(MLR-04-2013):43-59, 2013. ISSN:1865-3960, http://www.techfak.uni-bielefeld.de/~fschleif/mlr/mlr-04-2013.pdf.
    • (2013) Machine Learning Reports , vol.7 , pp. 43-59
    • Lange, M.1    Villmann, T.2
  • 60
    • 0027632248 scopus 로고
    • 'Neural-gas' network for vector quantization and its application to time-series prediction
    • T. M. Martinetz, S. G. Berkovich, and K. J. Schulten. 'Neural-gas' network for vector quantization and its application to time-series prediction. IEEE Trans. on Neural Networks, 4(4):558-569, 1993.
    • (1993) IEEE Trans. on Neural Networks , vol.4 , Issue.4 , pp. 558-569
    • Martinetz, T.M.1    Berkovich, S.G.2    Schulten, K.J.3
  • 65
    • 84908095306 scopus 로고    scopus 로고
    • About the equivalence of robust soft learning vector quantization and soft nearest prototype classification
    • MLR-02-2013. ISSN:1865-3960
    • D. Nebel and T. Villmann. About the equivalence of robust soft learning vector quantization and soft nearest prototype classification. Machine Learning Reports, 7(MLR-02-2013):114-118, 2013. ISSN:1865-3960, http://www.techfak.uni-bielefeld.de/~fschleif/mlr/mlr-02-2013.pdf.
    • (2013) Machine Learning Reports , vol.7 , pp. 114-118
    • Nebel, D.1    Villmann, T.2
  • 66
    • 84893386186 scopus 로고    scopus 로고
    • A median variant of generalized learning vector quantization
    • M. Lee, A. Hirose, Z.-G. Hou, and R. Kil, editors, Berlin. Springer-Verlag
    • D. Nebel and T. Villmann. A median variant of generalized learning vector quantization. In M. Lee, A. Hirose, Z.-G. Hou, and R. Kil, editors, Proceedings of International Conference on Neural Information Processing (ICONIP), volume II of LNCS, pages 19-26, Berlin, 2013. Springer-Verlag.
    • (2013) Proceedings of International Conference on Neural Information Processing (ICONIP) of LNCS , vol.2 , pp. 19-26
    • Nebel, D.1    Villmann, T.2
  • 70
    • 0000986833 scopus 로고    scopus 로고
    • Information theoretic learning
    • S. Haykin, editor, Wiley, New York, NY
    • J. C. Principe, J. F. III, and D. Xu. Information theoretic learning. In S. Haykin, editor, Unsupervised Adaptive Filtering. Wiley, New York, NY, 2000.
    • (2000) Unsupervised Adaptive Filtering
    • Principe, J.C.1    Xu, D.2
  • 73
    • 84903538352 scopus 로고    scopus 로고
    • Generative versus discriminative prototype based classification
    • T. Villmann, F.-M. Schleif, M. Kaden, and M. Lange, editors, Advances in Intelligent Systems and Computing, page accepted, Berlin, Springer
    • M. Riedel, D. Nebel, T. Villmann, and B. Hammer. Generative versus discriminative prototype based classification. In T. Villmann, F.-M. Schleif, M. Kaden, and M. Lange, editors, Advances in Self-Organizing Maps: 10th International Workshop WSOM 2014 Mittweida, Advances in Intelligent Systems and Computing, page accepted, Berlin, 2014. Springer.
    • Advances in Self-Organizing Maps: 10th International Workshop WSOM 2014 Mittweida , pp. 2014
    • Riedel, M.1    Nebel, D.2    Villmann, T.3    Hammer, B.4
  • 74
    • 0004217877 scopus 로고
    • Butterworths, London, 2nd edition edition
    • C. Rijsbergen. Information Retrieval. Butterworths, London, 2nd edition edition, 1979.
    • (1979) Information Retrieval
    • Rijsbergen, C.1
  • 75
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in the brain. Psych. Rev., 65:386-408, 1958.
    • (1958) Psych. Rev. , vol.65 , pp. 386-408
    • Rosenblatt, F.1
  • 77
    • 85156210800 scopus 로고    scopus 로고
    • Generalized learning vector quantization
    • D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, MIT Press, Cambridge, MA, USA
    • A. Sato and K. Yamada. Generalized learning vector quantization. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances in Neural Information Processing Systems 8. Proceedings of the 1995 Conference, pages 423-9. MIT Press, Cambridge, MA, USA, 1996.
    • (1996) Advances in Neural Information Processing Systems 8. Proceedings of the 1995 Conference , pp. 423-429
    • Sato, A.1    Yamada, K.2
  • 86
    • 72249111970 scopus 로고    scopus 로고
    • Adaptive relevance matrices in learning vector quantization
    • P. Schneider, B. Hammer, and M. Biehl. Adaptive relevance matrices in learning vector quantization. Neural Computation, 21:3532-3561, 2009.
    • (2009) Neural Computation , vol.21 , pp. 3532-3561
    • Schneider, P.1    Hammer, B.2    Biehl, M.3
  • 87
    • 70449713460 scopus 로고    scopus 로고
    • Distance learning in discriminative vector quantization
    • P. Schneider, B. Hammer, and M. Biehl. Distance learning in discriminative vector quantization. Neural Computation, 21:2942-2969, 2009.
    • (2009) Neural Computation , vol.21 , pp. 2942-2969
    • Schneider, P.1    Hammer, B.2    Biehl, M.3
  • 88
    • 78049461371 scopus 로고    scopus 로고
    • Radial kernels and their reproducing kernel Hilbert spaces
    • C. Scovel, D. Hush, I. Steinwart, and J. Theiler. Radial kernels and their reproducing kernel Hilbert spaces. Journal of Complexity, 26:641-660, 2010.
    • (2010) Journal of Complexity , vol.26 , pp. 641-660
    • Scovel, C.1    Hush, D.2    Steinwart, I.3    Theiler, J.4
  • 90
    • 0038159964 scopus 로고    scopus 로고
    • Soft learning vector quantization
    • S. Seo and K. Obermayer. Soft learning vector quantization. Neural Computation, 15:1589-1604, 2003.
    • (2003) Neural Computation , vol.15 , pp. 1589-1604
    • Seo, S.1    Obermayer, K.2
  • 92
    • 0004979711 scopus 로고    scopus 로고
    • Probabilistic neural networks for chemical sensor array pattern recognition: Comparison studies, improvements and automated outlier rejection
    • Washington, DC
    • R. Shaffer, S. Rose-Pehrsson, and R. A. McGill. Probabilistic neural networks for chemical sensor array pattern recognition: Comparison studies, improvements and automated outlier rejection. Technical Report NRL/FR/6110-98-9879, Naval Research Laboratory, Washington, DC, 1998.
    • (1998) Technical Report NRL/FR/6110-98-9879, Naval Research Laboratory
    • Shaffer, R.1    Rose-Pehrsson, S.2    McGill, R.A.3
  • 94
    • 0010786475 scopus 로고    scopus 로고
    • On the influence of the kernel on the consistency of support vector machines
    • I. Steinwart. On the influence of the kernel on the consistency of support vector machines. Journal of Machine Learning Research, 2:67-93, 2001.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 67-93
    • Steinwart, I.1
  • 97
    • 67650217945 scopus 로고    scopus 로고
    • Unleashing pearson correlation for faithful analysis of biomedical data
    • M. Biehl, B. Hammer, M. Verleysen, and T. Villmann, editors, Springer, Berlin
    • M. Strickert, F.-M. Schleif, T. Villmann, and U. Seiffert. Unleashing pearson correlation for faithful analysis of biomedical data. In M. Biehl, B. Hammer, M. Verleysen, and T. Villmann, editors, Similarity-based Clustering, volume 5400 of LNAI, pages 70-91. Springer, Berlin, 2009.
    • (2009) Similarity-based Clustering of LNAI , vol.5400 , pp. 70-91
    • Strickert, M.1    Schleif, F.-M.2    Villmann, T.3    Seiffert, U.4
  • 98
    • 1942450610 scopus 로고    scopus 로고
    • Feature extraction by non-parametric mutual information maximization
    • K. Torkkola. Feature extraction by non-parametric mutual information maximization. Journal of Machine Learning Research, 3:1415-1438, 2003.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1415-1438
    • Torkkola, K.1
  • 99
    • 48349140000 scopus 로고    scopus 로고
    • A critical analysis of variants of the AUC
    • S. Vanderlooy and E. Hüllermeier. A critical analysis of variants of the AUC. Machine Learning, 72:247-262, 2008.
    • (2008) Machine Learning , vol.72 , pp. 247-262
    • Vanderlooy, S.1    Hüllermeier, E.2
  • 101
    • 0001024505 scopus 로고
    • On the uniform convergence of relative frequencies of events to their probabilities
    • V. Vapnik and A. Chervonenkis. On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Applications, 16(2):264-280, 1971.
    • (1971) Theory of Probability and Its Applications , vol.16 , Issue.2 , pp. 264-280
    • Vapnik, V.1    Chervonenkis, A.2
  • 102
    • 79958244935 scopus 로고    scopus 로고
    • Divergence based vector quantization
    • T. Villmann and S. Haase. Divergence based vector quantization. Neural Computation, 23(5):1343-1392, 2011.
    • (2011) Neural Computation , vol.23 , Issue.5 , pp. 1343-1392
    • Villmann, T.1    Haase, S.2
  • 103
    • 84903538735 scopus 로고    scopus 로고
    • Kernelized vector quantization in gradient-descent learning
    • in press
    • T. Villmann, S. Haase, and M. Kaden. Kernelized vector quantization in gradient-descent learning. Neurocomputing, page in press, 2014.
    • (2014) Neurocomputing, Page
    • Villmann, T.1    Haase, S.2    Kaden, M.3
  • 106
    • 56549083671 scopus 로고    scopus 로고
    • Fuzzy classification using information theoretic learning vector quantization
    • T. Villmann, B. Hammer, F.-M. Schleif, W. Hermann, and M. Cottrell. Fuzzy classification using information theoretic learning vector quantization. Neurocomputing, 71:3070-3076, 2008.
    • (2008) Neurocomputing , vol.71 , pp. 3070-3076
    • Villmann, T.1    Hammer, B.2    Schleif, F.-M.3    Hermann, W.4    Cottrell, M.5
  • 107
    • 33748423524 scopus 로고    scopus 로고
    • Prototype-based fuzzy classification with local relevance for proteomics
    • October
    • T. Villmann, F.-M. Schleif, and B. Hammer. Prototype-based fuzzy classification with local relevance for proteomics. Neurocomputing, 69(16-18):2425-2428, October 2006.
    • (2006) Neurocomputing , vol.69 , Issue.16-18 , pp. 2425-2428
    • Villmann, T.1    Schleif, F.-M.2    Hammer, B.3
  • 109
    • 78149322288 scopus 로고    scopus 로고
    • Windowbased example selection in learning vector quantization
    • A. Witoelar, A. Gosh, J. de Vries, B. Hammer, and M. Biehl. Windowbased example selection in learning vector quantization. Neural Computation, 22(11):2924-2961, 2010.
    • (2010) Neural Computation , vol.22 , Issue.11 , pp. 2924-2961
    • Witoelar, A.1    Gosh, A.2    De Vries, J.3    Hammer, B.4    Biehl, M.5
  • 110
    • 0036779076 scopus 로고    scopus 로고
    • Improved k-nearest neighbor classification
    • Y. Wu, K. Ianakiev, and V. Govindaraju. Improved k-nearest neighbor classification. Pattern Recognition, 35:2311-2318, 2002.
    • (2002) Pattern Recognition , vol.35 , pp. 2311-2318
    • Wu, Y.1    Ianakiev, K.2    Govindaraju, V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.