메뉴 건너뛰기




Volumn 22, Issue 11, 2010, Pages 2924-2961

Window-based example selection in learning vector quantization

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTIFICIAL NEURAL NETWORK; LEARNING; LETTER;

EID: 78149322288     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/NECO_a_00030     Document Type: Letter
Times cited : (14)

References (23)
  • 1
    • 0039677510 scopus 로고
    • Scaling laws in learning of classification tasks
    • Barkai, N., Seung, H. S., & Sompolinsky, H. (1993). Scaling laws in learning of classification tasks. Phys. Rev. Lett., 70, 3167-3170.
    • (1993) Phys. Rev. Lett. , vol.70 , pp. 3167-3170
    • Barkai, N.1    Seung, H.S.2    Sompolinsky, H.3
  • 2
    • 0034241361 scopus 로고    scopus 로고
    • Gradient-based optimization of hyperparameters
    • Bengio, Y. (2000). Gradient-based optimization of hyperparameters. Neural Comput., 12(8), 1889-1900.
    • (2000) Neural Comput. , vol.12 , Issue.8 , pp. 1889-1900
    • Bengio, Y.1
  • 3
    • 84957349379 scopus 로고
    • An exactly solvable model of unsupervised learning
    • Biehl, M. (1994). An exactly solvable model of unsupervised learning. Europhysics Letters, 25, 391-396.
    • (1994) Europhysics Letters , vol.25 , pp. 391-396
    • Biehl, M.1
  • 4
    • 32544440911 scopus 로고    scopus 로고
    • The statistical mechanics of on-line learning and generalization
    • M. A. Arbib (Ed.). Cambridge, MA: MIT Press
    • Biehl, M., & Caticha, N. (2003). The statistical mechanics of on-line learning and generalization. In M. A. Arbib (Ed.), The handbook of brain theory and neural networks (pp. 1095-1098). Cambridge, MA: MIT Press.
    • (2003) The handbook of brain theory and neural networks , pp. 1095-1098
    • Biehl, M.1    Caticha, N.2
  • 6
    • 33847216891 scopus 로고    scopus 로고
    • Dynamics and generalization ability of LVQ algorithms
    • Biehl, M., Ghosh, A., & Hammer, B. (2007). Dynamics and generalization ability of LVQ algorithms. J. Mach. Learning Res., 8, 323-360.
    • (2007) J. Mach. Learning Res. , vol.8 , pp. 323-360
    • Biehl, M.1    Ghosh, A.2    Hammer, B.3
  • 7
    • 0040619886 scopus 로고
    • Statistical mechanics of unsupervised learning
    • Biehl, M., & Mietzner, A. (1993). Statistical mechanics of unsupervised learning. Europhysics Letters, 27, 421-426.
    • (1993) Europhysics Letters , vol.27 , pp. 421-426
    • Biehl, M.1    Mietzner, A.2
  • 10
    • 33746829161 scopus 로고    scopus 로고
    • Performance analysis of LVQ algorithms: A statistical physics approach
    • Ghosh, A., Biehl, M., &Hammer, B. (2006). Performance analysis of LVQ algorithms: A statistical physics approach. Neural Networks, 19, 817-829.
    • (2006) Neural Networks , vol.19 , pp. 817-829
    • Ghosh, A.1    Biehl, M.2    Hammer, B.3
  • 11
    • 0036791938 scopus 로고    scopus 로고
    • Generalized relevance learning vector quantization
    • Hammer, B., & Villmann, T. (2002). Generalized relevance learning vector quantization. Neural Networks, 15, 1059-1068.
    • (2002) Neural Networks , vol.15 , pp. 1059-1068
    • Hammer, B.1    Villmann, T.2
  • 14
    • 0344853944 scopus 로고
    • Empirical risk minimization versusmaximum-likelihood estimation: A case study
    • Meir, R. (1995). Empirical risk minimization versusmaximum-likelihood estimation: A case study. Neural Computation, 7, 144-157.
    • (1995) Neural Computation , vol.7 , pp. 144-157
    • Meir, R.1
  • 15
    • 0012992052 scopus 로고    scopus 로고
    • Neural Networks Research Centre, Helsinki. Otaniemi: Helsinki University of Technology. Available online at
    • Neural Networks Research Centre, Helsinki. (2002). Bibliography on the self-organizing maps (SOM) and learning vector quantization (LVQ). Otaniemi: Helsinki University of Technology. Available online at http://liinwww.ira.uka.de/bibliography/Neural/SOM.LVQ.html.
    • (2002) Bibliography on the self-organizing maps (SOM) and learning vector quantization (LVQ)
  • 16
    • 4243617417 scopus 로고    scopus 로고
    • Self averaging and on-line learning
    • Reents, G., & Urbanczik, R. (1998). Self averaging and on-line learning. Phys. Rev. Letter, 80, 5445-5448.
    • (1998) Phys. Rev. Letter , vol.80 , pp. 5445-5448
    • Reents, G.1    Urbanczik, R.2
  • 17
    • 0004069068 scopus 로고    scopus 로고
    • Saad, D. (Ed.). Cambridge: Cambridge University Press
    • Saad, D. (Ed.). (1999). Online learning in neural networks. Cambridge: Cambridge University Press.
    • (1999) Online learning in neural networks
  • 18
    • 0000031088 scopus 로고    scopus 로고
    • Globally optimal parameters for on-line learning in multilayer neural networks
    • Saad, D., & Rattray, M. (1997). Globally optimal parameters for on-line learning in multilayer neural networks. Phys. Rev. Lett., 79, 2578-2581.
    • (1997) Phys. Rev. Lett. , vol.79 , pp. 2578-2581
    • Saad, D.1    Rattray, M.2
  • 19
    • 4243234689 scopus 로고
    • On-line learning in soft committee machines
    • Saad, D., & Solla, S. A. (1995). On-line learning in soft committee machines. Phys. Rev. E, 52, 4225-4243.
    • (1995) Phys. Rev. E , vol.52 , pp. 4225-4243
    • Saad, D.1    Solla, S.A.2
  • 20
    • 85156210800 scopus 로고
    • Generalized learning vector quantization
    • G. Tesauro, D. Touretzky, & T. Leen (Eds.). Cambridge, MA: MIT Press
    • Sato, A., & Yamada, K. (1995). Generalized learning vector quantization. In G. Tesauro, D. Touretzky, & T. Leen (Eds.), Advances in neural information processing systems, 7 (pp. 423-429). Cambridge, MA: MIT Press.
    • (1995) Advances in neural information processing systems , vol.7 , pp. 423-429
    • Sato, A.1    Yamada, K.2
  • 21
    • 0038159964 scopus 로고    scopus 로고
    • Soft learning vector quantization
    • Seo, S., & Obermayer, K. (2003). Soft learning vector quantization. Neural Computation, 15, 1589-1604.
    • (2003) Neural Computation , vol.15 , pp. 1589-1604
    • Seo, S.1    Obermayer, K.2
  • 22
  • 23
    • 40649121456 scopus 로고    scopus 로고
    • Learning dynamics and robustness of vector quantization and neural gas
    • Witoelar, A., Biehl, M., Ghosh, A., & Hammer, B. (2008). Learning dynamics and robustness of vector quantization and neural gas. Neurocomputing, 71, 1210-1219.
    • (2008) Neurocomputing , vol.71 , pp. 1210-1219
    • Witoelar, A.1    Biehl, M.2    Ghosh, A.3    Hammer, B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.