-
1
-
-
0039677510
-
Scaling laws in learning of classification tasks
-
Barkai, N., Seung, H. S., & Sompolinsky, H. (1993). Scaling laws in learning of classification tasks. Phys. Rev. Lett., 70, 3167-3170.
-
(1993)
Phys. Rev. Lett.
, vol.70
, pp. 3167-3170
-
-
Barkai, N.1
Seung, H.S.2
Sompolinsky, H.3
-
2
-
-
0034241361
-
Gradient-based optimization of hyperparameters
-
Bengio, Y. (2000). Gradient-based optimization of hyperparameters. Neural Comput., 12(8), 1889-1900.
-
(2000)
Neural Comput.
, vol.12
, Issue.8
, pp. 1889-1900
-
-
Bengio, Y.1
-
3
-
-
84957349379
-
An exactly solvable model of unsupervised learning
-
Biehl, M. (1994). An exactly solvable model of unsupervised learning. Europhysics Letters, 25, 391-396.
-
(1994)
Europhysics Letters
, vol.25
, pp. 391-396
-
-
Biehl, M.1
-
4
-
-
32544440911
-
The statistical mechanics of on-line learning and generalization
-
M. A. Arbib (Ed.). Cambridge, MA: MIT Press
-
Biehl, M., & Caticha, N. (2003). The statistical mechanics of on-line learning and generalization. In M. A. Arbib (Ed.), The handbook of brain theory and neural networks (pp. 1095-1098). Cambridge, MA: MIT Press.
-
(2003)
The handbook of brain theory and neural networks
, pp. 1095-1098
-
-
Biehl, M.1
Caticha, N.2
-
5
-
-
78149323597
-
-
(Tech. Rep. 2004-9-02). Groningen, Netherlands: Mathematics and Computing Science, University of Groningen. Available online at
-
Biehl, M., Freking, A., Ghosh, A., & Reents, G. (2004). A theoretical framework for analysing the dynamics of LVQ: A statistical physics approach (Tech. Rep. 2004-9-02). Groningen, Netherlands: Mathematics and Computing Science, University of Groningen. Available online at http://www.cs.rug.nl/~biehl.
-
(2004)
A theoretical framework for analysing the dynamics of LVQ: A statistical physics approach
-
-
Biehl, M.1
Freking, A.2
Ghosh, A.3
Reents, G.4
-
6
-
-
33847216891
-
Dynamics and generalization ability of LVQ algorithms
-
Biehl, M., Ghosh, A., & Hammer, B. (2007). Dynamics and generalization ability of LVQ algorithms. J. Mach. Learning Res., 8, 323-360.
-
(2007)
J. Mach. Learning Res.
, vol.8
, pp. 323-360
-
-
Biehl, M.1
Ghosh, A.2
Hammer, B.3
-
7
-
-
0040619886
-
Statistical mechanics of unsupervised learning
-
Biehl, M., & Mietzner, A. (1993). Statistical mechanics of unsupervised learning. Europhysics Letters, 27, 421-426.
-
(1993)
Europhysics Letters
, vol.27
, pp. 421-426
-
-
Biehl, M.1
Mietzner, A.2
-
10
-
-
33746829161
-
Performance analysis of LVQ algorithms: A statistical physics approach
-
Ghosh, A., Biehl, M., &Hammer, B. (2006). Performance analysis of LVQ algorithms: A statistical physics approach. Neural Networks, 19, 817-829.
-
(2006)
Neural Networks
, vol.19
, pp. 817-829
-
-
Ghosh, A.1
Biehl, M.2
Hammer, B.3
-
11
-
-
0036791938
-
Generalized relevance learning vector quantization
-
Hammer, B., & Villmann, T. (2002). Generalized relevance learning vector quantization. Neural Networks, 15, 1059-1068.
-
(2002)
Neural Networks
, vol.15
, pp. 1059-1068
-
-
Hammer, B.1
Villmann, T.2
-
14
-
-
0344853944
-
Empirical risk minimization versusmaximum-likelihood estimation: A case study
-
Meir, R. (1995). Empirical risk minimization versusmaximum-likelihood estimation: A case study. Neural Computation, 7, 144-157.
-
(1995)
Neural Computation
, vol.7
, pp. 144-157
-
-
Meir, R.1
-
15
-
-
0012992052
-
-
Neural Networks Research Centre, Helsinki. Otaniemi: Helsinki University of Technology. Available online at
-
Neural Networks Research Centre, Helsinki. (2002). Bibliography on the self-organizing maps (SOM) and learning vector quantization (LVQ). Otaniemi: Helsinki University of Technology. Available online at http://liinwww.ira.uka.de/bibliography/Neural/SOM.LVQ.html.
-
(2002)
Bibliography on the self-organizing maps (SOM) and learning vector quantization (LVQ)
-
-
-
16
-
-
4243617417
-
Self averaging and on-line learning
-
Reents, G., & Urbanczik, R. (1998). Self averaging and on-line learning. Phys. Rev. Letter, 80, 5445-5448.
-
(1998)
Phys. Rev. Letter
, vol.80
, pp. 5445-5448
-
-
Reents, G.1
Urbanczik, R.2
-
17
-
-
0004069068
-
-
Saad, D. (Ed.). Cambridge: Cambridge University Press
-
Saad, D. (Ed.). (1999). Online learning in neural networks. Cambridge: Cambridge University Press.
-
(1999)
Online learning in neural networks
-
-
-
18
-
-
0000031088
-
Globally optimal parameters for on-line learning in multilayer neural networks
-
Saad, D., & Rattray, M. (1997). Globally optimal parameters for on-line learning in multilayer neural networks. Phys. Rev. Lett., 79, 2578-2581.
-
(1997)
Phys. Rev. Lett.
, vol.79
, pp. 2578-2581
-
-
Saad, D.1
Rattray, M.2
-
19
-
-
4243234689
-
On-line learning in soft committee machines
-
Saad, D., & Solla, S. A. (1995). On-line learning in soft committee machines. Phys. Rev. E, 52, 4225-4243.
-
(1995)
Phys. Rev. E
, vol.52
, pp. 4225-4243
-
-
Saad, D.1
Solla, S.A.2
-
20
-
-
85156210800
-
Generalized learning vector quantization
-
G. Tesauro, D. Touretzky, & T. Leen (Eds.). Cambridge, MA: MIT Press
-
Sato, A., & Yamada, K. (1995). Generalized learning vector quantization. In G. Tesauro, D. Touretzky, & T. Leen (Eds.), Advances in neural information processing systems, 7 (pp. 423-429). Cambridge, MA: MIT Press.
-
(1995)
Advances in neural information processing systems
, vol.7
, pp. 423-429
-
-
Sato, A.1
Yamada, K.2
-
21
-
-
0038159964
-
Soft learning vector quantization
-
Seo, S., & Obermayer, K. (2003). Soft learning vector quantization. Neural Computation, 15, 1589-1604.
-
(2003)
Neural Computation
, vol.15
, pp. 1589-1604
-
-
Seo, S.1
Obermayer, K.2
-
23
-
-
40649121456
-
Learning dynamics and robustness of vector quantization and neural gas
-
Witoelar, A., Biehl, M., Ghosh, A., & Hammer, B. (2008). Learning dynamics and robustness of vector quantization and neural gas. Neurocomputing, 71, 1210-1219.
-
(2008)
Neurocomputing
, vol.71
, pp. 1210-1219
-
-
Witoelar, A.1
Biehl, M.2
Ghosh, A.3
Hammer, B.4
|