메뉴 건너뛰기




Volumn 8467 LNAI, Issue PART 1, 2014, Pages 77-88

Non-euclidean principal component analysis for matrices by Hebbian learning

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; BANACH SPACES; ITERATIVE METHODS; PRINCIPAL COMPONENT ANALYSIS; SOFT COMPUTING;

EID: 84902584827     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-319-07173-2_8     Document Type: Conference Paper
Times cited : (3)

References (20)
  • 1
    • 84872222868 scopus 로고    scopus 로고
    • Non-Euclidean principal component analysis and Oja's learning rule - Theoretical aspects
    • Estevez, P.A., Principe, J.C., Zegers, P. (eds.) AISC, Springer, Heidelberg
    • Biehl, M., Kästner, M., Lange, M., Villmann, T.: Non-Euclidean principal component analysis and Oja's learning rule - theoretical aspects. In: Estevez, P.A., Principe, J.C., Zegers, P. (eds.) Advances in Self-Organizing Maps. AISC, vol. 198, pp. 23-34. Springer, Heidelberg (2013)
    • (2013) Advances in Self-Organizing Maps , vol.198 , pp. 23-34
    • Biehl, M.1    Kästner, M.2    Lange, M.3    Villmann, T.4
  • 3
    • 84862277691 scopus 로고    scopus 로고
    • Large-margin classification in Banach spaces
    • AISTATS
    • Der, R., Lee, D.: Large-margin classification in Banach spaces. In: JMLR Workshop and Conference Proceedings. AISTATS, vol. 2, pp. 91-98 (2007)
    • (2007) JMLR Workshop and Conference Proceedings , vol.2 , pp. 91-98
    • Der, R.1    Lee, D.2
  • 10
    • 84902579546 scopus 로고    scopus 로고
    • Non-Euclidean principal component analysis by Hebbian learning
    • page in press
    • Lange, M., Biehl, M., Villmann, T.: Non-Euclidean principal component analysis by Hebbian learning. Neurocomputing (page in press, 2014)
    • (2014) Neurocomputing
    • Lange, M.1    Biehl, M.2    Villmann, T.3
  • 11
    • 84903521448 scopus 로고    scopus 로고
    • Machine Learning Reports 7(MLR-04-2013), ISSN:1865-3960
    • Lange, M., Villmann, T.: Derivatives of lp -norms and their approximations. Machine Learning Reports 7(MLR-04-2013), 43-59 (2013) ISSN:1865-3960, http://www.techfak.uni-bielefeld.de/~fschleif/mlr/mlr-04-2013. pdf
    • (2013) Derivatives of Lp -Norms and Their Approximations , pp. 43-59
    • Lange, M.1    Villmann, T.2
  • 14
    • 0002399288 scopus 로고
    • Neural networks, principle components and subspaces
    • Oja, E.: Neural networks, principle components and subspaces. International Journal of Neural Systems 1, 61-68 (1989)
    • (1989) International Journal of Neural Systems , vol.1 , pp. 61-68
    • Oja, E.1
  • 16
    • 0024883243 scopus 로고
    • Optimal unsupervised learning in a single-layer linear feedforward neural network
    • Sanger, T.: Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Networks 12, 459-473 (1989)
    • (1989) Neural Networks , vol.12 , pp. 459-473
    • Sanger, T.1
  • 17
    • 0003372592 scopus 로고
    • A Theory of Cross-Spaces
    • Princeton University Press
    • Schatten, R.: A Theory of Cross-Spaces. Annals of Mathematics Studies, vol. 26. Princeton University Press (1950)
    • (1950) Annals of Mathematics Studies , vol.26
    • Schatten, R.1
  • 20
    • 75249087221 scopus 로고    scopus 로고
    • Reproducing kernel banach spaces for machine learning
    • Zhang, H., Xu, Y., Zhang, J.: Reproducing kernel banach spaces for machine learning. Journal of Machine Learning Research 10, 2741-2775 (2009)
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 2741-2775
    • Zhang, H.1    Xu, Y.2    Zhang, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.