-
1
-
-
0038453192
-
Rademacher and gaussian complexities: Risk bounds and structural results
-
Bartlett, P. L., & Mendelson, S. (2003). Rademacher and gaussian complexities: Risk bounds and structural results. Journal of Machine Learning Research, 3, 463-482.
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 463-482
-
-
Bartlett, P.L.1
Mendelson, S.2
-
2
-
-
0016948909
-
On the Goldstein-Levitin-Polyak gradient projection method
-
Bertsekas, D. (1976). On the Goldstein-Levitin-Polyak gradient projection method. IEEE Transactions on Automatic Control, 21(2), 174-184.
-
(1976)
IEEE Transactions on Automatic Control
, vol.21
, Issue.2
, pp. 174-184
-
-
Bertsekas, D.1
-
3
-
-
32544459594
-
Learning vector quantization: The dynamics of winner-takes-all algorithms
-
Biehl, M., Ghosh, A., & Hammer, B. (2006). Learning vector quantization: The dynamics of winner-takes-all algorithms. Neurocomputing, 69(7-9), 660-670.
-
(2006)
Neurocomputing
, vol.69
, Issue.7-9
, pp. 660-670
-
-
Biehl, M.1
Ghosh, A.2
Hammer, B.3
-
4
-
-
33847216891
-
Dynamics and generalization ability of LVQ algorithms
-
Biehl, M., Ghosh, A., & Hammer, B. (2007). Dynamics and generalization ability of LVQ algorithms. Journal of Machine Learning Research, 8, 323-360.
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 323-360
-
-
Biehl, M.1
Ghosh, A.2
Hammer, B.3
-
5
-
-
0002902870
-
Relevance determination in learning vector quantization
-
M. Verleysen (Ed.), Brussels: D-Facto Publishing
-
Bojer, T., Hammer, B., Schunk, D., & von Toschanowitz, K. T. (2001). Relevance determination in learning vector quantization. In M. Verleysen (Ed.), European symposium on artificial neural networks (pp. 271-276). Brussels: D-Facto Publishing.
-
(2001)
European symposium on artificial neural networks
, pp. 271-276
-
-
Bojer, T.1
Hammer, B.2
Schunk, D.3
von Toschanowitz, K.T.4
-
6
-
-
72249100595
-
-
(Tech. Rep. No. MLR-03-2008). Leipzig: University of Leipzig. Available online at
-
Bunte, K., Schneider, P., Hammer, B., Schleif, F.-M., Villmann, T., & Biehl, M. (2008). Discriminative visualization by limited rank matrix learning (Tech. Rep. No. MLR-03-2008). Leipzig: University of Leipzig. Available online at http://www.uni-leipzig.de/~compint/mlr/mlr_03_2008.pdf.
-
(2008)
Discriminative visualization by limited rank matrix learning
-
-
Bunte, K.1
Schneider, P.2
Hammer, B.3
Schleif, F.-M.4
Villmann, T.5
Biehl, M.6
-
7
-
-
79953842056
-
Margin analysis of the LVQ algorithm
-
S. Becker, S. Thrün, & K. Obermayer (Eds.), Cambridge, MA: MIT Press
-
Crammer, K., Gilad-Bachrach, R., Navot, A., & Tishby, A (2003). Margin analysis of the LVQ algorithm. In S. Becker, S. Thrün, & K. Obermayer (Eds.), Advances in neural information processing systems, 15 (pp. 462-469). Cambridge, MA: MIT Press.
-
(2003)
Advances in neural information processing systems
, vol.15
, pp. 462-469
-
-
Crammer, K.1
Gilad-Bachrach, R.2
Navot, A.3
Tishby, A.4
-
8
-
-
0003922190
-
-
(2nd ed.). Hoboken, NJ:Wiley-Interscience
-
Duda, R.O., Hart, P. E., & Stork, D. G. (2000). Pattern classification (2nd ed.).Hoboken, NJ:Wiley-Interscience.
-
(2000)
Pattern classification
-
-
Duda, R.O.1
Hart, P.E.2
Stork, D.G.3
-
9
-
-
0024701488
-
Unsupervised optimal fuzzy clustering
-
Gath, I., & Geva, A. B. (1989). Unsupervised optimal fuzzy clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7), 773-780.
-
(1989)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.11
, Issue.7
, pp. 773-780
-
-
Gath, I.1
Geva, A.B.2
-
10
-
-
33746829161
-
Performance analysis of LVQ algorithms: A statistical physics approach
-
Ghosh, A., Biehl,M., & Hammer, B. (2006). Performance analysis of LVQ algorithms: A statistical physics approach. Neural Networks, 19(6), 817-829.
-
(2006)
Neural Networks
, vol.19
, Issue.6
, pp. 817-829
-
-
Ghosh, A.1
Biehl, M.2
Hammer, B.3
-
11
-
-
0018057468
-
Fuzzy clustering with a fuzzy covariance matrix
-
Piscataway, NJ: IEEE Press
-
Gustafson, E., & Kessel, W. (1979). Fuzzy clustering with a fuzzy covariance matrix. In IEEE conference on decision and control, (pp. 761-766). Piscataway, NJ: IEEE Press.
-
(1979)
IEEE conference on decision and control
, pp. 761-766
-
-
Gustafson, E.1
Kessel, W.2
-
12
-
-
38449114309
-
-
(Tech. Rep. No. Ifi-05-14). Clausthal-Zellerfeld, Germany: Clausthal University of Technology
-
Hammer, B., Schleif, F.-M., & Villmann, T. (2005). On the generalization ability of prototype-based classifiers with local relevance determination (Tech. Rep. No. Ifi-05-14). Clausthal-Zellerfeld, Germany: Clausthal University of Technology.
-
(2005)
On the generalization ability of prototype-based classifiers with local relevance determination
-
-
Hammer, B.1
Schleif, F.-M.2
Villmann, T.3
-
13
-
-
18544384330
-
Prototype based recognition of splice sites
-
U. Seiffert, L. C. Jain, & P. Schweizer (Eds.), New York: Springer
-
Hammer, B., Strickert, M., & Villmann, T. (2004). Prototype based recognition of splice sites. In U. Seiffert, L. C. Jain, & P. Schweizer (Eds.), Bioinformatics using computational intelligence paradigms (pp. 25-56). New York: Springer.
-
(2004)
Bioinformatics using computational intelligence paradigms
, pp. 25-56
-
-
Hammer, B.1
Strickert, M.2
Villmann, T.3
-
14
-
-
17444390516
-
On the generalization ability of GRLVQ networks
-
Hammer, B., Strickert, M., & Villmann, T. (2005a). On the generalization ability of GRLVQ networks. Neural Processing Letters, 21(2), 109-120.
-
(2005)
Neural Processing Letters
, vol.21
, Issue.2
, pp. 109-120
-
-
Hammer, B.1
Strickert, M.2
Villmann, T.3
-
15
-
-
12844250052
-
Supervised neural gas with general similarity measure
-
Hammer, B., Strickert,M.,&Villmann, T. (2005b). Supervised neural gas with general similarity measure. Neural Processing Letters, 21(1), 21-44.
-
(2005)
Neural Processing Letters
, vol.21
, Issue.1
, pp. 21-44
-
-
Hammer, B.1
Strickert, M.2
Villmann, T.3
-
16
-
-
0036791938
-
Generalized relevance learning vector quantization
-
Hammer, B., & Villmann, T. (2002). Generalized relevance learning vector quantization. Neural Networks, 15(8-9), 1059-1068.
-
(2002)
Neural Networks
, vol.15
, Issue.8-9
, pp. 1059-1068
-
-
Hammer, B.1
Villmann, T.2
-
20
-
-
33745834241
-
-
Available online at University of California, Department of Information and Computer Science
-
Newman, D. J., Hettich, S., Blake, C. L., & Merz, C. J. (1998). UCI repository of machine learning databases. Available online at http://archive.ics.uci.edu/ml/. University of California, Department of Information and Computer Science.
-
(1998)
UCI repository of machine learning databases
-
-
Newman, D.J.1
Hettich, S.2
Blake, C.L.3
Merz, C.J.4
-
21
-
-
33745939048
-
A K nearest classifier design
-
Prudent, Y., & Ennaji, A (2005). A K nearest classifier design. Electronic Letters on Computer Vision and Image Analysis, 5(2), 58-71.
-
(2005)
Electronic Letters on Computer Vision and Image Analysis
, vol.5
, Issue.2
, pp. 58-71
-
-
Prudent, Y.1
Ennaji, A.2
-
22
-
-
29144515642
-
Accurate splice site prediction for Caenorhabditis elegans
-
B. Schölkopf, K. Tsuda, & J.-P. Vert (Eds.), Cambridge, MA: MIT Press
-
Rätsch, G., & Sonnenburg, S. (2004). Accurate splice site prediction for Caenorhabditis elegans. In B. Schölkopf, K. Tsuda, & J.-P. Vert (Eds.), Kernel methods in computational biology (pp. 277-298). Cambridge, MA: MIT Press.
-
(2004)
Kernel methods in computational biology
, pp. 277-298
-
-
Rätsch, G.1
Sonnenburg, S.2
-
23
-
-
85156210800
-
Generalized learning vector quantization
-
D. S. Touretzky, M. Mozer, & M. E. Hasselmo (Eds.). Cambridge, MA: MIT Press
-
Sato, A., & Yamada, K. (1996). Generalized learning vector quantization. In D. S. Touretzky, M. Mozer, & M. E. Hasselmo (Eds.), Advances in neural information processing systems, 8 (pp. 423-429). Cambridge, MA: MIT Press.
-
(1996)
Advances in neural information processing systems
, vol.8
, pp. 423-429
-
-
Sato, A.1
Yamada, K.2
-
24
-
-
0344520304
-
Soft nearest prototype classification
-
Seo, S., Bode, M., & Obermayer, K. (2003). Soft nearest prototype classification. IEEE Transactions on Neural Networks, 14, 390-398.
-
(2003)
IEEE Transactions on Neural Networks
, vol.14
, pp. 390-398
-
-
Seo, S.1
Bode, M.2
Obermayer, K.3
-
25
-
-
0038159964
-
Soft learning vector quantization
-
Seo, S., & Obermayer, K. (2003). Soft learning vector quantization. Neural Computation, 15(7), 1589-1604.
-
(2003)
Neural Computation
, vol.15
, Issue.7
, pp. 1589-1604
-
-
Seo, S.1
Obermayer, K.2
-
27
-
-
33749257955
-
Distance metric learning for large margin nearest neighbor classification
-
Y. Weiss, B. Schölkopf, & J. Platt (Eds.), Cambridge, MA: MIT Press
-
Weinberger, K., Blitzer, J., & Saul, L. (2006). Distance metric learning for large margin nearest neighbor classification. In Y.Weiss, B. Schölkopf, & J. Platt (Eds.), Advances in neural information processing systems, 18 (pp. 1473-1480). Cambridge, MA: MIT Press.
-
(2006)
Advances in neural information processing systems
, vol.18
, pp. 1473-1480
-
-
Weinberger, K.1
Blitzer, J.2
Saul, L.3
|