메뉴 건너뛰기




Volumn 21, Issue 12, 2009, Pages 3532-3561

Adaptive relevance matrices in learning vector quantization

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTIFICIAL INTELLIGENCE; BRAIN; HUMAN; INFORMATION PROCESSING; INFORMATION SCIENCE; LEARNING; LETTER; PHYSIOLOGY;

EID: 72249111970     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/neco.2009.11-08-908     Document Type: Letter
Times cited : (307)

References (27)
  • 1
    • 0038453192 scopus 로고    scopus 로고
    • Rademacher and gaussian complexities: Risk bounds and structural results
    • Bartlett, P. L., & Mendelson, S. (2003). Rademacher and gaussian complexities: Risk bounds and structural results. Journal of Machine Learning Research, 3, 463-482.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 463-482
    • Bartlett, P.L.1    Mendelson, S.2
  • 2
    • 0016948909 scopus 로고
    • On the Goldstein-Levitin-Polyak gradient projection method
    • Bertsekas, D. (1976). On the Goldstein-Levitin-Polyak gradient projection method. IEEE Transactions on Automatic Control, 21(2), 174-184.
    • (1976) IEEE Transactions on Automatic Control , vol.21 , Issue.2 , pp. 174-184
    • Bertsekas, D.1
  • 3
    • 32544459594 scopus 로고    scopus 로고
    • Learning vector quantization: The dynamics of winner-takes-all algorithms
    • Biehl, M., Ghosh, A., & Hammer, B. (2006). Learning vector quantization: The dynamics of winner-takes-all algorithms. Neurocomputing, 69(7-9), 660-670.
    • (2006) Neurocomputing , vol.69 , Issue.7-9 , pp. 660-670
    • Biehl, M.1    Ghosh, A.2    Hammer, B.3
  • 7
    • 79953842056 scopus 로고    scopus 로고
    • Margin analysis of the LVQ algorithm
    • S. Becker, S. Thrün, & K. Obermayer (Eds.), Cambridge, MA: MIT Press
    • Crammer, K., Gilad-Bachrach, R., Navot, A., & Tishby, A (2003). Margin analysis of the LVQ algorithm. In S. Becker, S. Thrün, & K. Obermayer (Eds.), Advances in neural information processing systems, 15 (pp. 462-469). Cambridge, MA: MIT Press.
    • (2003) Advances in neural information processing systems , vol.15 , pp. 462-469
    • Crammer, K.1    Gilad-Bachrach, R.2    Navot, A.3    Tishby, A.4
  • 10
    • 33746829161 scopus 로고    scopus 로고
    • Performance analysis of LVQ algorithms: A statistical physics approach
    • Ghosh, A., Biehl,M., & Hammer, B. (2006). Performance analysis of LVQ algorithms: A statistical physics approach. Neural Networks, 19(6), 817-829.
    • (2006) Neural Networks , vol.19 , Issue.6 , pp. 817-829
    • Ghosh, A.1    Biehl, M.2    Hammer, B.3
  • 11
    • 0018057468 scopus 로고
    • Fuzzy clustering with a fuzzy covariance matrix
    • Piscataway, NJ: IEEE Press
    • Gustafson, E., & Kessel, W. (1979). Fuzzy clustering with a fuzzy covariance matrix. In IEEE conference on decision and control, (pp. 761-766). Piscataway, NJ: IEEE Press.
    • (1979) IEEE conference on decision and control , pp. 761-766
    • Gustafson, E.1    Kessel, W.2
  • 13
    • 18544384330 scopus 로고    scopus 로고
    • Prototype based recognition of splice sites
    • U. Seiffert, L. C. Jain, & P. Schweizer (Eds.), New York: Springer
    • Hammer, B., Strickert, M., & Villmann, T. (2004). Prototype based recognition of splice sites. In U. Seiffert, L. C. Jain, & P. Schweizer (Eds.), Bioinformatics using computational intelligence paradigms (pp. 25-56). New York: Springer.
    • (2004) Bioinformatics using computational intelligence paradigms , pp. 25-56
    • Hammer, B.1    Strickert, M.2    Villmann, T.3
  • 14
    • 17444390516 scopus 로고    scopus 로고
    • On the generalization ability of GRLVQ networks
    • Hammer, B., Strickert, M., & Villmann, T. (2005a). On the generalization ability of GRLVQ networks. Neural Processing Letters, 21(2), 109-120.
    • (2005) Neural Processing Letters , vol.21 , Issue.2 , pp. 109-120
    • Hammer, B.1    Strickert, M.2    Villmann, T.3
  • 15
    • 12844250052 scopus 로고    scopus 로고
    • Supervised neural gas with general similarity measure
    • Hammer, B., Strickert,M.,&Villmann, T. (2005b). Supervised neural gas with general similarity measure. Neural Processing Letters, 21(1), 21-44.
    • (2005) Neural Processing Letters , vol.21 , Issue.1 , pp. 21-44
    • Hammer, B.1    Strickert, M.2    Villmann, T.3
  • 16
    • 0036791938 scopus 로고    scopus 로고
    • Generalized relevance learning vector quantization
    • Hammer, B., & Villmann, T. (2002). Generalized relevance learning vector quantization. Neural Networks, 15(8-9), 1059-1068.
    • (2002) Neural Networks , vol.15 , Issue.8-9 , pp. 1059-1068
    • Hammer, B.1    Villmann, T.2
  • 20
  • 22
    • 29144515642 scopus 로고    scopus 로고
    • Accurate splice site prediction for Caenorhabditis elegans
    • B. Schölkopf, K. Tsuda, & J.-P. Vert (Eds.), Cambridge, MA: MIT Press
    • Rätsch, G., & Sonnenburg, S. (2004). Accurate splice site prediction for Caenorhabditis elegans. In B. Schölkopf, K. Tsuda, & J.-P. Vert (Eds.), Kernel methods in computational biology (pp. 277-298). Cambridge, MA: MIT Press.
    • (2004) Kernel methods in computational biology , pp. 277-298
    • Rätsch, G.1    Sonnenburg, S.2
  • 23
    • 85156210800 scopus 로고    scopus 로고
    • Generalized learning vector quantization
    • D. S. Touretzky, M. Mozer, & M. E. Hasselmo (Eds.). Cambridge, MA: MIT Press
    • Sato, A., & Yamada, K. (1996). Generalized learning vector quantization. In D. S. Touretzky, M. Mozer, & M. E. Hasselmo (Eds.), Advances in neural information processing systems, 8 (pp. 423-429). Cambridge, MA: MIT Press.
    • (1996) Advances in neural information processing systems , vol.8 , pp. 423-429
    • Sato, A.1    Yamada, K.2
  • 25
    • 0038159964 scopus 로고    scopus 로고
    • Soft learning vector quantization
    • Seo, S., & Obermayer, K. (2003). Soft learning vector quantization. Neural Computation, 15(7), 1589-1604.
    • (2003) Neural Computation , vol.15 , Issue.7 , pp. 1589-1604
    • Seo, S.1    Obermayer, K.2
  • 27
    • 33749257955 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • Y. Weiss, B. Schölkopf, & J. Platt (Eds.), Cambridge, MA: MIT Press
    • Weinberger, K., Blitzer, J., & Saul, L. (2006). Distance metric learning for large margin nearest neighbor classification. In Y.Weiss, B. Schölkopf, & J. Platt (Eds.), Advances in neural information processing systems, 18 (pp. 1473-1480). Cambridge, MA: MIT Press.
    • (2006) Advances in neural information processing systems , vol.18 , pp. 1473-1480
    • Weinberger, K.1    Blitzer, J.2    Saul, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.