메뉴 건너뛰기




Volumn 26, Issue 4, 2012, Pages 391-395

Admire LVQ—Adaptive Distance Measures in Relevance Learning Vector Quantization

Author keywords

Adaptive distances; Machine learning; Prototype based classification; Similarity based clustering

Indexed keywords

MACHINE LEARNING; VECTOR QUANTIZATION;

EID: 84885435612     PISSN: 09331875     EISSN: 16101987     Source Type: Journal    
DOI: 10.1007/s13218-012-0188-1     Document Type: Article
Times cited : (6)

References (21)
  • 1
    • 83155177174 scopus 로고    scopus 로고
    • Urine steroid metabolomics as a biomarker tool for detecting malignancy in adrenal tumors
    • Arlt W, Biehl M, Taylor A, et al. (2011) Urine steroid metabolomics as a biomarker tool for detecting malignancy in adrenal tumors. J Clin Endocrinol Metab 96:3775–3784 DOI: 10.1210/jc.2011-1565
    • (2011) J Clin Endocrinol Metab , vol.96 , pp. 3775-3784
    • Arlt, W.1    Biehl, M.2    Taylor, A.3
  • 4
    • 84947792616 scopus 로고    scopus 로고
    • Matrix relevance LVQ in steroid metabolomics based classification of adrenal tumors
    • Verleysen M., (ed), d-side publishing
    • Biehl M, Schneider P, Smith D, et al. (2012) Matrix relevance LVQ in steroid metabolomics based classification of adrenal tumors. In: Verleysen M. (ed) 20th european symposium on artificial neural networks (ESANN 2012), pp 423–428. d-side publishing
    • (2012) 20th european symposium on artificial neural networks (ESANN 2012) , pp. 423-428
    • Biehl, M.1    Schneider, P.2    Smith, D.3
  • 8
    • 79957523837 scopus 로고    scopus 로고
    • Learning effective color features for content based image retrieval in dermatology
    • Bunte K, Biehl M, Jonkman M, Petkov N (2011) Learning effective color features for content based image retrieval in dermatology. Pattern Recognit 44:1892–1902 DOI: 10.1016/j.patcog.2010.10.024
    • (2011) Pattern Recognit , vol.44 , pp. 1892-1902
    • Bunte, K.1    Biehl, M.2    Jonkman, M.3    Petkov, N.4
  • 9
    • 84855962168 scopus 로고    scopus 로고
    • Limited rank matrix learning, discriminative dimension reduction and visualization
    • Bunte K, Schneider P, Hammer B, Schleif FM, Villmann T, Biehl M (2012) Limited rank matrix learning, discriminative dimension reduction and visualization. Neural Netw 26:159–173 DOI: 10.1016/j.neunet.2011.10.001
    • (2012) Neural Netw , vol.26 , pp. 159-173
    • Bunte, K.1    Schneider, P.2    Hammer, B.3    Schleif, F.M.4    Villmann, T.5    Biehl, M.6
  • 10
    • 61849159831 scopus 로고    scopus 로고
    • On-line figure-ground segmentation with adaptive metrics in generalized LVQ
    • Denecke A, Wersing H, Steil J, Körner E (2009) On-line figure-ground segmentation with adaptive metrics in generalized LVQ. Neurocomputing 72:1470–1482 DOI: 10.1016/j.neucom.2008.11.028
    • (2009) Neurocomputing , vol.72 , pp. 1470-1482
    • Denecke, A.1    Wersing, H.2    Steil, J.3    Körner, E.4
  • 11
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27:861–874 DOI: 10.1016/j.patrec.2005.10.010
    • (2006) Pattern Recognit Lett , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 12
    • 0036791938 scopus 로고    scopus 로고
    • Generalized relevance learning vector quantization
    • Hammer B, Villmann T (2002) Generalized relevance learning vector quantization. Neural Netw 15(8–9):1059–1068 DOI: 10.1016/S0893-6080(02)00079-5
    • (2002) Neural Netw , vol.15 , Issue.8-9 , pp. 1059-1068
    • Hammer, B.1    Villmann, T.2
  • 13
    • 84860237512 scopus 로고    scopus 로고
    • Functional relevance learning in generalized learning vector quantization
    • (,),., (, press
    • Kästner M, Hammer B, Biehl M, Villmann T (2012) Functional relevance learning in generalized learning vector quantization. Neurocomputing (in press)
    • (2012) Neurocomputing
    • Kästner, M.1    Hammer, B.2    Biehl, M.3    Villmann, T.4
  • 14
    • 0003410791 scopus 로고    scopus 로고
    • 2, Springer, Berlin
    • Kohonen T (1997) Self-organizing maps, 2nd edn. Springer, Berlin DOI: 10.1007/978-3-642-97966-8
    • (1997) Self-organizing maps
    • Kohonen, T.1
  • 15
    • 85156210800 scopus 로고    scopus 로고
    • Generalized learning vector quantization
    • Touretzky DS, Mozer MC, Hasselmo ME, (eds), MIT Press, Cambridge
    • Sato A, Yamada K (1996) Generalized learning vector quantization. In: Touretzky DS, Mozer MC, Hasselmo ME (eds) Advances in neural information processing systems 8. MIT Press, Cambridge, pp 423–429
    • (1996) Advances in neural information processing systems 8 , pp. 423-429
    • Sato, A.1    Yamada, K.2
  • 17
    • 72249111970 scopus 로고    scopus 로고
    • Adaptive relevance matrices in learning vector quantization
    • Schneider P, Biehl M, Hammer B (2009) Adaptive relevance matrices in learning vector quantization. Neural Comput 21:3532–3561 DOI: 10.1162/neco.2009.11-08-908
    • (2009) Neural Comput , vol.21 , pp. 3532-3561
    • Schneider, P.1    Biehl, M.2    Hammer, B.3
  • 18
    • 70449713460 scopus 로고    scopus 로고
    • Distance learning in discriminative vector quantization
    • Schneider P, Biehl M, Hammer B (2009) Distance learning in discriminative vector quantization. Neural Comput 21(10):2942–2969 DOI: 10.1162/neco.2009.10-08-892
    • (2009) Neural Comput , vol.21 , Issue.10 , pp. 2942-2969
    • Schneider, P.1    Biehl, M.2    Hammer, B.3
  • 20
    • 0038159964 scopus 로고    scopus 로고
    • Soft learning vector quantization
    • Seo S, Obermayer K (2003) Soft learning vector quantization. Neural Comput 15(7):1589–1604 DOI: 10.1162/089976603321891819
    • (2003) Neural Comput , vol.15 , Issue.7 , pp. 1589-1604
    • Seo, S.1    Obermayer, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.