메뉴 건너뛰기




Volumn 21, Issue 6, 2011, Pages 443-457

Efficient kernelized prototype based classification

Author keywords

classification; interpretable models; kernel; Prototype learning; vector quantization

Indexed keywords

APPROXIMATION TECHNIQUES; DATA SETS; EFFECTIVE ALGORITHMS; EUCLIDEAN DISTANCE MEASURE; GENERALIZATION ERROR BOUNDS; GENERALIZED LEARNING VECTOR QUANTIZATION; KERNEL; LEARNING COMPLEXITY; MULTIPLE DOMAINS; PROTOTYPE LEARNING; PROTOTYPE-BASED CLASSIFIER; PUBLIC DATA; REAL WORLD DATA;

EID: 82655173326     PISSN: 01290657     EISSN: None     Source Type: Journal    
DOI: 10.1142/S012906571100295X     Document Type: Article
Times cited : (32)

References (41)
  • 1
    • 46649090716 scopus 로고    scopus 로고
    • Online clustering algorithms
    • W. Barbakh and C. Fyfe, Online clustering algorithms, Int. J. Neural Syst. 18(3) (2008) 185-194.
    • (2008) Int. J. Neural Syst. , vol.18 , Issue.3 , pp. 185-194
    • Barbakh, W.1    Fyfe, C.2
  • 2
    • 0038453192 scopus 로고    scopus 로고
    • Rademacher and Gaussian complexities: Risk bounds and structural results
    • P. Bartlett and S. Mendelson, Rademacher and Gaussian complexities: risk bounds and structural results, Journal of Machine Learning Research 3(2003) 463-482.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 463-482
    • Bartlett, P.1    Mendelson, S.2
  • 4
    • 0003408496 scopus 로고    scopus 로고
    • Irvine, CA: University of California, Department of Information and Computer Science, available at
    • C. L. Blake and C. J. Merz, UCI repository of machine learning databases. Irvine, CA: University of California, Department of Information and Computer Science, available at: http://www.ics.uci.edu/mlearn/MLRepository.html (1998).
    • (1998) UCI Repository of Machine Learning Databases
    • Blake, C.L.1    Merz, C.J.2
  • 5
    • 79953057615 scopus 로고    scopus 로고
    • Neighbor embedding XOM for dimension reduction and visualization
    • K. Bunte, B. Hammer, T. Villmann, M. Biehl and A. Wismüller, Neighbor embedding XOM for dimension reduction and visualization, Neurocomputing 74(9) (2011) 1340-1350.
    • (2011) Neurocomputing , vol.74 , Issue.9 , pp. 1340-1350
    • Bunte, K.1    Hammer, B.2    Villmann, T.3    Biehl, M.4    Wismüller, A.5
  • 6
    • 35248892931 scopus 로고    scopus 로고
    • Relevance and kernel selforganising maps
    • O. Kaynak, E. Alpaydin, E. Oja and L. Xu eds., Springer
    • E. Corchado and C. Fyfe, Relevance and kernel selforganising maps, in O. Kaynak, E. Alpaydin, E. Oja and L. Xu (eds.), ICANN, volume 2714 of Lecture Notes in Computer Science, Springer (2003), pp. 280-290.
    • (2003) ICANN, Volume 2714 of Lecture Notes in Computer Science , pp. 280-290
    • Corchado, E.1    Fyfe, C.2
  • 9
    • 82655163983 scopus 로고    scopus 로고
    • Parameter-free kernel in extreme learning for non-linear support vector regression
    • in press
    • B. Frenay and M. Verleysen, Parameter-free kernel in extreme learning for non-linear support vector regression, NeuroComputing, page in press (2010).
    • (2010) NeuroComputing
    • Frenay, B.1    Verleysen, M.2
  • 10
    • 58449124909 scopus 로고    scopus 로고
    • Evolving edited k-nearest neighbor classifiers
    • R. Gil-Pita and X. Yao, Evolving edited k-nearest neighbor classifiers, Int. J. Neural Syst. 18(6) (2008) 459-467.
    • (2008) Int. J. Neural Syst. , vol.18 , Issue.6 , pp. 459-467
    • Gil-Pita, R.1    Yao, X.2
  • 11
    • 9444220311 scopus 로고    scopus 로고
    • Relevance LVQ versus SVM
    • Artificial Intelligence and Soft Computing - ICAISC 2004
    • B. Hammer, M. Strickert and Th. Villmann, Relevance LVQ versus SVM, in L. Rutkowski, J. Siekmann, R. Tadeusiewicz and L. A. Zadeh (eds.), Artificial Intelligence and Soft Computing (ICAISC 2004), Lecture Notes in Artificial Intelligence 3070, Springer Verlag, Berlin-Heidelberg (2004), pp. 592-597. (Pubitemid 38835885)
    • (2004) Lecture Notes in Computer Science , Issue.3070 , pp. 592-597
    • Hammer, B.1    Strickert, M.2    Villmann, T.3
  • 12
    • 0036791938 scopus 로고    scopus 로고
    • Generalized relevance learning vector quantization
    • B. Hammer and Th. Villmann, Generalized relevance learning vector quantization, Neural Networks 15 (8-9) (2002) 1059-1068.
    • (2002) Neural Networks , vol.15 , Issue.8-9 , pp. 1059-1068
    • Hammer, B.1    Villmann, Th.2
  • 14
    • 17444390516 scopus 로고    scopus 로고
    • On the generalization ability of GRLVQ networks
    • DOI 10.1007/s11063-004-1547-1
    • B. Hammer, M. Strickert and T. Villmann, On the generalization ability of GRLVQ networks, Neural Processing Letters 21(2) (2005) 109-120. (Pubitemid 40536769)
    • (2005) Neural Processing Letters , vol.21 , Issue.2 , pp. 109-120
    • Hammer, B.1    Strickert, M.2    Villmann, T.3
  • 16
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • P. Hoyer, Non-negative Matrix Factorization with sparseness constraints, Journal of Machine Learning Research 5(2004) 1457-1469.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 1457-1469
    • Hoyer, P.1
  • 17
    • 77950369345 scopus 로고    scopus 로고
    • Data clustering: 50 years beyond K-means
    • A. K. Jain, Data clustering: 50 years beyond K-means, Pattern Recognition Letters 31(2010) 651-666.
    • (2010) Pattern Recognition Letters , vol.31 , pp. 651-666
    • Jain, A.K.1
  • 18
    • 77955914272 scopus 로고    scopus 로고
    • Coupled singular value decomposition of a cross-covariance matrix
    • A. Kaiser, W. Schenck and R. Möller, Coupled singular value decomposition of a cross-covariance matrix, Int. J. Neural Syst. 20(4) (2010) 293-318.
    • (2010) Int. J. Neural Syst. , vol.20 , Issue.4 , pp. 293-318
    • Kaiser, A.1    Schenck, W.2    Möller, R.3
  • 19
    • 33745789043 scopus 로고    scopus 로고
    • Building support vector machines with reduced classifier complexity
    • S. Sathiya Keerthi, O. Chapelle and D. DeCoste, Building support vector machines with reduced classifier complexity, Journal of Machine Learning Research 7(2006) 1493-1515. (Pubitemid 44024591)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1493-1515
    • Keerthi, S.S.1    Chapelle, O.2    DeCoste, D.3
  • 21
    • 58849101822 scopus 로고    scopus 로고
    • Learning data representations with sparse coding neural gas
    • K. Labusch, E. Barth and T. Martinetz, Learning data representations with sparse coding neural gas, in Proc. of ESANN'08(2008), pp. 233-238.
    • (2008) Proc. of ESANN'08 , pp. 233-238
    • Labusch, K.1    Barth, E.2    Martinetz, T.3
  • 23
    • 79960062885 scopus 로고    scopus 로고
    • Foreground detection in video sequences with probabilistic self-organizing maps
    • E. López-Rubio, R. Marcos Luque Baena and E. Domínguez, Foreground detection in video sequences with probabilistic self-organizing maps, Int. J. Neural Syst. 21(3) (2011) 225-246.
    • (2011) Int. J. Neural Syst. , vol.21 , Issue.3 , pp. 225-246
    • López-Rubio, E.1    Marcos Luque Baena, R.2    Domínguez, E.3
  • 24
    • 65249159583 scopus 로고    scopus 로고
    • Improving supervised learning by adapting the problem to the learner
    • J. E. Menke and T. R. Martinez, Improving supervised learning by adapting the problem to the learner, Int. J. Neural Syst. 19(1) (2009) 1-9.
    • (2009) Int. J. Neural Syst. , vol.19 , Issue.1 , pp. 1-9
    • Menke, J.E.1    Martinez, T.R.2
  • 25
    • 36248968839 scopus 로고    scopus 로고
    • Evolutionary optimization of sequence kernels for detection of bacterial gene STARTS
    • DOI 10.1142/S0129065707001214, PII S0129065707001214
    • B. Mersch, T. Glasmachers, P. Meinicke and C. Igel, Evolutionary optimization of sequence kernels for detection of bacterial gene starts, Int. J. Neural Syst. 17(5) (2007) 369-381. (Pubitemid 350125292)
    • (2007) International Journal of Neural Systems , vol.17 , Issue.5 , pp. 369-381
    • Mersch, B.1    Glasmachers, T.2    Meinicke, P.3    Igel, C.4
  • 26
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • DOI 10.1038/381607a0
    • B. Olshausen and D. Field, Emergence of simple-cell receptive field properties by learning a sparse code for natural images, Letters to Nature 381(1996) 607-609. (Pubitemid 26177476)
    • (1996) Nature , vol.381 , Issue.6583 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 28
    • 10044291614 scopus 로고    scopus 로고
    • A novel kernel prototype-based learning algorithm
    • A. K. Qin and P. N. Suganthan, A novel kernel prototype-based learning algorithm, in Proc. of ICPR'04(2004), pp. 2621-2624.
    • (2004) Proc. of ICPR'04 , pp. 2621-2624
    • Qin, A.K.1    Suganthan, P.N.2
  • 29
    • 85156210800 scopus 로고
    • Generalized learning vector quantization
    • G. Tesauro, D. Touretzky and T. Leen eds., MIT Press
    • A. S. Sato and K. Yamada, Generalized learning vector quantization, in G. Tesauro, D. Touretzky and T. Leen (eds.), Advances in Neural Information Processing Systems, Vol. 7, MIT Press (1995), pp. 423-429.
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 423-429
    • Sato, A.S.1    Yamada, K.2
  • 30
    • 33847401462 scopus 로고    scopus 로고
    • Margin-based active learning for LVQ networks
    • DOI 10.1016/j.neucom.2006.10.149, PII S0925231206004747, Advances in Computational Intelligence and Learning 14th European Symposium on Artificial Neural Networks 2006
    • F.-M. Schleif, B. Hammer and Th. Villmann, Margin based active learning for LVQ networks, Neurocomputing 70 (7-9) (2007) 1215-1224. (Pubitemid 46336780)
    • (2007) Neurocomputing , vol.70 , Issue.7-9 , pp. 1215-1224
    • Schleif, F.-M.1    Hammer, B.2    Villmann, T.3
  • 32
    • 72249111970 scopus 로고    scopus 로고
    • Adaptive relevance matrices in learning vector quantization
    • P. Schneider, M. Biehl and B. Hammer, Adaptive relevance matrices in learning vector quantization, Neural Computation 21(2009) 3532-3561.
    • (2009) Neural Computation , vol.21 , pp. 3532-3561
    • Schneider, P.1    Biehl, M.2    Hammer, B.3
  • 34
    • 0038159964 scopus 로고    scopus 로고
    • Soft learning vector quantization
    • DOI 10.1162/089976603321891819
    • S. Seo and K. Obermayer, Soft learning vector quantization, Neural Computation 15(2003) 1589-1604. (Pubitemid 37035561)
    • (2003) Neural Computation , vol.15 , Issue.7 , pp. 1589-1604
    • Seo, S.1    Obermayer, K.2
  • 36
    • 78751553712 scopus 로고    scopus 로고
    • XCSC: A novel approach to clustering with extended classifier system
    • L. Shi, Y. Shi, Y. Gao, L. Shang and Y. Yang, XCSC: a novel approach to clustering with extended classifier system, Int. J. Neural Syst. 21(1) (2011) 79-93.
    • (2011) Int. J. Neural Syst. , vol.21 , Issue.1 , pp. 79-93
    • Shi, L.1    Shi, Y.2    Gao, Y.3    Shang, L.4    Yang, Y.5
  • 37
    • 42549162259 scopus 로고    scopus 로고
    • Large-scale maximum margin discriminant analysis using core vector machines
    • DOI 10.1109/TNN.2007.911746
    • I. W.-H. Tsang, A. Kocsor and J. T.-Y. Kwok, Largescale maximum margin discriminant analysis using core vector machines, IEEE Transactions on Neural Networks 19(4) (2008) 610-624. (Pubitemid 351583578)
    • (2008) IEEE Transactions on Neural Networks , vol.19 , Issue.4 , pp. 610-624
    • Tsang, I.W.-H.1    Kocsor, A.2    Kwok, J.T.-Y.3
  • 40
    • 77951560201 scopus 로고    scopus 로고
    • Protein subcellular multilocalization prediction using a min-max modular support vector machine
    • Y. Yang and B.-L. Lu, Protein subcellular multilocalization prediction using a min-max modular support vector machine, Int. J. Neural Syst. 20(1) (2010) 13-28.
    • (2010) Int. J. Neural Syst. , vol.20 , Issue.1 , pp. 13-28
    • Yang, Y.1    Lu, B.-L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.