메뉴 건너뛰기




Volumn 1, Issue , 2012, Pages 132-137

Differentiable kernels in generalized matrix learning vector quantization

Author keywords

[No Author keywords available]

Indexed keywords

DATA SPACE; GENERALIZED MATRIX; KERNEL BASED CLASSIFIERS; LEARNING VECTOR QUANTIZATION;

EID: 84873600155     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICMLA.2012.231     Document Type: Conference Paper
Times cited : (12)

References (34)
  • 6
    • 84865097368 scopus 로고    scopus 로고
    • Largemargin discriminative visualization by matrix relevance learning
    • H. Abbass D. Essam, and R. Sarker, editors Brisbane Los Alamitos IEEE Computer Society Press
    • M. Biehl, K. Bunte, F.-M. Schleif, P. Schneider, and T. Villmann. Largemargin discriminative visualization by matrix relevance learning. InH. Abbass, D. Essam, and R. Sarker, editors, Proc. of the InternationalJoint Conference on Neural Networks (IJCNN), Brisbane, pages 1873-1880, Los Alamitos, 2012. IEEE Computer Society Press.
    • (2012) Proc. of the InternationalJoint Conference on Neural Networks (IJCNN) , pp. 1873-1880
    • Biehl, M.1    Bunte, K.2    Schleif, F.-M.3    Schneider, P.4    Villmann, T.5
  • 7
    • 78049353359 scopus 로고    scopus 로고
    • Stationarity of matrix relevance learning vector quantization
    • MLR-01-2009 ISSN:1865-3960
    • M. Biehl, B. Hammer, F.-M. Schleif, P. Schneider, and T. . Villmann.Stationarity of matrix relevance learning vector quantization. MachineLearning Reports, 3(MLR-01-2009):1-17, 2009. ISSN:1865-3960,http://www. uni-leipzig.de/~compint/mlr/mlr012009:pdf:
    • (2009) MachineLearning Reports , vol.3 , pp. 1-17
    • Biehl, M.1    Hammer, B.2    Schleif, F.-M.3    Schneider, P.4    Villmann, T.5
  • 8
    • 77649237216 scopus 로고    scopus 로고
    • Adaptivelocal dissimilarity measures for discriminative dimension reduction oflabeled data
    • K. Bunte, B. Hammer, A. Wismüller, and M. Biehl. Adaptivelocal dissimilarity measures for discriminative dimension reduction oflabeled data. Neurocomputing, 73:1074-1092, 2010.
    • (2010) Neurocomputing , vol.73 , pp. 1074-1092
    • Bunte, K.1    Hammer, B.2    Wismüller, A.3    Biehl, M.4
  • 9
    • 84855962168 scopus 로고    scopus 로고
    • Limited rank matrix learning discriminative dimensionreduction and visualization
    • K. Bunte, P. Schneider, B. Hammer, F.-M. S. T. Villmann, andM. Biehl. Limited rank matrix learning, discriminative dimensionreduction and visualization. Neural Networks, 26(1):159-173, 2012.
    • (2012) Neural Networks , vol.26 , Issue.1 , pp. 159-173
    • Bunte, K.1    Schneider, P.2    Hammer, B.3    Villmann, F.-M.S.T.4    Biehl, M.5
  • 11
    • 80051670315 scopus 로고    scopus 로고
    • Parameter-free kernel in extremelearning for non-linear support vector regression
    • B. Frénay and M. Verleysen. Parameter-free kernel in extremelearning for non-linear support vector regression. Neurocomputing,74(16): 2526-2531, 2011.
    • (2011) Neurocomputing , vol.74 , Issue.16 , pp. 2526-2531
    • Frénay, B.1    Verleysen, M.2
  • 13
    • 0036791938 scopus 로고    scopus 로고
    • Generalized relevance learning vectorquantization
    • B. Hammer and T. Villmann. Generalized relevance learning vectorquantization. Neural Networks, 15(8-9):1059-1068, 2002.
    • (2002) Neural Networks , vol.15 , Issue.8-9 , pp. 1059-1068
    • Hammer, B.1    Villmann, T.2
  • 15
    • 84860237512 scopus 로고    scopus 로고
    • Functionalrelevance learning in generalized learning vector quantization
    • M. Kästner, B. Hammer, M. Biehl, and T. Villmann. Functionalrelevance learning in generalized learning vector quantization. Neurocomputing,90(9):85-95, 2012.
    • (2012) Neurocomputing , vol.90 , Issue.9 , pp. 85-95
    • Kästner, M.1    Hammer, B.2    Biehl, M.3    Villmann, T.4
  • 17
    • 0027632248 scopus 로고
    • Neuralgas'network for vector quantization and its application to time-seriesprediction
    • T. M. Martinetz, S. G. Berkovich, and K. J. Schulten. 'Neuralgas'network for vector quantization and its application to time-seriesprediction. IEEE Trans. on Neural Networks, 4(4):558-569, 1993.
    • (1993) IEEE Trans. on Neural Networks , vol.4 , Issue.4 , pp. 558-569
    • Martinetz, T.M.1    Berkovich, S.G.2    Schulten, K.J.3
  • 18
    • 0001500115 scopus 로고
    • Functions of positive and negative type and their connectionwith the theory of integral equations
    • J. Mercer. Functions of positive and negative type and their connectionwith the theory of integral equations. Philosophical Transactions ofthe Royal Society, London, A, 209:415-446, 1909.
    • (1909) Philosophical Transactions Ofthe Royal Society, London, A , vol.209 , pp. 415-446
    • Mercer, J.1
  • 21
    • 74049159263 scopus 로고    scopus 로고
    • The dissimilarity representation for patternrecognition: Foundations and applications
    • E. Pekalska and R. Duin. The Dissimilarity Representation for PatternRecognition: Foundations and Applications. World Scientific, 2006.
    • (2006) World Scientific
    • Pekalska, E.1    Duin, R.2
  • 24
    • 10044243405 scopus 로고    scopus 로고
    • Kernel neural gas algorithms withapplication to cluster analysis
    • A. K. Qin and P. N. Suganthan. Kernel neural gas algorithms withapplication to cluster analysis. In ICPR (4), pages 617-620, 2004.
    • (2004) ICPR , vol.4 , pp. 617-620
    • Qin, A.K.1    Suganthan, P.N.2
  • 25
    • 85156210800 scopus 로고    scopus 로고
    • Generalized learning vector quantization
    • D. S. Touretzky M. C. Mozer, and M. E. Hasselmo, editors MIT Press, Cambridge, MA, USA
    • A. Sato and K. Yamada. Generalized learning vector quantization. InD. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advancesin Neural Information Processing Systems 8. Proceedings of the 1995Conference, pages 423-9. MIT Press, Cambridge, MA, USA, 1996.
    • (1996) Advancesin Neural Information Processing Systems 8. Proceedings of the 1995Conference , pp. 423-429
    • Sato, A.1    Yamada, K.2
  • 29
    • 72249111970 scopus 로고    scopus 로고
    • Adaptive relevance matricesin learning vector quantization
    • P. Schneider, B. Hammer, and M. Biehl. Adaptive relevance matricesin learning vector quantization. Neural Computation, 21:3532-3561,2009.
    • (2009) Neural Computation , vol.21 , pp. 3532-3561
    • Schneider, P.1    Hammer, B.2    Biehl, M.3
  • 31
    • 0010786475 scopus 로고    scopus 로고
    • On the influence of the kernel on the consistency ofsupport vector machines
    • I. Steinwart. On the influence of the kernel on the consistency ofsupport vector machines. Journal of Machine Learning Research,2:67-93, 2001.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 67-93
    • Steinwart, I.1
  • 32
    • 79958244935 scopus 로고    scopus 로고
    • Divergence based vector quantization
    • T. Villmann and S. Haase. Divergence based vector quantization.Neural Computation, 23(5):1343-1392, 2011.
    • (2011) Neural Computation , vol.23 , Issue.5 , pp. 1343-1392
    • Villmann, T.1    Haase, S.2
  • 33
    • 84887110016 scopus 로고    scopus 로고
    • A note on gradient based learningin vector quantization using differentiable kernels for Hilbert andBanach spaces
    • (MLR-02-2012) ISSN:1865-3960
    • T. Villmann and S. Haase. A note on gradient based learningin vector quantization using differentiable kernels for Hilbert andBanach spaces. Machine Learning Reports, 6(MLR-02-2012):1-29, 2012. ISSN:1865-3960, http://www.techfak.uni-bielefeld.de/~fschleif/mlr/mlr-02-2012.pdf.
    • (2012) Machine Learning Reports , vol.6 , pp. 1-29
    • Villmann, T.1    Haase, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.