-
2
-
-
84861015285
-
High-throughput qualitycontrol of coffee varieties and blends by artificial neural networksand hyperspectral imaging
-
A. Backhaus, F. Bollenbeck, and U. Seiffert. High-throughput qualitycontrol of coffee varieties and blends by artificial neural networksand hyperspectral imaging. In Proceedings of the 1st InternationalCongress on Cocoa, Coffee and Tea, CoCoTea 2011, page acceptedfor publication, 2011.
-
(2011)
Proceedings of the 1st InternationalCongress on Cocoa, Coffee and Tea, CoCoTea 2011, Page Acceptedfor Publication
-
-
Backhaus, A.1
Bollenbeck, F.2
Seiffert, U.3
-
6
-
-
84865097368
-
Largemargin discriminative visualization by matrix relevance learning
-
H. Abbass D. Essam, and R. Sarker, editors Brisbane Los Alamitos IEEE Computer Society Press
-
M. Biehl, K. Bunte, F.-M. Schleif, P. Schneider, and T. Villmann. Largemargin discriminative visualization by matrix relevance learning. InH. Abbass, D. Essam, and R. Sarker, editors, Proc. of the InternationalJoint Conference on Neural Networks (IJCNN), Brisbane, pages 1873-1880, Los Alamitos, 2012. IEEE Computer Society Press.
-
(2012)
Proc. of the InternationalJoint Conference on Neural Networks (IJCNN)
, pp. 1873-1880
-
-
Biehl, M.1
Bunte, K.2
Schleif, F.-M.3
Schneider, P.4
Villmann, T.5
-
7
-
-
78049353359
-
Stationarity of matrix relevance learning vector quantization
-
MLR-01-2009 ISSN:1865-3960
-
M. Biehl, B. Hammer, F.-M. Schleif, P. Schneider, and T. . Villmann.Stationarity of matrix relevance learning vector quantization. MachineLearning Reports, 3(MLR-01-2009):1-17, 2009. ISSN:1865-3960,http://www. uni-leipzig.de/~compint/mlr/mlr012009:pdf:
-
(2009)
MachineLearning Reports
, vol.3
, pp. 1-17
-
-
Biehl, M.1
Hammer, B.2
Schleif, F.-M.3
Schneider, P.4
Villmann, T.5
-
8
-
-
77649237216
-
Adaptivelocal dissimilarity measures for discriminative dimension reduction oflabeled data
-
K. Bunte, B. Hammer, A. Wismüller, and M. Biehl. Adaptivelocal dissimilarity measures for discriminative dimension reduction oflabeled data. Neurocomputing, 73:1074-1092, 2010.
-
(2010)
Neurocomputing
, vol.73
, pp. 1074-1092
-
-
Bunte, K.1
Hammer, B.2
Wismüller, A.3
Biehl, M.4
-
9
-
-
84855962168
-
Limited rank matrix learning discriminative dimensionreduction and visualization
-
K. Bunte, P. Schneider, B. Hammer, F.-M. S. T. Villmann, andM. Biehl. Limited rank matrix learning, discriminative dimensionreduction and visualization. Neural Networks, 26(1):159-173, 2012.
-
(2012)
Neural Networks
, vol.26
, Issue.1
, pp. 159-173
-
-
Bunte, K.1
Schneider, P.2
Hammer, B.3
Villmann, F.-M.S.T.4
Biehl, M.5
-
10
-
-
79953842056
-
Margin analysisof the LVQ algorithm
-
S. Becker, S. Thrun, and K. Obermayer,eds Cambridge, MA MIT Press
-
K. Crammer, R. Gilad-Bachrach, A.Navot, and A.Tishby. Margin analysisof the LVQ algorithm. In S. Becker, S. Thrun, and K. Obermayer,eds., Advances in Neural Information Processing (Proc. NIPS 2002),volume 15, pages 462-469, Cambridge, MA, 2003. MIT Press.
-
(2003)
Advances in Neural Information Processing (Proc. NIPS 2002)
, vol.15
, pp. 462-469
-
-
Crammer, K.1
Gilad-Bachrach, R.2
Navot, A.3
Tishby, A.4
-
11
-
-
80051670315
-
Parameter-free kernel in extremelearning for non-linear support vector regression
-
B. Frénay and M. Verleysen. Parameter-free kernel in extremelearning for non-linear support vector regression. Neurocomputing,74(16): 2526-2531, 2011.
-
(2011)
Neurocomputing
, vol.74
, Issue.16
, pp. 2526-2531
-
-
Frénay, B.1
Verleysen, M.2
-
13
-
-
0036791938
-
Generalized relevance learning vectorquantization
-
B. Hammer and T. Villmann. Generalized relevance learning vectorquantization. Neural Networks, 15(8-9):1059-1068, 2002.
-
(2002)
Neural Networks
, vol.15
, Issue.8-9
, pp. 1059-1068
-
-
Hammer, B.1
Villmann, T.2
-
15
-
-
84860237512
-
Functionalrelevance learning in generalized learning vector quantization
-
M. Kästner, B. Hammer, M. Biehl, and T. Villmann. Functionalrelevance learning in generalized learning vector quantization. Neurocomputing,90(9):85-95, 2012.
-
(2012)
Neurocomputing
, vol.90
, Issue.9
, pp. 85-95
-
-
Kästner, M.1
Hammer, B.2
Biehl, M.3
Villmann, T.4
-
17
-
-
0027632248
-
Neuralgas'network for vector quantization and its application to time-seriesprediction
-
T. M. Martinetz, S. G. Berkovich, and K. J. Schulten. 'Neuralgas'network for vector quantization and its application to time-seriesprediction. IEEE Trans. on Neural Networks, 4(4):558-569, 1993.
-
(1993)
IEEE Trans. on Neural Networks
, vol.4
, Issue.4
, pp. 558-569
-
-
Martinetz, T.M.1
Berkovich, S.G.2
Schulten, K.J.3
-
18
-
-
0001500115
-
Functions of positive and negative type and their connectionwith the theory of integral equations
-
J. Mercer. Functions of positive and negative type and their connectionwith the theory of integral equations. Philosophical Transactions ofthe Royal Society, London, A, 209:415-446, 1909.
-
(1909)
Philosophical Transactions Ofthe Royal Society, London, A
, vol.209
, pp. 415-446
-
-
Mercer, J.1
-
20
-
-
79953107371
-
Divergence based classification in learningvector quantization
-
E. Mwebaze, P. Schneider, F.-M. Schleif, J. Aduwo, J. Quinn, S. Haase,T. Villmann, and M. Biehl. Divergence based classification in learningvector quantization. Neurocomputing, 74(9):1429-1435, 2011.
-
(2011)
Neurocomputing
, vol.74
, Issue.9
, pp. 1429-1435
-
-
Mwebaze, E.1
Schneider, P.2
Schleif, F.-M.3
Aduwo, J.4
Quinn, J.5
Haase, S.6
Villmann, T.7
Biehl, M.8
-
21
-
-
74049159263
-
The dissimilarity representation for patternrecognition: Foundations and applications
-
E. Pekalska and R. Duin. The Dissimilarity Representation for PatternRecognition: Foundations and Applications. World Scientific, 2006.
-
(2006)
World Scientific
-
-
Pekalska, E.1
Duin, R.2
-
24
-
-
10044243405
-
Kernel neural gas algorithms withapplication to cluster analysis
-
A. K. Qin and P. N. Suganthan. Kernel neural gas algorithms withapplication to cluster analysis. In ICPR (4), pages 617-620, 2004.
-
(2004)
ICPR
, vol.4
, pp. 617-620
-
-
Qin, A.K.1
Suganthan, P.N.2
-
25
-
-
85156210800
-
Generalized learning vector quantization
-
D. S. Touretzky M. C. Mozer, and M. E. Hasselmo, editors MIT Press, Cambridge, MA, USA
-
A. Sato and K. Yamada. Generalized learning vector quantization. InD. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advancesin Neural Information Processing Systems 8. Proceedings of the 1995Conference, pages 423-9. MIT Press, Cambridge, MA, USA, 1996.
-
(1996)
Advancesin Neural Information Processing Systems 8. Proceedings of the 1995Conference
, pp. 423-429
-
-
Sato, A.1
Yamada, K.2
-
26
-
-
82655173326
-
Efficientkernelized prototype based classification
-
F.-M. Schleif, T. Villmann, B. Hammer, and P. Schneider. Efficientkernelized prototype based classification. International Journal ofNeural Systems, 21(6):443-457, 2011.
-
(2011)
International Journal OfNeural Systems
, vol.21
, Issue.6
, pp. 443-457
-
-
Schleif, F.-M.1
Villmann, T.2
Hammer, B.3
Schneider, P.4
-
28
-
-
77951917542
-
Regularization in matrix relevance learning
-
P. Schneider, K. Bunte, H. Stiekema, B. Hammer, T. Villmann,and M. Biehl. Regularization in matrix relevance learning. IEEETransactions on Neural Networks, 21(5):831-840, 2010.
-
(2010)
IEEETransactions on Neural Networks
, vol.21
, Issue.5
, pp. 831-840
-
-
Schneider, P.1
Bunte, K.2
Stiekema, H.3
Hammer, B.4
Villmann, T.5
Biehl, M.6
-
29
-
-
72249111970
-
Adaptive relevance matricesin learning vector quantization
-
P. Schneider, B. Hammer, and M. Biehl. Adaptive relevance matricesin learning vector quantization. Neural Computation, 21:3532-3561,2009.
-
(2009)
Neural Computation
, vol.21
, pp. 3532-3561
-
-
Schneider, P.1
Hammer, B.2
Biehl, M.3
-
30
-
-
78649307314
-
Clustering ofcrop phenotypes by means of hyperspectral signatures using artificialneural networks
-
IEEE Press
-
U. Seiffert, F. Bollenbeck, H.-P. Mock, and A. Matros. Clustering ofcrop phenotypes by means of hyperspectral signatures using artificialneural networks. In Proceedings of the 2nd IEEE Workshop onHyperspectral Imaging and Signal Processing: Evolution in RemoteSensing WHISPERS 2010, pages 31-34. IEEE Press, 2010.
-
(2010)
Proceedings of the 2nd IEEE Workshop OnHyperspectral Imaging and Signal Processing: Evolution in RemoteSensing WHISPERS 2010
, pp. 31-34
-
-
Seiffert, U.1
Bollenbeck, F.2
Mock, H.-P.3
Matros, A.4
-
31
-
-
0010786475
-
On the influence of the kernel on the consistency ofsupport vector machines
-
I. Steinwart. On the influence of the kernel on the consistency ofsupport vector machines. Journal of Machine Learning Research,2:67-93, 2001.
-
(2001)
Journal of Machine Learning Research
, vol.2
, pp. 67-93
-
-
Steinwart, I.1
-
32
-
-
79958244935
-
Divergence based vector quantization
-
T. Villmann and S. Haase. Divergence based vector quantization.Neural Computation, 23(5):1343-1392, 2011.
-
(2011)
Neural Computation
, vol.23
, Issue.5
, pp. 1343-1392
-
-
Villmann, T.1
Haase, S.2
-
33
-
-
84887110016
-
A note on gradient based learningin vector quantization using differentiable kernels for Hilbert andBanach spaces
-
(MLR-02-2012) ISSN:1865-3960
-
T. Villmann and S. Haase. A note on gradient based learningin vector quantization using differentiable kernels for Hilbert andBanach spaces. Machine Learning Reports, 6(MLR-02-2012):1-29, 2012. ISSN:1865-3960, http://www.techfak.uni-bielefeld.de/~fschleif/mlr/mlr-02-2012.pdf.
-
(2012)
Machine Learning Reports
, vol.6
, pp. 1-29
-
-
Villmann, T.1
Haase, S.2
-
34
-
-
84873579055
-
Gradient based learning invector quantization using differentiable kernels
-
P. Estevecz, editor page submitted, Berlin Springer
-
T. Villmann, S. Haase, and M. Kästner. Gradient based learning invector quantization using differentiable kernels. In P. Estevecz, editor,Proc. of the 9th Workshop on Self-Organizing Maps, Santiago de Chile,LNCS, page submitted, Berlin, 2012. Springer.
-
(2012)
Proc. of the 9th Workshop on Self-Organizing Maps, Santiago de Chile,LNCS
-
-
Villmann, T.1
Haase, S.2
Kästner, M.3
|