-
1
-
-
33847172327
-
Clustering by passing messages between data points
-
January
-
Brendan J J. Frey and Delbert Dueck. Clustering by passing messages between data points. Science, pages 972-976, January 2007.
-
(2007)
Science
, pp. 972-976
-
-
Frey, J.J.B.1
Dueck, D.2
-
2
-
-
0038159964
-
Soft learning vector quantization
-
Sambu Seo and Klaus Obermayer. Soft learning vector quantization. Neural Computation, 15(7):1589-1604, 2003.
-
(2003)
Neural Computation
, vol.15
, Issue.7
, pp. 1589-1604
-
-
Seo, S.1
Obermayer, K.2
-
3
-
-
79251587451
-
Sequence alignment, mutual information, and dissimilarity measures for constructing phylogenies
-
Orion Penner, Peter Grassberger, and Maya Paczuski. Sequence alignment, mutual information, and dissimilarity measures for constructing phylogenies. PLOS ONE, 6(1), 2011.
-
(2011)
PLOS ONE
, vol.6
, Issue.1
-
-
Penner, O.1
Grassberger, P.2
Paczuski, M.3
-
4
-
-
33645324459
-
Fast and reliable maldi-tof ms- based microorganism identification
-
Thomas Maier, Stefan Klepel, Uwe Renner, and Markus Kostrzewa. Fast and reliable maldi-tof ms- based microorganism identification. Nature Methods, 3, 2006.
-
(2006)
Nature Methods
, vol.3
-
-
Maier, T.1
Klepel, S.2
Renner, U.3
Kostrzewa, M.4
-
5
-
-
33745780500
-
Network motifs: Structure does not determine function
-
Piers J Ingram, Michael PH Stumpf, and Jaroslav Stark. Network motifs: structure does not determine function. BMC Genomics, 7:108, 2006.
-
(2006)
BMC Genomics
, vol.7
, pp. 108
-
-
Ingram, P.J.1
Stumpf, M.P.H.2
Stark, J.3
-
7
-
-
58149529725
-
Guest editors' introduction: Special issue on mining and learning with graphs
-
Thomas Gärtner and Gemma C. Garriga. Guest editors' introduction: special issue on mining and learning with graphs. Machine Learning, 75(1):1-2, 2009.
-
(2009)
Machine Learning
, vol.75
, Issue.1
, pp. 1-2
-
-
Gärtner, T.1
Garriga, G.C.2
-
10
-
-
85162530133
-
Large margin multi-task metric learning
-
John D. Lafferty, Christopher K. I. Williams, John Shawe-Taylor, Richard S. Zemel, and Aron Culotta, editors. Curran Associates, Inc.
-
Shibin Parameswaran and Kilian Q. Weinberger. Large margin multi-task metric learning. In John D. Lafferty, Christopher K. I. Williams, John Shawe-Taylor, Richard S. Zemel, and Aron Culotta, editors, NIPS, pages 1867-1875. Curran Associates, Inc., 2010.
-
(2010)
NIPS
, pp. 1867-1875
-
-
Parameswaran, S.1
Weinberger, K.Q.2
-
11
-
-
72249111970
-
Adaptive relevance matrices in learning vector quantization
-
Petra Schneider, Michael Biehl, and Barbara Hammer. Adaptive relevance matrices in learning vector quantization. Neural Computation, 21(12):3532-3561, 2009.
-
(2009)
Neural Computation
, vol.21
, Issue.12
, pp. 3532-3561
-
-
Schneider, P.1
Biehl, M.2
Hammer, B.3
-
12
-
-
10044291614
-
A novel kernel prototype-based learning algorithm
-
A. Kai Qin and Ponnuthurai N. Suganthan. A novel kernel prototype-based learning algorithm. In ICPR (4), pages 621-624, 2004.
-
(2004)
ICPR
, Issue.4
, pp. 621-624
-
-
Kai Qin, A.1
Suganthan, P.N.2
-
14
-
-
85156210264
-
Margin analysis of the lvq algorithm
-
Koby Crammer, Ran Gilad-Bachrach, Amir Navot, and Naftali Tishby. Margin analysis of the lvq algorithm. NIPS, pages 462-469, 2002.
-
(2002)
NIPS
, pp. 462-469
-
-
Crammer, K.1
Gilad-Bachrach, R.2
Navot, A.3
Tishby, N.4
-
15
-
-
0344520304
-
Soft nearest prototype classification
-
March
-
Sambu Seo, Mathias Bode, and Klaus Obermayer. Soft nearest prototype classification. IEEE TRANSACTIONS ON NEURAL NETWORKS, 14(2):390-398, March 2003.
-
(2003)
IEEE Transactions on Neural Networks
, vol.14
, Issue.2
, pp. 390-398
-
-
Seo, S.1
Bode, M.2
Obermayer, K.3
-
16
-
-
84903538735
-
Kernelized vector quantization in gradient-descent learning
-
page in press
-
T. Villmann, S. Haase, and M. Kaden. Kernelized vector quantization in gradient-descent learning. Neurocomputing, page in press, 2014.
-
(2014)
Neurocomputing
-
-
Villmann, T.1
Haase, S.2
Kaden, M.3
-
18
-
-
70449713460
-
Distance learning in discriminative vector quantization
-
P. Schneider, M. Biehl, and B. Hammer. Distance learning in discriminative vector quantization. Neural Computation, 21:2942-2969, 2009.
-
(2009)
Neural Computation
, vol.21
, pp. 2942-2969
-
-
Schneider, P.1
Biehl, M.2
Hammer, B.3
-
20
-
-
64149100367
-
Similarity-based classification: Concepts and algorithms
-
Y. Chen, E. K. Garcia, M. R. Gupta, A. Rahimi, and L. Cazzanti. Similarity-based classification: Concepts and algorithms. Journal of Machine Learning Research, 10:747-776, 2009.
-
(2009)
Journal of Machine Learning Research
, vol.10
, pp. 747-776
-
-
Chen, Y.1
Garcia, E.K.2
Gupta, M.R.3
Rahimi, A.4
Cazzanti, L.5
-
21
-
-
84961992997
-
About learning of supervised generative models for dissimilarity data
-
MLR-05-2013
-
D. Nebel, B. Hammer, and T. Villmann. About learning of supervised generative models for dissimilarity data. Machine Learning Reports, 7(MLR-05-2013):1-19, 2013. ISSN:1865-3960, http://www.techfak.uni-bielefeld.de/~fschleif/mlr/mlr-05-2013.pdf.
-
(2013)
Machine Learning Reports
, vol.7
, pp. 1-19
-
-
Nebel, D.1
Hammer, B.2
Villmann, T.3
-
23
-
-
0002788893
-
A view of the em algorithm that justifies incremental, sparse, and other variants
-
MIT Press
-
R. Neal and G. Hinton. A view of the EM algorithm that justifies incremental, sparse, and other variants. In Learning in Graphical Models, pages 355-368. MIT Press, 1999.
-
(1999)
Learning in Graphical Models
, pp. 355-368
-
-
Neal, R.1
Hinton, G.2
-
24
-
-
84893386186
-
A median variant of generalized learning vector quantization
-
M. Lee, A. Hirose, Z.-G. Hou, and R.M. Kil, editors, volume II of LNCS, Berlin. Springer-Verlag
-
D. Nebel and T. Villmann. A median variant of generalized learning vector quantization. In M. Lee, A. Hirose, Z.-G. Hou, and R.M. Kil, editors, Proceedings of International Conference on Neural Information Processing (ICONIP), volume II of LNCS, pages 19-26, Berlin, 2013. Springer-Verlag.
-
(2013)
Proceedings of International Conference on Neural Information Processing (ICONIP)
, pp. 19-26
-
-
Nebel, D.1
Villmann, T.2
-
25
-
-
85156210800
-
Generalized learning vector quantization
-
A. Sato and K. Yamada. Generalized learning vector quantization. NIPS, 1995.
-
(1995)
NIPS
-
-
Sato, A.1
Yamada, K.2
|