메뉴 건너뛰기




Volumn , Issue , 2014, Pages 35-40

Supervised generative models for learning dissimilarity data

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARKING; LEARNING SYSTEMS; NEURAL NETWORKS;

EID: 84962026959     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (5)

References (25)
  • 1
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by passing messages between data points
    • January
    • Brendan J J. Frey and Delbert Dueck. Clustering by passing messages between data points. Science, pages 972-976, January 2007.
    • (2007) Science , pp. 972-976
    • Frey, J.J.B.1    Dueck, D.2
  • 2
    • 0038159964 scopus 로고    scopus 로고
    • Soft learning vector quantization
    • Sambu Seo and Klaus Obermayer. Soft learning vector quantization. Neural Computation, 15(7):1589-1604, 2003.
    • (2003) Neural Computation , vol.15 , Issue.7 , pp. 1589-1604
    • Seo, S.1    Obermayer, K.2
  • 3
    • 79251587451 scopus 로고    scopus 로고
    • Sequence alignment, mutual information, and dissimilarity measures for constructing phylogenies
    • Orion Penner, Peter Grassberger, and Maya Paczuski. Sequence alignment, mutual information, and dissimilarity measures for constructing phylogenies. PLOS ONE, 6(1), 2011.
    • (2011) PLOS ONE , vol.6 , Issue.1
    • Penner, O.1    Grassberger, P.2    Paczuski, M.3
  • 4
    • 33645324459 scopus 로고    scopus 로고
    • Fast and reliable maldi-tof ms- based microorganism identification
    • Thomas Maier, Stefan Klepel, Uwe Renner, and Markus Kostrzewa. Fast and reliable maldi-tof ms- based microorganism identification. Nature Methods, 3, 2006.
    • (2006) Nature Methods , vol.3
    • Maier, T.1    Klepel, S.2    Renner, U.3    Kostrzewa, M.4
  • 5
    • 33745780500 scopus 로고    scopus 로고
    • Network motifs: Structure does not determine function
    • Piers J Ingram, Michael PH Stumpf, and Jaroslav Stark. Network motifs: structure does not determine function. BMC Genomics, 7:108, 2006.
    • (2006) BMC Genomics , vol.7 , pp. 108
    • Ingram, P.J.1    Stumpf, M.P.H.2    Stark, J.3
  • 7
    • 58149529725 scopus 로고    scopus 로고
    • Guest editors' introduction: Special issue on mining and learning with graphs
    • Thomas Gärtner and Gemma C. Garriga. Guest editors' introduction: special issue on mining and learning with graphs. Machine Learning, 75(1):1-2, 2009.
    • (2009) Machine Learning , vol.75 , Issue.1 , pp. 1-2
    • Gärtner, T.1    Garriga, G.C.2
  • 10
    • 85162530133 scopus 로고    scopus 로고
    • Large margin multi-task metric learning
    • John D. Lafferty, Christopher K. I. Williams, John Shawe-Taylor, Richard S. Zemel, and Aron Culotta, editors. Curran Associates, Inc.
    • Shibin Parameswaran and Kilian Q. Weinberger. Large margin multi-task metric learning. In John D. Lafferty, Christopher K. I. Williams, John Shawe-Taylor, Richard S. Zemel, and Aron Culotta, editors, NIPS, pages 1867-1875. Curran Associates, Inc., 2010.
    • (2010) NIPS , pp. 1867-1875
    • Parameswaran, S.1    Weinberger, K.Q.2
  • 11
    • 72249111970 scopus 로고    scopus 로고
    • Adaptive relevance matrices in learning vector quantization
    • Petra Schneider, Michael Biehl, and Barbara Hammer. Adaptive relevance matrices in learning vector quantization. Neural Computation, 21(12):3532-3561, 2009.
    • (2009) Neural Computation , vol.21 , Issue.12 , pp. 3532-3561
    • Schneider, P.1    Biehl, M.2    Hammer, B.3
  • 12
    • 10044291614 scopus 로고    scopus 로고
    • A novel kernel prototype-based learning algorithm
    • A. Kai Qin and Ponnuthurai N. Suganthan. A novel kernel prototype-based learning algorithm. In ICPR (4), pages 621-624, 2004.
    • (2004) ICPR , Issue.4 , pp. 621-624
    • Kai Qin, A.1    Suganthan, P.N.2
  • 16
    • 84903538735 scopus 로고    scopus 로고
    • Kernelized vector quantization in gradient-descent learning
    • page in press
    • T. Villmann, S. Haase, and M. Kaden. Kernelized vector quantization in gradient-descent learning. Neurocomputing, page in press, 2014.
    • (2014) Neurocomputing
    • Villmann, T.1    Haase, S.2    Kaden, M.3
  • 17
    • 84894083979 scopus 로고    scopus 로고
    • Learning vector quantization for (dis-)similarities
    • (in press)
    • Barbara Hammer, Daniela Hofmann, Frank-Michael Schleif, and Xibin Zhu. Learning vector quantization for (dis-)similarities. Neurocomputing (in press).
    • Neurocomputing
    • Hammer, B.1    Hofmann, D.2    Schleif, F.-M.3    Zhu, X.4
  • 18
    • 70449713460 scopus 로고    scopus 로고
    • Distance learning in discriminative vector quantization
    • P. Schneider, M. Biehl, and B. Hammer. Distance learning in discriminative vector quantization. Neural Computation, 21:2942-2969, 2009.
    • (2009) Neural Computation , vol.21 , pp. 2942-2969
    • Schneider, P.1    Biehl, M.2    Hammer, B.3
  • 21
    • 84961992997 scopus 로고    scopus 로고
    • About learning of supervised generative models for dissimilarity data
    • MLR-05-2013
    • D. Nebel, B. Hammer, and T. Villmann. About learning of supervised generative models for dissimilarity data. Machine Learning Reports, 7(MLR-05-2013):1-19, 2013. ISSN:1865-3960, http://www.techfak.uni-bielefeld.de/~fschleif/mlr/mlr-05-2013.pdf.
    • (2013) Machine Learning Reports , vol.7 , pp. 1-19
    • Nebel, D.1    Hammer, B.2    Villmann, T.3
  • 23
    • 0002788893 scopus 로고    scopus 로고
    • A view of the em algorithm that justifies incremental, sparse, and other variants
    • MIT Press
    • R. Neal and G. Hinton. A view of the EM algorithm that justifies incremental, sparse, and other variants. In Learning in Graphical Models, pages 355-368. MIT Press, 1999.
    • (1999) Learning in Graphical Models , pp. 355-368
    • Neal, R.1    Hinton, G.2
  • 24
    • 84893386186 scopus 로고    scopus 로고
    • A median variant of generalized learning vector quantization
    • M. Lee, A. Hirose, Z.-G. Hou, and R.M. Kil, editors, volume II of LNCS, Berlin. Springer-Verlag
    • D. Nebel and T. Villmann. A median variant of generalized learning vector quantization. In M. Lee, A. Hirose, Z.-G. Hou, and R.M. Kil, editors, Proceedings of International Conference on Neural Information Processing (ICONIP), volume II of LNCS, pages 19-26, Berlin, 2013. Springer-Verlag.
    • (2013) Proceedings of International Conference on Neural Information Processing (ICONIP) , pp. 19-26
    • Nebel, D.1    Villmann, T.2
  • 25
    • 85156210800 scopus 로고
    • Generalized learning vector quantization
    • A. Sato and K. Yamada. Generalized learning vector quantization. NIPS, 1995.
    • (1995) NIPS
    • Sato, A.1    Yamada, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.