메뉴 건너뛰기




Volumn 23, Issue 5, 2011, Pages 1343-1392

Divergence-based vector quantization

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; ARTIFICIAL INTELLIGENCE; ARTIFICIAL NEURAL NETWORK; AUTOMATED PATTERN RECOGNITION; COGNITION; COMPUTER SIMULATION; HUMAN; MATHEMATICAL PHENOMENA; METHODOLOGY; PHYSIOLOGY; STANDARD; THEORETICAL MODEL;

EID: 79958244935     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/NECO_a_00110     Document Type: Article
Times cited : (69)

References (71)
  • 1
    • 61849124176 scopus 로고    scopus 로고
    • Patch clustering for massive data sets
    • Alex, N., Hasenfuss, A., & Hammer, B. (2009). Patch clustering for massive data sets. Neurocomputing, 72 (7-9), 1455-1469.
    • (2009) Neurocomputing , vol.72 , Issue.7-9 , pp. 1455-1469
    • Alex, N.1    Hasenfuss, A.2    Hammer, B.3
  • 6
    • 0001640740 scopus 로고    scopus 로고
    • Robust and efficient estimation by minimising a density power divergence
    • Basu, A., Harris, I., Hjort, N., & Jones, M. (1998). Robust and efficient estimation by minimising a density power divergence. Biometrika, 85(3), 549-559.
    • (1998) Biometrika , vol.85 , Issue.3 , pp. 549-559
    • Basu, A.1    Harris, I.2    Hjort, N.3    Jones, M.4
  • 9
    • 49949144765 scopus 로고
    • The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming
    • Bregman, L. (1967). The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics, 7 (3), 200-217.
    • (1967) USSR Computational Mathematics and Mathematical Physics , vol.7 , Issue.3 , pp. 200-217
    • Bregman, L.1
  • 10
    • 84887014256 scopus 로고    scopus 로고
    • Exploratory observation machine (XOM) with Kullback-Leibler divergence for dimensionality reduction and visualziation
    • M. Verleysen (Ed.). Evere, Belgium: d-side publications
    • Bunte, K., Hammer, B., Villmann, T., Biehl, M., & Wismüller, A. (2010). Exploratory observation machine (XOM) with Kullback-Leibler divergence for dimensionality reduction and visualziation. InM. Verleysen (Ed.), Proc. of European Symposium on Artificial Neural Networks (pp. 87-92). Evere, Belgium: d-side publications.
    • (2010) Proc. of European Symposium on Artificial Neural Networks , pp. 87-92
    • Bunte, K.1    Hammer, B.2    Villmann, T.3    Biehl, M.4    Wismüller, A.5
  • 11
    • 77956416620 scopus 로고    scopus 로고
    • Families of alpha-beta-and gamma-divergences: Flexible and robust measures of similarities
    • Cichocki, A., & Amari, S.-I. (2010). Families of alpha-beta-and gamma-divergences: Flexible and robust measures of similarities. Entropy, 12, 1532-1568.
    • (2010) Entropy , vol.12 , pp. 1532-1568
    • Cichocki, A.1    Amari, S.-I.2
  • 14
    • 85156210264 scopus 로고    scopus 로고
    • Margin analysis of the LVQ algorithm
    • S. Becker, S. Thrün, & K. Obermayer (Eds.) Cambridge, MA: MIT Press
    • Crammer, K., Gilad-Bachrach, R., Navot, A., & Tishby, A. (2002). Margin analysis of the LVQ algorithm. In S. Becker, S. Thrün, & K. Obermayer (Eds.), Advances in neural information processing systems, 15 (pp. 462-468): Cambridge, MA: MIT Press.
    • (2002) Advances in neural information processing systems , vol.15 , pp. 462-468
    • Crammer, K.1    Gilad-Bachrach, R.2    Navot, A.3    Tishby, A.4
  • 15
    • 0000489740 scopus 로고
    • Information-type measures of differences of probability distributions and indirect observations
    • Csiszár, I. (1967). Information-type measures of differences of probability distributions and indirect observations. Studia Sci. Math. Hungaria, 2, 299-318.
    • (1967) Studia Sci. Math. Hungaria , vol.2 , pp. 299-318
    • Csiszár, I.1
  • 19
    • 55349120149 scopus 로고    scopus 로고
    • Functional Bregman divergence and Bayesian estimation of distributions
    • Frigyik, B., Srivastava, S., & Gupta, M. (2008a). Functional Bregman divergence and Bayesian estimation of distributions. IEEE Transactions on Information Theory, 54(11), 5130-5139.
    • (2008) IEEE Transactions on Information Theory , vol.54 , Issue.11 , pp. 5130-5139
    • Frigyik, B.1    Srivastava, S.2    Gupta, M.3
  • 20
    • 55349098025 scopus 로고    scopus 로고
    • (Tech. Rep. UWEETR-2008-0001). Seattle: Department of Electrical Engineering, University ofWashington
    • Frigyik, B. A., Srivastava, S., & Gupta, M. (2008b). An introduction to functional derivatives (Tech. Rep. UWEETR-2008-0001). Seattle: Department of Electrical Engineering, University ofWashington.
    • (2008) An introduction to functional derivatives
    • Frigyik, B.A.1    Srivastava, S.2    Gupta, M.3
  • 21
    • 52749094881 scopus 로고    scopus 로고
    • Robust parameter estimation with a small bias against heavy contamination
    • Fujisawa, H., & Eguchi, S. (2008). Robust parameter estimation with a small bias against heavy contamination. Journal of Multivariate Analysis, 99, 2053-2081.
    • (2008) Journal of Multivariate Analysis , vol.99 , pp. 2053-2081
    • Fujisawa, H.1    Eguchi, S.2
  • 22
    • 0344972928 scopus 로고    scopus 로고
    • Self-organizing maps: Generalizations and new optimization techniques
    • Graepel, T., Burger, M., & Obermayer, K. (1998). Self-organizing maps: Generalizations and new optimization techniques. Neurocomputing, 21(1-3), 173-190.
    • (1998) Neurocomputing , vol.21 , Issue.1-3 , pp. 173-190
    • Graepel, T.1    Burger, M.2    Obermayer, K.3
  • 23
    • 0036791938 scopus 로고    scopus 로고
    • Generalized relevance learning vector quantization
    • Hammer, B., & Villmann, T. (2002). Generalized relevance learning vector quantization. Neural Networks, 15(8-9), 1059-1068.
    • (2002) Neural Networks , vol.15 , Issue.8-9 , pp. 1059-1068
    • Hammer, B.1    Villmann, T.2
  • 25
    • 0002059002 scopus 로고    scopus 로고
    • Energy functions for self-organizing maps
    • E. Oja & S. Kaski (Eds.), Amsterdam: Elsevier
    • Heskes, T. (1999). Energy functions for self-organizing maps. In E. Oja & S. Kaski (Eds.), Kohonen maps (pp. 303-316). Amsterdam: Elsevier.
    • (1999) Kohonen maps , pp. 303-316
    • Heskes, T.1
  • 27
    • 0036673228 scopus 로고    scopus 로고
    • Joint entropy maximization in kernel-based topographic maps
    • Hulle, M.M.V. (2002a). Joint entropy maximization in kernel-based topographic maps. Neural Computation, 14(8), 1887-1906.
    • (2002) Neural Computation , vol.14 , Issue.8 , pp. 1887-1906
    • Hulle, M.M.V.1
  • 28
    • 0036791873 scopus 로고    scopus 로고
    • Kernel-based topographic map formation achieved with an information theoretic approach
    • Hulle, M.M.V. (2002b). Kernel-based topographic map formation achieved with an information theoretic approach. Neural Networks, 15, 1029-1039.
    • (2002) Neural Networks , vol.15 , pp. 1029-1039
    • Hulle, M.M.V.1
  • 29
    • 0008652732 scopus 로고
    • Analysis synthesis telephony based on the maximum likelihood method
    • J. Flanagan & R. Rabiner (Eds.). Stroudsburg, PA: Dowden, Hutchinson, & Ross
    • Itakura, F., & Saito, S. (1973). Analysis synthesis telephony based on the maximum likelihood method. In J. Flanagan & R. Rabiner (Eds.), Speech synthesis (pp. 289-292). Stroudsburg, PA: Dowden, Hutchinson, & Ross.
    • (1973) Speech synthesis , pp. 289-292
    • Itakura, F.1    Saito, S.2
  • 30
    • 58049101106 scopus 로고    scopus 로고
    • Bregman divergences and the self organising map
    • C. Fyfe, D. Kim, S.-Y., Lee, & H. Yin (Eds.). New York: Springer
    • Jang, E., Fyfe, C., & Ko,H. (2008). Bregman divergences and the self organising map. In C. Fyfe, D. Kim, S.-Y., Lee, & H. Yin (Eds.), Intelligent data engineering and automated learning (pp. 452-458). New York: Springer.
    • (2008) Intelligent data engineering and automated learning , pp. 452-458
    • Jang, E.1    Fyfe, C.2    Ko, H.3
  • 32
    • 33750503776 scopus 로고    scopus 로고
    • The Cauchy-Schwarz divergence and Parzen windowing: Connections to graph theory and Mercer kernels
    • Jenssen, R., Principe, J., Erdogmus, D., & Eltoft, T. (2006). The Cauchy-Schwarz divergence and Parzen windowing: Connections to graph theory and Mercer kernels. Journal of the Franklin Institute, 343(6), 614-629.
    • (2006) Journal of the Franklin Institute , vol.343 , Issue.6 , pp. 614-629
    • Jenssen, R.1    Principe, J.2    Erdogmus, D.3    Eltoft, T.4
  • 35
    • 79958281736 scopus 로고    scopus 로고
    • (2nd ext. ed.). New York: Springer
    • Kohonen, T. (1997). Self-organizing maps (2nd ext. ed.). New York: Springer.
    • (1997) Self-organizing maps
    • Kohonen, T.1
  • 37
    • 70349144059 scopus 로고    scopus 로고
    • Bregman divergences and multi-dimensional scaling
    • M. Köppen, N., Kasabov, & N. G. Coghill (Eds.). New York: Springer
    • Lai, P., & Fyfe, C. (2009). Bregman divergences and multi-dimensional scaling. In M. K̈oppen, N., Kasabov, & N. G. Coghill (Eds.), Proceedings of the International Conference on Information Processing 2008 (pp. 935-942). New York: Springer.
    • (2009) Proceedings of the International Conference on Information Processing 2008 , pp. 935-942
    • Lai, P.1    Fyfe, C.2
  • 38
    • 84890262130 scopus 로고    scopus 로고
    • Generalization of the l p norm for time series and its application to self-organizing maps
    • M. Cottrell (Ed.). Paris: Sorbonne
    • Lee, J., & Verleysen, M. (2005). Generalization of the l p norm for time series and its application to self-organizing maps. In M. Cottrell (Ed.), Proc. of Workshop on Self-Organizing Maps (pp. 733-740). Paris: Sorbonne.
    • (2005) Proc. of Workshop on Self-Organizing Maps , pp. 733-740
    • Lee, J.1    Verleysen, M.2
  • 42
    • 33947426775 scopus 로고    scopus 로고
    • On divergences and informations in statistics and information theory
    • Liese, F., & Vajda, I. (2006). On divergences and informations in statistics and information theory. IEEE Transactions on Information Theory, 52(10), 4394-4412.
    • (2006) IEEE Transactions on Information Theory , vol.52 , Issue.10 , pp. 4394-4412
    • Liese, F.1    Vajda, I.2
  • 45
    • 0027632248 scopus 로고
    • "Neural-gas" network for vector quantization and its application to time-series prediction
    • Martinetz, T.M., Berkovich, S. G., & Schulten, K. J. (1993). "Neural-gas" network for vector quantization and its application to time-series prediction. IEEE Trans. on Neural Networks, 4(4), 558-569.
    • (1993) IEEE Trans. on Neural Networks , vol.4 , Issue.4 , pp. 558-569
    • Martinetz, T.M.1    Berkovich, S.G.2    Schulten, K.J.3
  • 46
    • 0040673441 scopus 로고    scopus 로고
    • Robust blind source separation by beta divergence
    • Minami, M., & Eguchi, S. (2002). Robust blind source separation by beta divergence. Neural Computation, 14, 1859-1886.
    • (2002) Neural Computation , vol.14 , pp. 1859-1886
    • Minami, M.1    Eguchi, S.2
  • 50
    • 0000986833 scopus 로고    scopus 로고
    • Information theoretic learning
    • S. Haykin & J. Fisher (Eds.) Hoboken, NJ: Wiley
    • Principe, J. C. III, & Xu, D. (2000). Information theoretic learning. In S. Haykin & J. Fisher (Eds.), Unsupervised adaptive filtering. Hoboken, NJ: Wiley.
    • (2000) Unsupervised adaptive filtering
    • Principe III, J.C.1    Xu, D.2
  • 57
    • 85156210800 scopus 로고    scopus 로고
    • Generalized learning vector quantization
    • D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.). Cambridge, MA: MIT Press
    • Sato, A., & Yamada, K. (1996). Generalized learning vector quantization. In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in neural information processing systems, 8 (pp. 423-429). Cambridge, MA: MIT Press.
    • (1996) Advances in neural information processing systems , vol.8 , pp. 423-429
    • Sato, A.1    Yamada, K.2
  • 59
    • 84856043672 scopus 로고
    • A mathematical theory of communication
    • Shannon, C. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379-432.
    • (1948) Bell System Technical Journal , vol.27 , pp. 379-432
    • Shannon, C.1
  • 60
    • 4944260835 scopus 로고    scopus 로고
    • Relative information of type s, Csiszr's f -divergence, and information inequalities
    • Taneja, I., & Kumar, P. (2004). Relative information of type s, Csiszr's f -divergence, and information inequalities. Information Sciences, 166, 105-125.
    • (2004) Information Sciences , vol.166 , pp. 105-125
    • Taneja, I.1    Kumar, P.2
  • 61
    • 1942450610 scopus 로고    scopus 로고
    • Feature extraction by non-parametric mutual information maximization
    • Torkkola, K. (2003). Feature extraction by non-parametric mutual information maximization. Journal of Machine Learning Research, 3, 1415-1438.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1415-1438
    • Torkkola, K.1
  • 67
    • 56549083671 scopus 로고    scopus 로고
    • Fuzzy classification using information theoretic learning vector quantization
    • Villmann, T., Hammer, B., Schleif, F.-M., Hermann, W., & Cottrell, M. (2008). Fuzzy classification using information theoretic learning vector quantization. Neurocomputing, 71, 3070-3076.
    • (2008) Neurocomputing , vol.71 , pp. 3070-3076
    • Villmann, T.1    Hammer, B.2    Schleif, F.-M.3    Hermann, W.4    Cottrell, M.5
  • 69
    • 42049122152 scopus 로고    scopus 로고
    • Classification of mass-spectrometric data in clinical proteomics using learning vector quantization methods
    • Villmann, T., Schleif, F.-M., Kostrzewa, M., Walch, A., & Hammer, B. (2008). Classification of mass-spectrometric data in clinical proteomics using learning vector quantization methods. Briefings in Bioinformatics, 9(2), 129-143.
    • (2008) Briefings in Bioinformatics , vol.9 , Issue.2 , pp. 129-143
    • Villmann, T.1    Schleif, F.-M.2    Kostrzewa, M.3    Walch, A.4    Hammer, B.5
  • 70
    • 69049109914 scopus 로고    scopus 로고
    • The exploration machine: A novel method for data visualization
    • J. Principe & R. Miikkulainen (Eds.). New York: Springer
    • Wismüller, A. (2009). The exploration machine: A novel method for data visualization. In J. Principe & R. Miikkulainen (Eds.), Advances in self-organizing maps-Proceedings of the 7th International Workshop (pp. 344-352). New York: Springer.
    • (2009) Advances in self-organizing maps-Proceedings of the 7th International Workshop , pp. 344-352
    • Wismüller, A.1
  • 71
    • 0020100081 scopus 로고
    • Asymptotic quantization error of continuous signals and the quantization dimension
    • Zador, P. L. (1982). Asymptotic quantization error of continuous signals and the quantization dimension. IEEE Transactions on Information Theory, 28, 149-159.
    • (1982) IEEE Transactions on Information Theory , vol.28 , pp. 149-159
    • Zador, P.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.