-
1
-
-
61849124176
-
Patch clustering for massive data sets
-
Alex, N., Hasenfuss, A., & Hammer, B. (2009). Patch clustering for massive data sets. Neurocomputing, 72 (7-9), 1455-1469.
-
(2009)
Neurocomputing
, vol.72
, Issue.7-9
, pp. 1455-1469
-
-
Alex, N.1
Hasenfuss, A.2
Hammer, B.3
-
4
-
-
26244461684
-
Clustering with Bregman divergences
-
Banerjee, A., Merugu, S., Dhillon, I., & Ghosh, J. (2005). Clustering with Bregman divergences. Journal of Machine Learning Research, 6, 1705-1749.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1705-1749
-
-
Banerjee, A.1
Merugu, S.2
Dhillon, I.3
Ghosh, J.4
-
6
-
-
0001640740
-
Robust and efficient estimation by minimising a density power divergence
-
Basu, A., Harris, I., Hjort, N., & Jones, M. (1998). Robust and efficient estimation by minimising a density power divergence. Biometrika, 85(3), 549-559.
-
(1998)
Biometrika
, vol.85
, Issue.3
, pp. 549-559
-
-
Basu, A.1
Harris, I.2
Hjort, N.3
Jones, M.4
-
7
-
-
70349202189
-
A tempering approach for Itakurasaito non-negative matrix factorization. with application to music transcription
-
Piscataway, NJ: IEEE Press
-
Bertin, N., Fevotte, C., & Badeau, R. (2009). A tempering approach for Itakurasaito non-negative matrix factorization. with application to music transcription. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1545-1548). Piscataway, NJ: IEEE Press.
-
(2009)
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
, pp. 1545-1548
-
-
Bertin, N.1
Fevotte, C.2
Badeau, R.3
-
8
-
-
0347963789
-
GTM: The generative topographic mapping
-
Bishop, C. M., Svensén, M., Williams, & C.K.I. (1998). GTM: The generative topographic mapping. Neural Computation, 10, 215-234.
-
(1998)
Neural Computation
, vol.10
, pp. 215-234
-
-
Bishop, C.M.1
Svensén, M.2
Williams, C.K.I.3
-
9
-
-
49949144765
-
The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming
-
Bregman, L. (1967). The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics, 7 (3), 200-217.
-
(1967)
USSR Computational Mathematics and Mathematical Physics
, vol.7
, Issue.3
, pp. 200-217
-
-
Bregman, L.1
-
10
-
-
84887014256
-
Exploratory observation machine (XOM) with Kullback-Leibler divergence for dimensionality reduction and visualziation
-
M. Verleysen (Ed.). Evere, Belgium: d-side publications
-
Bunte, K., Hammer, B., Villmann, T., Biehl, M., & Wismüller, A. (2010). Exploratory observation machine (XOM) with Kullback-Leibler divergence for dimensionality reduction and visualziation. InM. Verleysen (Ed.), Proc. of European Symposium on Artificial Neural Networks (pp. 87-92). Evere, Belgium: d-side publications.
-
(2010)
Proc. of European Symposium on Artificial Neural Networks
, pp. 87-92
-
-
Bunte, K.1
Hammer, B.2
Villmann, T.3
Biehl, M.4
Wismüller, A.5
-
11
-
-
77956416620
-
Families of alpha-beta-and gamma-divergences: Flexible and robust measures of similarities
-
Cichocki, A., & Amari, S.-I. (2010). Families of alpha-beta-and gamma-divergences: Flexible and robust measures of similarities. Entropy, 12, 1532-1568.
-
(2010)
Entropy
, vol.12
, pp. 1532-1568
-
-
Cichocki, A.1
Amari, S.-I.2
-
12
-
-
43249131130
-
Non-negativematrix factorization with α-divergence
-
Cichocki, A., Lee, H., Kim, Y.-D.,&Choi, S. (2008). Non-negativematrix factorization with α-divergence. Pattern Recognition Letters, 29, 1433-1440.
-
(2008)
Pattern Recognition Letters
, vol.29
, pp. 1433-1440
-
-
Cichocki, A.1
Lee, H.2
Kim, Y.-D.3
Choi, S.4
-
13
-
-
84891283756
-
-
Hoboken, NJ: Wiley
-
Cichocki, A., Zdunek, R., Phan, A., & Amari, S.-I. (2009). Nonnegative matrix and tensor factorizations. Hoboken, NJ: Wiley.
-
(2009)
Nonnegative matrix and tensor factorizations
-
-
Cichocki, A.1
Zdunek, R.2
Phan, A.3
Amari, S.-I.4
-
14
-
-
85156210264
-
Margin analysis of the LVQ algorithm
-
S. Becker, S. Thrün, & K. Obermayer (Eds.) Cambridge, MA: MIT Press
-
Crammer, K., Gilad-Bachrach, R., Navot, A., & Tishby, A. (2002). Margin analysis of the LVQ algorithm. In S. Becker, S. Thrün, & K. Obermayer (Eds.), Advances in neural information processing systems, 15 (pp. 462-468): Cambridge, MA: MIT Press.
-
(2002)
Advances in neural information processing systems
, vol.15
, pp. 462-468
-
-
Crammer, K.1
Gilad-Bachrach, R.2
Navot, A.3
Tishby, A.4
-
15
-
-
0000489740
-
Information-type measures of differences of probability distributions and indirect observations
-
Csiszár, I. (1967). Information-type measures of differences of probability distributions and indirect observations. Studia Sci. Math. Hungaria, 2, 299-318.
-
(1967)
Studia Sci. Math. Hungaria
, vol.2
, pp. 299-318
-
-
Csiszár, I.1
-
19
-
-
55349120149
-
Functional Bregman divergence and Bayesian estimation of distributions
-
Frigyik, B., Srivastava, S., & Gupta, M. (2008a). Functional Bregman divergence and Bayesian estimation of distributions. IEEE Transactions on Information Theory, 54(11), 5130-5139.
-
(2008)
IEEE Transactions on Information Theory
, vol.54
, Issue.11
, pp. 5130-5139
-
-
Frigyik, B.1
Srivastava, S.2
Gupta, M.3
-
20
-
-
55349098025
-
-
(Tech. Rep. UWEETR-2008-0001). Seattle: Department of Electrical Engineering, University ofWashington
-
Frigyik, B. A., Srivastava, S., & Gupta, M. (2008b). An introduction to functional derivatives (Tech. Rep. UWEETR-2008-0001). Seattle: Department of Electrical Engineering, University ofWashington.
-
(2008)
An introduction to functional derivatives
-
-
Frigyik, B.A.1
Srivastava, S.2
Gupta, M.3
-
21
-
-
52749094881
-
Robust parameter estimation with a small bias against heavy contamination
-
Fujisawa, H., & Eguchi, S. (2008). Robust parameter estimation with a small bias against heavy contamination. Journal of Multivariate Analysis, 99, 2053-2081.
-
(2008)
Journal of Multivariate Analysis
, vol.99
, pp. 2053-2081
-
-
Fujisawa, H.1
Eguchi, S.2
-
22
-
-
0344972928
-
Self-organizing maps: Generalizations and new optimization techniques
-
Graepel, T., Burger, M., & Obermayer, K. (1998). Self-organizing maps: Generalizations and new optimization techniques. Neurocomputing, 21(1-3), 173-190.
-
(1998)
Neurocomputing
, vol.21
, Issue.1-3
, pp. 173-190
-
-
Graepel, T.1
Burger, M.2
Obermayer, K.3
-
23
-
-
0036791938
-
Generalized relevance learning vector quantization
-
Hammer, B., & Villmann, T. (2002). Generalized relevance learning vector quantization. Neural Networks, 15(8-9), 1059-1068.
-
(2002)
Neural Networks
, vol.15
, Issue.8-9
, pp. 1059-1068
-
-
Hammer, B.1
Villmann, T.2
-
24
-
-
10944256268
-
Vector quantization by density matching in the minimum Kullback-Leibler-divergence sense
-
Piscataway, NJ: IEEE Press
-
Hegde, A., Erdogmus, D., Lehn-Schiøler, T., Rao, Y., & Principe, J. (2004). Vector quantization by density matching in the minimum Kullback-Leibler-divergence sense. In Proc. of the International Joint Conference on Artificial Neural Networks (pp. 105-109). Piscataway, NJ: IEEE Press.
-
(2004)
Proc. of the International Joint Conference on Artificial Neural Networks
, pp. 105-109
-
-
Hegde, A.1
Erdogmus, D.2
Lehn-Schiøler, T.3
Rao, Y.4
Principe, J.5
-
25
-
-
0002059002
-
Energy functions for self-organizing maps
-
E. Oja & S. Kaski (Eds.), Amsterdam: Elsevier
-
Heskes, T. (1999). Energy functions for self-organizing maps. In E. Oja & S. Kaski (Eds.), Kohonen maps (pp. 303-316). Amsterdam: Elsevier.
-
(1999)
Kohonen maps
, pp. 303-316
-
-
Heskes, T.1
-
27
-
-
0036673228
-
Joint entropy maximization in kernel-based topographic maps
-
Hulle, M.M.V. (2002a). Joint entropy maximization in kernel-based topographic maps. Neural Computation, 14(8), 1887-1906.
-
(2002)
Neural Computation
, vol.14
, Issue.8
, pp. 1887-1906
-
-
Hulle, M.M.V.1
-
28
-
-
0036791873
-
Kernel-based topographic map formation achieved with an information theoretic approach
-
Hulle, M.M.V. (2002b). Kernel-based topographic map formation achieved with an information theoretic approach. Neural Networks, 15, 1029-1039.
-
(2002)
Neural Networks
, vol.15
, pp. 1029-1039
-
-
Hulle, M.M.V.1
-
29
-
-
0008652732
-
Analysis synthesis telephony based on the maximum likelihood method
-
J. Flanagan & R. Rabiner (Eds.). Stroudsburg, PA: Dowden, Hutchinson, & Ross
-
Itakura, F., & Saito, S. (1973). Analysis synthesis telephony based on the maximum likelihood method. In J. Flanagan & R. Rabiner (Eds.), Speech synthesis (pp. 289-292). Stroudsburg, PA: Dowden, Hutchinson, & Ross.
-
(1973)
Speech synthesis
, pp. 289-292
-
-
Itakura, F.1
Saito, S.2
-
30
-
-
58049101106
-
Bregman divergences and the self organising map
-
C. Fyfe, D. Kim, S.-Y., Lee, & H. Yin (Eds.). New York: Springer
-
Jang, E., Fyfe, C., & Ko,H. (2008). Bregman divergences and the self organising map. In C. Fyfe, D. Kim, S.-Y., Lee, & H. Yin (Eds.), Intelligent data engineering and automated learning (pp. 452-458). New York: Springer.
-
(2008)
Intelligent data engineering and automated learning
, pp. 452-458
-
-
Jang, E.1
Fyfe, C.2
Ko, H.3
-
32
-
-
33750503776
-
The Cauchy-Schwarz divergence and Parzen windowing: Connections to graph theory and Mercer kernels
-
Jenssen, R., Principe, J., Erdogmus, D., & Eltoft, T. (2006). The Cauchy-Schwarz divergence and Parzen windowing: Connections to graph theory and Mercer kernels. Journal of the Franklin Institute, 343(6), 614-629.
-
(2006)
Journal of the Franklin Institute
, vol.343
, Issue.6
, pp. 614-629
-
-
Jenssen, R.1
Principe, J.2
Erdogmus, D.3
Eltoft, T.4
-
35
-
-
79958281736
-
-
(2nd ext. ed.). New York: Springer
-
Kohonen, T. (1997). Self-organizing maps (2nd ext. ed.). New York: Springer.
-
(1997)
Self-organizing maps
-
-
Kohonen, T.1
-
37
-
-
70349144059
-
Bregman divergences and multi-dimensional scaling
-
M. Köppen, N., Kasabov, & N. G. Coghill (Eds.). New York: Springer
-
Lai, P., & Fyfe, C. (2009). Bregman divergences and multi-dimensional scaling. In M. K̈oppen, N., Kasabov, & N. G. Coghill (Eds.), Proceedings of the International Conference on Information Processing 2008 (pp. 935-942). New York: Springer.
-
(2009)
Proceedings of the International Conference on Information Processing 2008
, pp. 935-942
-
-
Lai, P.1
Fyfe, C.2
-
38
-
-
84890262130
-
Generalization of the l p norm for time series and its application to self-organizing maps
-
M. Cottrell (Ed.). Paris: Sorbonne
-
Lee, J., & Verleysen, M. (2005). Generalization of the l p norm for time series and its application to self-organizing maps. In M. Cottrell (Ed.), Proc. of Workshop on Self-Organizing Maps (pp. 733-740). Paris: Sorbonne.
-
(2005)
Proc. of Workshop on Self-Organizing Maps
, pp. 733-740
-
-
Lee, J.1
Verleysen, M.2
-
40
-
-
14844296969
-
Vector quantization using information theoretic concepts
-
Lehn-Schiøler, T., Hegde, A., Erdogmus, D.,&Principe, J. (2005). Vector quantization using information theoretic concepts. Natural Computing, 4(1), 39-51.
-
(2005)
Natural Computing
, vol.4
, Issue.1
, pp. 39-51
-
-
Lehn-Schiøler, T.1
Hegde, A.2
Erdogmus, D.3
Principe, J.4
-
42
-
-
33947426775
-
On divergences and informations in statistics and information theory
-
Liese, F., & Vajda, I. (2006). On divergences and informations in statistics and information theory. IEEE Transactions on Information Theory, 52(10), 4394-4412.
-
(2006)
IEEE Transactions on Information Theory
, vol.52
, Issue.10
, pp. 4394-4412
-
-
Liese, F.1
Vajda, I.2
-
43
-
-
0018918171
-
An algorithm for vector quantizer design
-
Linde, Y., Buzo, A.,&Gray, R. (1980). An algorithm for vector quantizer design. IEEE Transactions on Communications, 28, 84-95.
-
(1980)
IEEE Transactions on Communications
, vol.28
, pp. 84-95
-
-
Linde, Y.1
Buzo, A.2
Gray, R.3
-
45
-
-
0027632248
-
"Neural-gas" network for vector quantization and its application to time-series prediction
-
Martinetz, T.M., Berkovich, S. G., & Schulten, K. J. (1993). "Neural-gas" network for vector quantization and its application to time-series prediction. IEEE Trans. on Neural Networks, 4(4), 558-569.
-
(1993)
IEEE Trans. on Neural Networks
, vol.4
, Issue.4
, pp. 558-569
-
-
Martinetz, T.M.1
Berkovich, S.G.2
Schulten, K.J.3
-
46
-
-
0040673441
-
Robust blind source separation by beta divergence
-
Minami, M., & Eguchi, S. (2002). Robust blind source separation by beta divergence. Neural Computation, 14, 1859-1886.
-
(2002)
Neural Computation
, vol.14
, pp. 1859-1886
-
-
Minami, M.1
Eguchi, S.2
-
48
-
-
79953121691
-
Divergence based learning vector quantization
-
M. Verleysen (Ed.). Evere, Belgium: D-side
-
Mwebaze, E., Schneider, P., Schleif, F.-M., Haase, S., Villmann, T., & Biehl, M. (2010). Divergence based learning vector quantization. In M. Verleysen (Ed.), Proc. of European Symposium on Artificial Neural Networks (pp. 247-252). Evere, Belgium: D-side.
-
(2010)
Proc. of European Symposium on Artificial Neural Networks
, pp. 247-252
-
-
Mwebaze, E.1
Schneider, P.2
Schleif, F.-M.3
Haase, S.4
Villmann, T.5
Biehl, M.6
-
49
-
-
66949153253
-
Sided and symmetrized Bregman centroids
-
Nielsen, F., & Nock, R. (2009). Sided and symmetrized Bregman centroids. IEEE Transactions on Information Theory, 55(6), 2882-2903.
-
(2009)
IEEE Transactions on Information Theory
, vol.55
, Issue.6
, pp. 2882-2903
-
-
Nielsen, F.1
Nock, R.2
-
50
-
-
0000986833
-
Information theoretic learning
-
S. Haykin & J. Fisher (Eds.) Hoboken, NJ: Wiley
-
Principe, J. C. III, & Xu, D. (2000). Information theoretic learning. In S. Haykin & J. Fisher (Eds.), Unsupervised adaptive filtering. Hoboken, NJ: Wiley.
-
(2000)
Unsupervised adaptive filtering
-
-
Principe III, J.C.1
Xu, D.2
-
55
-
-
15844383263
-
Representation of functional data in neural networks
-
Rossi, F., Delannay, N., Conan-Gueza, B., & Verleysen, M. (2005). Representation of functional data in neural networks. Neurocomputing, 64, 183-210.
-
(2005)
Neurocomputing
, vol.64
, pp. 183-210
-
-
Rossi, F.1
Delannay, N.2
Conan-Gueza, B.3
Verleysen, M.4
-
56
-
-
68949096588
-
Cost-sensitive learning based on Bregman divergences
-
Santos-Rodríguez, R., Guerrero-Curieses, A., Alaiz-Rodríguez, R., & Cid-Sueiro, J. (2009). Cost-sensitive learning based on Bregman divergences. Machine Learning, 76(2-3), 271-285.
-
(2009)
Machine Learning
, vol.76
, Issue.2-3
, pp. 271-285
-
-
Santos-Rodríguez, R.1
Guerrero-Curieses, A.2
Alaiz-Rodríguez, R.3
Cid-Sueiro, J.4
-
57
-
-
85156210800
-
Generalized learning vector quantization
-
D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.). Cambridge, MA: MIT Press
-
Sato, A., & Yamada, K. (1996). Generalized learning vector quantization. In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in neural information processing systems, 8 (pp. 423-429). Cambridge, MA: MIT Press.
-
(1996)
Advances in neural information processing systems
, vol.8
, pp. 423-429
-
-
Sato, A.1
Yamada, K.2
-
58
-
-
77952351910
-
Hyperparameter learning in robust soft LVQ
-
M. Verleysen (Ed.). Evere, Belgium: D-side
-
Schneider, P., Biehl, M., & Hammer, B. (2009). Hyperparameter learning in robust soft LVQ. In M. Verleysen (Ed.), Proceedings of the European Symposium on Artificial Neural Networks (pp. 517-522). Evere, Belgium: D-side.
-
(2009)
Proceedings of the European Symposium on Artificial Neural Networks
, pp. 517-522
-
-
Schneider, P.1
Biehl, M.2
Hammer, B.3
-
59
-
-
84856043672
-
A mathematical theory of communication
-
Shannon, C. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379-432.
-
(1948)
Bell System Technical Journal
, vol.27
, pp. 379-432
-
-
Shannon, C.1
-
60
-
-
4944260835
-
Relative information of type s, Csiszr's f -divergence, and information inequalities
-
Taneja, I., & Kumar, P. (2004). Relative information of type s, Csiszr's f -divergence, and information inequalities. Information Sciences, 166, 105-125.
-
(2004)
Information Sciences
, vol.166
, pp. 105-125
-
-
Taneja, I.1
Kumar, P.2
-
61
-
-
1942450610
-
Feature extraction by non-parametric mutual information maximization
-
Torkkola, K. (2003). Feature extraction by non-parametric mutual information maximization. Journal of Machine Learning Research, 3, 1415-1438.
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 1415-1438
-
-
Torkkola, K.1
-
64
-
-
77955381437
-
Divergence based online learning in vector quantization
-
L. Rutkowski,W. Duch, J. Kaprzyk, J. Korbicz, & R. Tadeusiewicz (Eds.), New York: Springer
-
Villmann, T., Haase, S., Schleif, F.-M., & Hammer, B. (2010). Divergence based online learning in vector quantization. In L. Rutkowski,W. Duch, J. Kaprzyk, J. Korbicz, & R. Tadeusiewicz (Eds.), Proc. of the International Conference on Artifial Intelligence and Soft Computing. New York: Springer.
-
(2010)
Proc. of the International Conference on Artifial Intelligence and Soft Computing.
-
-
Villmann, T.1
Haase, S.2
Schleif, F.-M.3
Hammer, B.4
-
65
-
-
79958268783
-
-
Ulmer Informatik-Berichte, 2010-05
-
Villmann, T., Haase, S., Simmuteit, S., Haase, M., & Schleif, F.-M. (2010). Functional vector quantization based on divergence learning. Ulmer Informatik-Berichte, 2010-05, 8-11.
-
(2010)
Functional vector quantization based on divergence learning
, pp. 8-11
-
-
Villmann, T.1
Haase, S.2
Simmuteit, S.3
Haase, M.4
Schleif, F.-M.5
-
66
-
-
33746602244
-
Fuzzy classification by fuzzy labeled neural gas
-
Villmann, T., Hammer, B., Schleif, F.-M., Geweniger, T., & Herrmann, W. (2006). Fuzzy classification by fuzzy labeled neural gas. Neural Networks, 19, 772-779.
-
(2006)
Neural Networks
, vol.19
, pp. 772-779
-
-
Villmann, T.1
Hammer, B.2
Schleif, F.-M.3
Geweniger, T.4
Herrmann, W.5
-
67
-
-
56549083671
-
Fuzzy classification using information theoretic learning vector quantization
-
Villmann, T., Hammer, B., Schleif, F.-M., Hermann, W., & Cottrell, M. (2008). Fuzzy classification using information theoretic learning vector quantization. Neurocomputing, 71, 3070-3076.
-
(2008)
Neurocomputing
, vol.71
, pp. 3070-3076
-
-
Villmann, T.1
Hammer, B.2
Schleif, F.-M.3
Hermann, W.4
Cottrell, M.5
-
69
-
-
42049122152
-
Classification of mass-spectrometric data in clinical proteomics using learning vector quantization methods
-
Villmann, T., Schleif, F.-M., Kostrzewa, M., Walch, A., & Hammer, B. (2008). Classification of mass-spectrometric data in clinical proteomics using learning vector quantization methods. Briefings in Bioinformatics, 9(2), 129-143.
-
(2008)
Briefings in Bioinformatics
, vol.9
, Issue.2
, pp. 129-143
-
-
Villmann, T.1
Schleif, F.-M.2
Kostrzewa, M.3
Walch, A.4
Hammer, B.5
-
70
-
-
69049109914
-
The exploration machine: A novel method for data visualization
-
J. Principe & R. Miikkulainen (Eds.). New York: Springer
-
Wismüller, A. (2009). The exploration machine: A novel method for data visualization. In J. Principe & R. Miikkulainen (Eds.), Advances in self-organizing maps-Proceedings of the 7th International Workshop (pp. 344-352). New York: Springer.
-
(2009)
Advances in self-organizing maps-Proceedings of the 7th International Workshop
, pp. 344-352
-
-
Wismüller, A.1
-
71
-
-
0020100081
-
Asymptotic quantization error of continuous signals and the quantization dimension
-
Zador, P. L. (1982). Asymptotic quantization error of continuous signals and the quantization dimension. IEEE Transactions on Information Theory, 28, 149-159.
-
(1982)
IEEE Transactions on Information Theory
, vol.28
, pp. 149-159
-
-
Zador, P.L.1
|