메뉴 건너뛰기




Volumn 21, Issue 1, 2005, Pages 21-44

Supervised neural gas with general similarity measure

Author keywords

Generalized relevance LVQ; Learning vector quantization; Metric adaptation; Neural gas

Indexed keywords

FUZZY SETS; HEURISTIC METHODS; MATRIX ALGEBRA; NEURAL NETWORKS; OPTIMIZATION; TOPOLOGY; VECTOR QUANTIZATION; VISUALIZATION;

EID: 12844250052     PISSN: 13704621     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11063-004-3255-2     Document Type: Article
Times cited : (129)

References (44)
  • 1
    • 0032784636 scopus 로고    scopus 로고
    • Neural maps and topographic vector quantization
    • Bauer, H.-U., Herrmann, M. and Villmann, T.: Neural maps and topographic vector quantization, Neural Networks 12(4-5) (1999), 659-676.
    • (1999) Neural Networks , vol.12 , Issue.4-5 , pp. 659-676
    • Bauer, H.-U.1    Herrmann, M.2    Villmann, T.3
  • 2
    • 0031101545 scopus 로고    scopus 로고
    • Growing a hypercubical output space in a self-organizing feature map
    • Bauer, H.-U. and Villmann, T.: Growing a hypercubical output space in a self-organizing feature map, IEEE Transactions on Neural Network 8(2) (1997), 218-226.
    • (1997) IEEE Transactions on Neural Network , vol.8 , Issue.2 , pp. 218-226
    • Bauer, H.-U.1    Villmann, T.2
  • 4
    • 0003408496 scopus 로고    scopus 로고
    • Irvine, CA: University of California, Department of Information and Computer Science
    • Blake, C. L. and Merz, C. J.: UCI repository of machine learning databases. Irvine, CA: University of California, Department of Information and Computer Science, http://www.ics.uci.edu/~mlearn/MLRepository.html, 1998.
    • (1998) UCI Repository of Machine Learning Databases
    • Blake, C.L.1    Merz, C.J.2
  • 7
    • 34249753618 scopus 로고
    • Support vector network
    • Cortes, C. and Vapnik, V.: Support vector network, Machine Learning, 20 (1995), 1-20.
    • (1995) Machine Learning , vol.20 , pp. 1-20
    • Cortes, C.1    Vapnik, V.2
  • 9
    • 84972811713 scopus 로고
    • Fuzzy shell-clustering and application to circle detection in digital images
    • Dave, R. N.: Fuzzy shell-clustering and application to circle detection in digital images, International Journal of General Systems, 16 (1990), 343-355.
    • (1990) International Journal of General Systems , vol.16 , pp. 343-355
    • Dave, R.N.1
  • 10
    • 0035271419 scopus 로고    scopus 로고
    • A new methodology of extraction, optimization, and application of crisp and fuzzy logical rules
    • Duch, W., Adamczak, R. and Grabczewski, K.: A new methodology of extraction, optimization, and application of crisp and fuzzy logical rules, IEEE Transactions on Neural Networks 12 (2001), 277-306.
    • (2001) IEEE Transactions on Neural Networks , vol.12 , pp. 277-306
    • Duch, W.1    Adamczak, R.2    Grabczewski, K.3
  • 11
    • 12844266543 scopus 로고    scopus 로고
    • INFORUM, University of Maryland
    • ECON-Data, A source of economic time series data, INFORUM, University of Maryland, available online at http://www.inform.umd.edu/econdata/Contents.html
    • ECON-Data, A Source of Economic Time Series Data
  • 12
    • 0026436795 scopus 로고
    • Self-organizing maps: Ordering, convergence properties, and energy functions
    • Erwin, E., Obermayer, K. and Schulten, K.: Self-organizing maps: ordering, convergence properties, and energy functions, Biological Cybernetics, 67(1) (1992), 47-55.
    • (1992) Biological Cybernetics , vol.67 , Issue.1 , pp. 47-55
    • Erwin, E.1    Obermayer, K.2    Schulten, K.3
  • 14
    • 0344972928 scopus 로고    scopus 로고
    • Self-organizing maps: Generalizations and new optimization techniques
    • Graepel, T., Burger, M. and Obermayer, K.: Self-organizing maps: generalizations and new optimization techniques, Neurocomputing, 20 (1998), 173-190.
    • (1998) Neurocomputing , vol.20 , pp. 173-190
    • Graepel, T.1    Burger, M.2    Obermayer, K.3
  • 15
    • 0018057468 scopus 로고
    • Fuzzy clustering with a fuzzy covariance matrix
    • San Diego, California
    • Gustafson, E. E. and Kessel, W. C.: Fuzzy clustering with a fuzzy covariance matrix. In: IEEE CDC, (1979), pp. 761-766. San Diego, California.
    • (1979) IEEE CDC , pp. 761-766
    • Gustafson, E.E.1    Kessel, W.C.2
  • 16
    • 0037312471 scopus 로고    scopus 로고
    • A note on the universal approximation capability of support vector machines
    • Hammer, B. and Gersmann, K.: A note on the universal approximation capability of support vector machines, Neural Processing Letters 17 (2003), 43-53.
    • (2003) Neural Processing Letters , vol.17 , pp. 43-53
    • Hammer, B.1    Gersmann, K.2
  • 17
    • 84902138900 scopus 로고    scopus 로고
    • Learning vector quantization for multimodal data
    • J. R. Dorronsoro (ed.), Springer
    • Hammer, B. Strickert, M. and Villmann, T.: Learning vector quantization for multimodal data. In: J. R. Dorronsoro (ed.), Artificial Neural Networks - ICANN 2002, Springer, (2002), 370-375.
    • (2002) Artificial Neural Networks - ICANN 2002 , pp. 370-375
    • Hammer, B.1    Strickert, M.2    Villmann, T.3
  • 19
    • 0036791938 scopus 로고    scopus 로고
    • Generalized relevance learning vector quantization
    • Hammer, B. and Villmann, T. Generalized relevance learning vector quantization. Neural Networks 15 (2002), 1059-1068,.
    • (2002) Neural Networks , vol.15 , pp. 1059-1068
    • Hammer, B.1    Villmann, T.2
  • 20
    • 0004019973 scopus 로고    scopus 로고
    • Technical Report UCSC-CRL-99-10, Computer Science Department, University of California at Santa Cruz
    • Haussler, D.: Convolutional kernels for dicrete structures. Technical Report UCSC-CRL-99-10, Computer Science Department, University of California at Santa Cruz, 1999.
    • (1999) Convolutional Kernels for Dicrete Structures
    • Haussler, D.1
  • 21
    • 0002059002 scopus 로고    scopus 로고
    • Energy functions for self-organizing maps
    • E. Oja and S. Kaski, (eds), Springer
    • Heskes, T.: Energy functions for self-organizing maps, In: E. Oja and S. Kaski, (eds), Kohonen Maps, (1999) 303-315 Springer.
    • (1999) Kohonen Maps , pp. 303-315
    • Heskes, T.1
  • 22
    • 0035506768 scopus 로고    scopus 로고
    • On self-organizing maps, vector quantization, and mixture modeling
    • Heskes, T.: On self-organizing maps, vector quantization, and mixture modeling, IEEE Transactions on Neural Networks, 12(6) (2001), 1299-1305.
    • (2001) IEEE Transactions on Neural Networks , vol.12 , Issue.6 , pp. 1299-1305
    • Heskes, T.1
  • 23
    • 0034048878 scopus 로고    scopus 로고
    • A discrimitive framework for detecting remote protein homologies
    • Jaakkola, T. Diekhans, M. and Haussler, D.: A discrimitive framework for detecting remote protein homologies, Journal of Computational Biology 7(1-2) (2000), 95-114.
    • (2000) Journal of Computational Biology , vol.7 , Issue.1-2 , pp. 95-114
    • Jaakkola, T.1    Diekhans, M.2    Haussler, D.3
  • 24
    • 0026982122 scopus 로고
    • Discriminative learning for minimum error classifications
    • Juang, B. H. and Katagiri, S.: Discriminative learning for minimum error classifications, IEEE Transactions on Signal Processing 40(12) (1992), 3043-3054.
    • (1992) IEEE Transactions on Signal Processing , vol.40 , Issue.12 , pp. 3043-3054
    • Juang, B.H.1    Katagiri, S.2
  • 25
    • 12144266830 scopus 로고    scopus 로고
    • A topography-preserving latent variable model with learning metrics
    • N. Allinson, H. Yin, L. Allinson, & J. Slack (eds.), Springer
    • Kaski, S. and Sinkkonen, J. A topography-preserving latent variable model with learning metrics. In: N. Allinson, H. Yin, L. Allinson, & J. Slack (eds.), Advances in Self-Organizing Maps, (2001), 224-229, Springer.
    • (2001) Advances in Self-Organizing Maps , pp. 224-229
    • Kaski, S.1    Sinkkonen, J.2
  • 26
    • 0035392549 scopus 로고    scopus 로고
    • Bankruptcy analysis with self-organizing maps in learning metrics
    • Kaski, S.: Bankruptcy analysis with self-organizing maps in learning metrics, IEEE Transactions on Neural Networks, 12 (2001), 936-947.
    • (2001) IEEE Transactions on Neural Networks , vol.12 , pp. 936-947
    • Kaski, S.1
  • 29
    • 0027632248 scopus 로고
    • 'Neural-gas' network for vector quantization and its application to time-series prediction
    • Martinetz, T., Berkovich, S. and Schulten, K.: 'Neural-gas' network for vector quantization and its application to time-series prediction, IEEE TNN 4(4) (1993), 558-569.
    • (1993) IEEE TNN , vol.4 , Issue.4 , pp. 558-569
    • Martinetz, T.1    Berkovich, S.2    Schulten, K.3
  • 31
    • 0034815902 scopus 로고    scopus 로고
    • The enhanced LBG algorithm
    • Patané, G. and Russo, M.: The enhanced LBG algorithm, Neural Networks 14 (2001), 1219-1237.
    • (2001) Neural Networks , vol.14 , pp. 1219-1237
    • Patané, G.1    Russo, M.2
  • 32
    • 0030152722 scopus 로고    scopus 로고
    • Automated feature selection with distinction sensitive learning vector quantization
    • Pregenzer, M.: Pfurtscheller, G. and Flotzinger, D.: Automated feature selection with distinction sensitive learning vector quantization, Neurocomputing 11 (1996), 19-29.
    • (1996) Neurocomputing , vol.11 , pp. 19-29
    • Pregenzer, M.1    Pfurtscheller, G.2    Flotzinger, D.3
  • 34
    • 85156210800 scopus 로고
    • Generalized learning vector quantization
    • G. Tesauro, D. Touretzky, & T. Leen, (eds.), MIT Press
    • Sato, A. S. and Yamada, K.: Generalized learning vector quantization. In: G. Tesauro, D. Touretzky, & T. Leen, (eds.), Advances in Neural Information Processing Systems, 7, (1995), 423-129. MIT Press.
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 423-1129
    • Sato, A.S.1    Yamada, K.2
  • 35
    • 21244466956 scopus 로고    scopus 로고
    • An analysis of convergence in generalized LVQ
    • L. Niklasson, M. Bodén, & T. Ziemke (eds.), Springer
    • Sato, A. S. and Yamada, K.: An analysis of convergence in generalized LVQ. In: L. Niklasson, M. Bodén, & T. Ziemke (eds.), ICANN'98, (1998), 172-176. Springer.
    • (1998) ICANN'98 , pp. 172-176
    • Sato, A.S.1    Yamada, K.2
  • 36
    • 0011921589 scopus 로고    scopus 로고
    • Technical Report MSR-TR-2000-51. Microsoft Research, Redmond, WA
    • Schölkopf, B.: The kernel trick for distances. Technical Report MSR-TR-2000-51. Microsoft Research, Redmond, WA, 2000.
    • (2000) The Kernel Trick for Distances
    • Schölkopf, B.1
  • 38
    • 0038159964 scopus 로고    scopus 로고
    • Soft learning vector quantization
    • Seo, S. and Obermayer, K.: Soft learning vector quantization. Neural Computation, 15 (2003), 1589-1604.
    • (2003) Neural Computation , vol.15 , pp. 1589-1604
    • Seo, S.1    Obermayer, K.2
  • 39
    • 84902191627 scopus 로고    scopus 로고
    • New methods for splice site recognition
    • J. R. Dorronsoro (ed.), Springer.
    • Sonnenburg, S., Rätsch, G., Jagota, A. and Müller, K.-R.: New methods for splice site recognition. In: J. R. Dorronsoro (ed.), ICANN'2002, (2002), 329-336, Springer.
    • (2002) ICANN'2002 , pp. 329-336
    • Sonnenburg, S.1    Rätsch, G.2    Jagota, A.3    Müller, K.-R.4
  • 40
    • 0010786475 scopus 로고    scopus 로고
    • On the influence of the kernel on the consistency of support vector machines
    • Steinwart, I.: On the influence of the kernel on the consistency of support vector machines, Journal of Machine Learning Research, 2 (2001), 67-93.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 67-93
    • Steinwart, I.1
  • 41
    • 84947812238 scopus 로고    scopus 로고
    • Generalized relevance LVQ for time series
    • G. Dorffner, H. Bischof, K. Hornik (eds.), Springer
    • Strickert, M. Bojer, T. and Hammer, B. Generalized relevance LVQ for time series. In: G. Dorffner, H. Bischof, K. Hornik (eds.), Artificial Neural Networks - ICANN'2001, 2001 Springer, 677-683.
    • (2001) Artificial Neural Networks - ICANN'2001 , pp. 677-683
    • Strickert, M.1    Bojer, T.2    Hammer, B.3
  • 42
    • 0031097231 scopus 로고    scopus 로고
    • Toplogy preservation in self-organizing feature maps: Exact definition and precise measurement
    • Villmann, T., Der, R., Herrmann, M. and Martinetz, T. M.: Toplogy preservation in self-organizing feature maps: exact definition and precise measurement, IEEE TNN, 8(2) (1997), 256-266.
    • (1997) IEEE TNN , vol.8 , Issue.2 , pp. 256-266
    • Villmann, T.1    Der, R.2    Herrmann, M.3    Martinetz, T.M.4
  • 43
    • 0037379640 scopus 로고    scopus 로고
    • Neural maps in remote sensing image analysis
    • Villmann, T., Merenyi, E. and Hammer, B.: Neural maps in remote sensing image analysis, Neural Networks, 16(3-4): (2003), 389-403.
    • (2003) Neural Networks , vol.16 , Issue.3-4 , pp. 389-403
    • Villmann, T.1    Merenyi, E.2    Hammer, B.3
  • 44
    • 0036469527 scopus 로고    scopus 로고
    • A greedy algorithm for Gaussian mixture learning
    • Vlassis, N. and Likas, A.: A greedy algorithm for Gaussian mixture learning, Neural Processing Letters 15(1) (2002), 77-87.
    • (2002) Neural Processing Letters , vol.15 , Issue.1 , pp. 77-87
    • Vlassis, N.1    Likas, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.