메뉴 건너뛰기




Volumn 3, Issue , 2003, Pages 1415-1438

Feature extraction by non-parametric mutual information maximization

Author keywords

Feature extraction; Feature transform; Mutual information; Non parametric estimation; Parzen estimation; Quadratic divergence measures; Renyi entropy

Indexed keywords

DIVERGENCE MEASURES; FEATURE TRANSFORM; MUTUAL INFORMATIONS; NON-PARAMETRIC ESTIMATIONS; PARZEN ESTIMATIONS; RENYI ENTROPY;

EID: 1942450610     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (580)

References (37)
  • 1
    • 0003310707 scopus 로고    scopus 로고
    • Nonparametric discriminant analysis via recursive optimization of Patrick-Fisher distance
    • April
    • M.E. Aladjem. Nonparametric discriminant analysis via recursive optimization of Patrick-Fisher distance. IEEE Transactions on SMC, 28(2):292-299, April 1998.
    • (1998) IEEE Transactions on SMC , vol.28 , Issue.2 , pp. 292-299
    • Aladjem, M.E.1
  • 2
    • 0032663729 scopus 로고    scopus 로고
    • Lower bounds for bayes error estimation
    • July
    • A. Antos, L. Devroye, and L. Gyorfi. Lower bounds for bayes error estimation. IEEE Transactions on PAMI, 21(7):643-645, July 1999.
    • (1999) IEEE Transactions on PAMI , vol.21 , Issue.7 , pp. 643-645
    • Antos, A.1    Devroye, L.2    Gyorfi, L.3
  • 3
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural net learning
    • July
    • R. Battiti. Using mutual information for selecting features in supervised neural net learning. Neural Networks, 5(4):537-550, July 1994.
    • (1994) Neural Networks , vol.5 , Issue.4 , pp. 537-550
    • Battiti, R.1
  • 5
    • 84898835319 scopus 로고    scopus 로고
    • Linear feature extractors based on mutual information
    • August 25-29
    • K.D. Bollacker and J. Ghosh. Linear feature extractors based on mutual information. In Proc. 13th ICPR, pages 720-724, August 25-29 1996.
    • (1996) Proc. 13th ICPR , pp. 720-724
    • Bollacker, K.D.1    Ghosh, J.2
  • 7
    • 0000913324 scopus 로고    scopus 로고
    • SVMTorch: Support vector machines for large-scale regression problems
    • R. Collobert and S. Bengio. SVMTorch: Support Vector Machines for Large-Scale Regression Problems. Journal of Machine Learning Research, 1:143-160, 2001.
    • (2001) Journal of Machine Learning Research , vol.1 , pp. 143-160
    • Collobert, R.1    Bengio, S.2
  • 12
    • 0032207550 scopus 로고    scopus 로고
    • A common neural network model for unsupervised exploratory data analysis and independent component analysis
    • November
    • M. Girolami, A. Cichocki, and S-I. Amari. A common neural network model for unsupervised exploratory data analysis and independent component analysis. IEEE Transactions on Neural Networks, 9(6):1495 - 1501, November 1998.
    • (1998) IEEE Transactions on Neural Networks , vol.9 , Issue.6 , pp. 1495-1501
    • Girolami, M.1    Cichocki, A.2    Amari, S.-I.3
  • 13
    • 0000274329 scopus 로고    scopus 로고
    • Bhattacharyya distance feature selection
    • IEEE, 25-29 Aug
    • X. Guorong, C. Peiqi, and W. Minhui. Bhattacharyya distance feature selection. In Proc. 13th ICPR, volume 2, pages 195 - 199. IEEE, 25-29 Aug. 1996.
    • (1996) Proc. 13th ICPR , vol.2 , pp. 195-199
    • Guorong, X.1    Peiqi, C.2    Minhui, W.3
  • 14
  • 16
    • 0024177585 scopus 로고
    • A non-parametric approach to linear feature extraction; Application to classification of binary synthetic textures
    • Rome, Italy, November 14-17
    • A. Hillion, P. Masson, and C. Roux. A non-parametric approach to linear feature extraction; Application to classification of binary synthetic textures. In Proc. 9th ICPR, pages 1036-1039, Rome, Italy, November 14-17 1988.
    • (1988) Proc. 9th ICPR , pp. 1036-1039
    • Hillion, A.1    Masson, P.2    Roux, C.3
  • 19
    • 85132031017 scopus 로고
    • LVQ PAK: A program package for the correct application of Learning Vector Quantization algorithms
    • Piscataway, NJ, IEEE
    • T. Kohonen, J. Kangas, J. Laaksonen, and K. Torkkola. LVQ PAK: A program package for the correct application of Learning Vector Quantization algorithms. In Proc. IJCNN, volume I, pages 725-730, Piscataway, NJ, 1992. IEEE.
    • (1992) Proc. IJCNN , vol.1 , pp. 725-730
    • Kohonen, T.1    Kangas, J.2    Laaksonen, J.3    Torkkola, K.4
  • 21
    • 0032289099 scopus 로고    scopus 로고
    • Heteroscedastic discriminant analysis and reduced rank HMMs for improved speech recognition
    • N. Kumar and A.G. Andreou. Heteroscedastic discriminant analysis and reduced rank HMMs for improved speech recognition. Speech Communication, 26(4):283-297, 1998.
    • (1998) Speech Communication , vol.26 , Issue.4 , pp. 283-297
    • Kumar, N.1    Andreou, A.G.2
  • 22
    • 0022266934 scopus 로고
    • An optimal orthonormal system for discriminant analysis
    • T. Okada and S. Tomita. An optimal orthonormal system for discriminant analysis. Pattern Recognition, 18 (2):139-144, 1985.
    • (1985) Pattern Recognition , vol.18 , Issue.2 , pp. 139-144
    • Okada, T.1    Tomita, S.2
  • 23
    • 0001473437 scopus 로고
    • On the estimation of probability density function and the mode
    • E. Parzen. On the estimation of probability density function and the mode. The Annals of Mathematical Statistics, 33:1065, 1962.
    • (1962) The Annals of Mathematical Statistics , vol.33 , pp. 1065
    • Parzen, E.1
  • 27
    • 0000389568 scopus 로고
    • Statistical mechanics and phase transitions in clustering
    • K. Rose, E. Gurewitz, and G.C. Fox. Statistical mechanics and phase transitions in clustering. Phys. Rev. Lett., 65(7):945-948, 1990.
    • (1990) Phys. Rev. Lett. , vol.65 , Issue.7 , pp. 945-948
    • Rose, K.1    Gurewitz, E.2    Fox, G.C.3
  • 28
    • 84899016174 scopus 로고    scopus 로고
    • Minimum Bayes error feature selection for continuous speech recognition
    • MIT Press
    • G. Saon and M. Padmanabhan. Minimum Bayes error feature selection for continuous speech recognition. In Advances in Neural Information Processing Systems 13, pages 800-806. MIT Press, 2001.
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 800-806
    • Saon, G.1    Padmanabhan, M.2
  • 29
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • B. Scholkopf, A. Smola, and K-R. Muller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10:1299-1319, 1998.
    • (1998) Neural Computation , vol.10 , pp. 1299-1319
    • Scholkopf, B.1    Smola, A.2    Muller, K.-R.3
  • 30
    • 84856043672 scopus 로고
    • A mathematical theory of communication
    • 623-656, July, October
    • C. Shannon. A mathematical theory of communication. The Bell System Technical Journal, 27:379-423, 623-656, July, October 1948.
    • (1948) The Bell System Technical Journal , vol.27 , pp. 379-423
    • Shannon, C.1
  • 31
    • 0034224418 scopus 로고    scopus 로고
    • Some inequalities for information divergence and related measures of discrimination
    • F. Topsøe. Some inequalities for information divergence and related measures of discrimination. IEEE Transactions on Information Theory, 46:1602-1608, 2000.
    • (2000) IEEE Transactions on Information Theory , vol.46 , pp. 1602-1608
    • Topsøe, F.1
  • 32
    • 22844448817 scopus 로고    scopus 로고
    • Learning discriminative feature transforms to low dimensions in low dimensions
    • Vancouver, BC, Canada, December 3-8, MIT Press
    • K. Torkkola. Learning discriminative feature transforms to low dimensions in low dimensions. In Advances in neural information processing systems 14, Vancouver, BC, Canada, December 3-8 2001a. MIT Press.
    • (2001) Advances in Neural Information Processing Systems , Issue.14
    • Torkkola, K.1
  • 33
    • 0034868179 scopus 로고    scopus 로고
    • Nonlinear feature transforms using maximum mutual information
    • Washington DC, USA, July 15-19
    • K. Torkkola. Nonlinear feature transforms using maximum mutual information. In Proc. IJCNN, pages 2756-2761,Washington DC, USA, July 15-19 2001b.
    • (2001) Proc. IJCNN , pp. 2756-2761
    • Torkkola, K.1
  • 34
    • 0036297846 scopus 로고    scopus 로고
    • On feature extraction by mutual information maximization
    • Orlando, FL, May 13-17
    • K. Torkkola. On feature extraction by mutual information maximization. In Proc. ICASSP, Orlando, FL, May 13-17 2002.
    • (2002) Proc. ICASSP
    • Torkkola, K.1
  • 35
    • 0002341107 scopus 로고    scopus 로고
    • Mutual information in learning feature transformations
    • Stanford, CA, USA, June 29 - July 2
    • K. Torkkola and W. Campbell. Mutual information in learning feature transformations. In Proc. 17th International Conference on Machine Learning, pages 1015-1022, Stanford, CA, USA, June 29 - July 2 2000.
    • (2000) Proc. 17th International Conference on Machine Learning , pp. 1015-1022
    • Torkkola, K.1    Campbell, W.2
  • 37
    • 84898987386 scopus 로고    scopus 로고
    • Data visualization and feature selection: New algorithms for nongaussian data
    • MIT Press
    • H. Yang and J. Moody. Data visualization and feature selection: New algorithms for nongaussian data. In Advances in Neural Information Processing Systems 12, pages 687-693. MIT Press, 2000.
    • (2000) Advances in Neural Information Processing Systems , vol.12 , pp. 687-693
    • Yang, H.1    Moody, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.